

Copyright

©

 2004. Idaho National Engineering and Envirionment Laboratory. All rights reserved.

CUG 2004

 Proceedings

1

Visualization Of A Deterministic Radiation Transport

Model Using Standard Visualization Tools

James A. Galbraith

 and

L. Eric Greenwade

, Idaho National
Engineering and Environmental Laboratory

ABSTRACT:

Output from a deterministic radiation transport code running on a CRAY SV1 is
imported into a standard distributed, parallel, visualization tool for analysis. Standard output
files, consisting of tetrahedral meshes, are imported to the visualization tool through the creation
of a application specific plug-in module. Visualization samples are included, providing visual-
ization of steady state results. Different plot types and operators are utilized to enhance the anal-
ysis and assist in reporting the results of the analysis.

1 Introduction

As technological advances continually increase our ability to
acquire and create scientific data, it becomes increasingly
important to develop techniques to analyze and aid in the under-
standing of this complex scientific data. These advances allow
our scientists and engineers to study in more detail much larger
dynamics through the use of more realistic simulations. These
more realistic simulations result in the generation of increasing
amounts of data.

For scientific applications – especially those associated with
high-performance numerical computing – some of the most
widely encountered object types are meshes, and fields based
on those meshes. A mesh represents a discretization of a space,
a decomposition into many thousands, or in some cases
millions, of smaller-sized objects known as cells. Fields are
defined by associating values with the cells.

While we could create a specific solution to a specific
problem, our need is to find a solution to a more generic
problem. Our need is to find and integrate a generic visual data
analysis solution to many problems found at the INEEL.

This paper presents the activities associated with the visual
data analysis of one of the modeling codes in use at the Idaho
National Engineering and Environmental Laboratory (INEEL),
named Attila [1][2]. While this paper focuses on available
visual data analysis techniques and how they have been applied
to Attila and it’s results, the techniques and capabilities of Attila
itself are presented at a high level for background information
only.

2 Data Analysis

The INEEL has a diverse pool of scientific and engineering
tools that result in the creation of scientific data. These tools are

used by a diverse range of disciplines, including: nuclear safety
analysis, reactor core design, subsurface science, among others.
The size of the problem also varies widely across the different
disciplines.

Larger models may be run on one of our Cray SV-1 plat-
forms or an Opteron based cluster. Smaller models may be run
on various shared memory multiprocessor (SMP) platforms
such as available from Sun or SGI. Even smaller models may
be run on desktop SMP platforms or even single processor
workstations.

Regardless of the compute platform the model is executed,
the results are typically stored in one or more disk file(s). These
disk files may be in either standard ASCII or machine specific
binary formats. ASCII files may be examined manually, which
becomes a daunting task as the resulting data files become
larger. Binary files require the use of analysis tools to read the
binary data and provide analysis output in a form desired by the
user. ASCII files may also me analyzed using the same types of
tools. Knowledge of data formats is required for analysis tools
to utilize either the binary or ASCII data formats as input.

Manual examination of ASCII results data allows the user to
examine data in extreme detail. But it is possible for the user to
quickly loose track of the big picture. One might easily
examine data from a single time step or a single or group of
cells, but is unable to easily correlate that data against previous
or following timesteps, or even against the overall cell structure.
Extraction of portions of the results data into spreadsheet appli-
cations for processing or two-dimensional plotting packages
may provide a better view of the data, but a complete overall
view of the results is still not available.

Analysis of binary data through software utilities also can
lead to a loss of the big picture depending on the method the
results of the analysis are presented.

2

CUG 2004

 Proceedings

In order to provide an adequate overall view of the results,
some method of providing an interactive three-dimensional (3D)
view of the data is required. At the same time, this 3D view must
be able to animate over a series of timesteps where necessary.

The basic problem, simply stated, is to provide a visual data
analysis tool to assist in the analysis of scientific data that is able
to satisfy the various requirements of multiple disciplines. By
providing a single or small set of visualization tool(s), we are
then able to benefit from the use of shared resources, while mini-
mizing custom software development, support, and training.

With each discipline having their own analysis techniques
and potential data formats, attempting to apply generalized visu-
alization techniques across each of these disciplines is a difficult
task, especially for those of us not intimately involved with each
discipline. We also need to address not only those problems that
exist today, but also anticipate those problems that require visu-
alization tomorrow, next year, and even further down the road.

Most users of existing modeling applications want visualiza-
tion capabilities yesterday and are unable or unwilling to wait for
new capabilities to be created, either integrated or stand-alone.
There are also reasons why integrated visualization capabilities
cannot or should not be developed for individual applications.
First of all is the funding issue and time required to develop
specific integrated capabilities. Other issues such as software
architecture and the inability to easily integrate such features
without severe re-engineering also prevail.

3 Visualization

It is important to differentiate activities associated with visual
data analysis of scientific data and presentation graphics.
Presentation graphics is primarily concerned with the communi-
cation of information and results in ways that are easily under-
stood. In visual data analysis, we seek to understand the data.
Presentation graphics may be used to present the results of the
visual data analysis but are not necessarily involved in the anal-
ysis itself.

Visual data analysis is part of a much larger domain typically
called visualization. Many of the tools used in visual data anal-
ysis are applied to other general areas of visualization.

Visualization as a whole is an emerging science, with funda-
mental ideas being applied to general tools with application
across multiple disciplines. At times, it may be desirable to
obtain and visualize scientific data on a real-time basis, but
visual data analysis is typically done on historical data or data
that has been produced by a simulation and saved for later use.

There are several advantages of 3D visualization of scientific
data. First of all, large amounts of data can be combined for a
single picture. All cells of a model can be combined with a
single scalar value representing a specific state of the model at a
specific time. This type of display can easily expose correlations
within the data. Once the visualization has been displayed, it can
then be interactively manipulated to allow the user to filter
through the data to focus on specific portions if necessary.

These displays can then be sequenced through many time steps
of a dynamic model to expose correlations of data across
multiple time steps.

Another advantage is the ability to not only visualize scalar
data but also vector data, allowing magnitude or direction
components of vector data to also be shown.

3.1 Techniques

Several different techniques are available for 3D visualiza-
tion. Each of these techniques utilize color coding schemes to
indicate data values either at the nodes or within the cells of the
associated mesh. The following techniques are typically used
for 3D visualization of scientific data:

• Isosurfaces

• Volumetric rendering

• Contours

• Animation

3.1.1 Isosurfaces

An Isosurface is a technique where the surface displayed is a
constant scalar data value across the entire data domain. This
results in a 3D contour display.

3.1.2 Volumetric rendering

Volumetric rendering is the opposite of surface rendering,
where the entire model is visualized and one is able to see inside
the model volume. This technique is commonly use with slices
and clipping to remove portions of the volume to allow viewing
of internal cells.

3.1.3 Contours

The technique of using contours is essentially providing a 2D
representation of a slice of data from the 3D data set. A contour
is simply a slice of an isosurface.

3.1.4 Animations

Animations are used to show correlations of data values
across multiple data sets. It sometimes is simply not enough to
view the correlations of data between individual cells within a
single data set. It may be just as important to know what the
value was before and after any single timestep and to view the
data values as they change over time.

3.2 Tools

There are many visualization tools currently available in both
the commercial (e.g. Tecplot [6], AVS [3]) and freeware (e.g.
VisIt [7], ParaView [4]) markets. There are also lower level
visualization toolkits (e.g. VTK [8]) available to assist in the
creation of visualization solutions. Each of these tools and tool-
kits have their individual advantages and disadvantages.

While searching for the appropriate visualization solution for
use here at the INEEL, one of the primary requirements is the
support for extremely large datasets. Other specific needs
include the need for extensibility and availability of various
compute platforms.

CUG 2004

 Proceedings

3

3.3 Requirements

As mentioned earlier, the general requirements for selecting
a visualization tool were gathered from potential users currently
at the INEEL as well as from anticipated problems. Specific
requirements included:

• Availability on the necessary compute platforms

• Support for existing data formats

• Support for extremely large data sets

• Visualization extensibility

• Input data format extensibility

• Ability to create “movies”

• 2D/3D support

Without going into a long description of our selection
process, suffice it to say VisIt, from Lawrence Livermore
National Laboratory (LLNL), was selected as our primary visu-
alization of choice. It provides support for tera-scale data sets,
is available in source distributions and portable across a multi-
tude of platforms, utilizes plug-in capabilities to extend plot,
operator, and data formats, provides the ability to create standard
format output graphic files and animated movies, and provides
an extensive set of standard visualization techniques.

4 VisIt

VisIt is a free, component based, interactive parallel visual-
ization and graphical analysis tool developed at LLNL for
viewing scientific data on Unix and PC platforms. The primary
driving force behind the design and development of VisIt was
for visualizing tera-scale data. While this is true, it is equally
well suited for visualizing data from much smaller data sets typi-
cally encountered on desktop systems.

The most recent version of VisIt available to the public is 3.0.
Releases are made periodically, typically every two to three
months. Visit www.llnl.gov/visit for software distribution and
documentation.

VisIt was designed to leverage visualization of others and
component based to enhance it’s extensibility. VisIt is based on
the Visualization Toolkit (VTK) as provided by Kitware. In
addition to this, new plot types, operators, and databases can be
defined and implemented as a plugin using the appropriate
shared library technology of the target platforms.

VisIt allows the user to have multiple displays open ,
allowing the user to simultaneously view the same data using
different plot types and/or operators. Plots may be opened and
closed as necessary. Operators are easily added to individual
plots to filter data as required.

Interaction between the user and a plot is simple and intuitive.
The user is able to easily manipulate the viewing location
through standard pan, rotate, and zoom capabilities allow
viewing the plot from the appropriate angle.

While VisIt provides a rich set of plot types, operators, and
supported data formats, one of the more intriguing concepts of

VisIt is the fact that it is component based. By providing and
supporting plug-in technology for plots, operators, and data
formats, the tool becomes incredibly extensible, only limited by
the demands placed upon the tool and the imagination of the
engineers solving the problem.

Before I describe some of the available plot, operator, and
database options, please note that each of these plot types and
operators has a variety of configurable elements. These
elements range from line types, colors, opacity, scale values, and
other elements that are specific to individual plot or operator
types. Samples of the plot types and operators of interest to
Attila are presented later in Section 6.

4.1 Plot Types

VisIt provides an extensive set of plot types for visualizing
data, with each using different techniques to satisfy various
needs. The different plot types provided, include: Boundary,
Contour, Curve, Mesh, Pseudocolor, Streamline, Surface,
Vector, and Volume. Plot types of primary interest of Attila
include Contour, Mesh, Pseudocolor, Vector, and a combina-
tion Line-out plots.

The Contour plot type provides an isosurface display of the
selected. The contour plot displays the location of values for
scalar variables like density or pressure using lines for 2D plots
and surfaces for 3D plots. Figure 1 presents a sample of the
contour plot.

The Mesh plot type provides a view of the computational
mesh associated with the current model. Mesh plots are typi-
cally displayed as a wireframe and utilized in conjunction with
other plots to provide delineation between cells. Several
different types of meshes are supported, including two- and
three-dimensional rectilinear, curvilinear, and unstructured
meshes.

Pseudocolor plots map scalar variable data values to colors
and uses the colors to “paint” values onto the variable’s compu-

Figure 1 Contour (Isosurface) Plot

4

CUG 2004

 Proceedings

tational mesh. The result is a clear picture of the database geom-
etry painted with variable values that have been mapped to
colors. Figure 2 presents a pseudocolor plot in conjunction with
a mesh plot.

Vector plots displays vector variables as small glyphs that
indicate the direction and magnitude of a vector field. Figure 3
presents a simple vector plot in conjunction with a mesh plot.

4.2 Operators

Operators are filters that can be applied to VisIt database vari-
able before a plot is generated. Several operators are provided
with the VisIt distribution that provide data restriction opera-
tions such as planar and spherical slicing, and thresholding.
Other more sophisticated operators are also available. Operators
of primary concern to Attila are the Clip, Slice, and Lineout
operators.

Figure 2 Pseudocolor Plot (with Mesh Plot)

Figure 3 Vector Plot (with Mesh Plot)

The Clip operator removes portions of the VisIt database
before the plot is generated. Shapes removed are typically
defined with planes and spheres. Multiple planes can be defined
to allow multiple clipped surfaces. Figure 4 presents a simple
spherical plot clipped by two planes.

The Slice operator slices a 3D database with a plane with an
arbitrary orientation. Plots to which the Slice operator has been
applied are turned into 2D planar surfaces that are coplanar with
the slice plane. The resulting plot can be left as a 2D slice in 3D
space or it can be projected to 2D space where other operations
can be done to it.

The Translate operator allows the user to manipulate a plot
using scale, rotation, and translation transformations.

4.3 Database Plugins

VisIt provides support for several standard data formats,
including: Silo, SAF, VTK, and others. By implementing plugin
technology for the input data streams, VisIt can easily be
extended to support any data format by simply creating a data-
base plugin module for the desired format.

4.4 Other Features

The lineout mode allows the user to draw a reference line in
a 2D plot. VisIt will then extract data points along the reference
and display the results in an Curve plot in another window.

The VisIt database can be divided into domains, where indi-
vidual domains can be disabled and removed from view. In this
manner the user can easily remove unnecessary portions of the
database without the need to utilize complex operators. Due to
the size of many of the Attila models, this feature is invaluable
in allowing the viewer to easily display only the portions of the
database currently of interest.

VisIt also supports writing images of a plot view to any of
several currently supported file formats, including: tiff, jpeg,
bmp, and png, among others. This allows the user to easily
include visual representations of the model in reports and

Figure 4 Clip Operator

CUG 2004

 Proceedings

5

presentations. These visualizations may be easily annotated
through the annotation controls provided.

Many of these output files can also be used in the creation of
animations or movies that can also be used for presentations and
demonstrations. VisIt does not specifically support the creation
of these movies other than through the ability to create the neces-
sary snapshot images required by various movie making utili-
ties.

VisIt has also implemented an interface to the Python
scripting language to allow automated operation of certain capa-
bilities. The Python interface is typically used to consistently
create specific visualization environments images used in the
creation of movies or other analysis and reporting activities.

5 Attila

The Attila

©

 application is a deterministic radiation transport
software package designed to solve the first order form of the
Boltzmann transport equation on three dimensional unstructured
tetrahedral meshes. In addition to providing neutron transport
calculations, Attila is also able to perform charged particle trans-
port calculations as well as perform infrared steady-state calcu-
lations for radiative transfer purposes.

Attila was designed and implemented to be a robust, general
purpose radiation transport solver by the Computer Research
and Applications Group at the Los Alamo National Laboratory
(LANL) [1] and licensed to Radion Technologies [2] for
commercial development. While applicable to a wide variety of
radiation transport applications, specific applications include:

• Nuclear reactor design and analysis

• Radiation shielding and protection

• Medical therapy and imaging

• Charged particle calculations

• Food and equipment sterilization operations

Attila is implemented primarily in Fortran 95 using C prepro-
cessor commands and consists of approximately 45000 lines.
While the primary compute platform targeted by Attila is the
uniprocessor desktop platform, due to the need to support larger
problems at the INEEL, it has been successfully ported to the
Cray environment for our larger problems with successful
results.

Attila is currently under consideration for use at the
Advanced Test Reactor (ATR) at the Idaho National Engi-
neering and Environmental Laboratory (INEEL) in conjunction
with core safety analysis activities.

The ATR is capable of creating a wide range of reactor envi-
ronments in which the effects of radiation on materials and fuels
may be studied. These tests determine how fuels and materials
react when bombarded by streams of neutrons and gamma rays
under a variety of pressure and temperature conditions. Informa-
tion that would normally require years to gather from normal
reactor operations can be obtained in a matter of weeks or
months using ATR's high neutron flux capability.

A portion of the evaluation if Attila for use at the ATR and
INEEL is the ability to visualize it’s results. The following
section presents the successful visualization of Attila using
VisIt.

6 Attila and VisIt

Attila currently provides visualization support via the
commercially available Tecplot application. It was our desire to
provide visualization through standard tools used at the INEEL.
Since VisIt was already in use, we examined what it would take
to migrate the Attila output data into VisIt.

The first choice involves either modifying Attila to output a
file format currently support by VisIt or creating a conversion
utility to migrate current Attila output formats into a format
supported by VisIt. The first option is not desirable since Attila
is supported outside the INEEL and managing changing source
files across multiple locations is not desirable. The second
option is the more desirable of these two.

A third option exists, based on the component architecture of
VisIt: creation of a VisIt database component based on current
Attila output files. Since Attila currently supports visualization
by Tecplot, we examined the output files utilized by Tecplot.
These files were found to have all mesh definition information
and scalar data values required by VisIt. It was decided a new
database component would be created, allowing VisIt to utilize
existing file formats currently produced by Attila with no modi-
fications.

6.1 Attila Database Component

Creation of the Attila database component required creation
of a parsing module for the Attila output file, the Tecplot file in
this case. Once we were able to parse the file, all that remained
was providing the necessary methods required by the VisIt
plugin technology to provide the necessary data to VisIt in the
appropriate format.

The VisIt plugin technology allows VisIt to query for avail-
able meshes and variables so they may be presented to the VisIt
user. Once the VisIt user has indicated the mesh(es) and/or vari-
able(s) to utilize, VisIt is able to retrieve the appropriate data and
present it to the plot generation modules.

The Attila mesh information was segmented into smaller
pieces rather than providing a single, large mesh. This segmen-
tation fits into VisIt’s concept of domains. Each mesh segment
is mapped into a VisIt domain. VisIt allows individual domains
to be enabled or disabled at any time by the user. This allows the
user to easily filter out the domains that are not of interest at any
point without having to put together complex operators to filter
out the unnecessary data. Domains are also used to determine
individual compute tasks in parallel operation. Figures 5 and 6
present views of the full Attila model of the ATR, using a
pseudocolor plot and neutron flux variable, and a view with
some of the domains removed. Notice in Figure 5 how the full
model hides all internal information. Figure 6 has had a portion
of the model, specifically the “water” and “reflect” domains.

6

CUG 2004

 Proceedings

What remains are the domains that represent the serpentine core
of the ATR, several locations where various experiments may be
placed, and other various support components.

To view only the core of the ATR, all non-core domains are
removed as shown in Figure 7. At this point many of the
different operators can be applied to the core to view the neutron
flux using different techniques.

Figure 8 presents a plot of the core using the clip operator
with three planes to allow viewing an inner portion of the core.
The locations of these planes is arbitrary and under complete
control of the user to focus in on the necessary portion of the
model.

More detailed analysis can be performed by taking a 2D slice
of the database in question and retrieving a portion of the
resulting database and applying it to a X-Y plot. Figures 9 and
10 presents this concept. The three lower experiment locations

Figure 5 Full Attila Model

Figure 6 Attila Model With Domains Disabled

had a slice operator applied to them and projected to a 2D view
(Figure 9). Once entering a 2D view, Lineout mode can be
entered where a line may be drawn to indicate where the data
slice is to be taken. This data is then applied to a simple X-Y plot
which is displayed in another window (Figure 10). The line
drawn in the 2D display is displayed in the same color as the X-Y
plot to assist the user in identifying where the data actually came
from. Multiple X-Y plots may be created within a single
window.

6.2 Platform Availability

Visit supports multiple compute platforms from a single
source distribution. Standard configure scripts are used to
configure VisIt on Unix based platforms, while specialized
Makefiles are provided for Microsoft Windows based platforms.

Our position is that we need to provide the necessary tools on
the platforms where they are required. We do not want to force

Figure 7 Attila Model of ATR Core

Figure 8 Attila Model of ATR Core with Clip Operator

CUG 2004

 Proceedings

7

users to work on an environment that is not compatible with that
where their model exists. We have currently implemented VisIt
on the following platforms at the INEEL: Sun, SGI, Linux, and
MS Windows.

Implementation of Visit in our environments did not present
any difficult events. The primary problems we encountered
were in the MS Windows environments. See the following
section for a discussion on the performance bottleneck on the
Windows platform.

6.3 Performance

Performance is always a concern when working with scien-
tific computing. Visualization is no exception. As scientific
models get larger, the workload inherited by the visualization
tools increases as well.

VisIt addresses the performance issue through its basic archi-
tecture. It is component based, allowing different components to

Figure 9 2D Slice In Lineout Mode

Figure 10 X-Y Plot From Lineout Mode

be distributed across multiple machines. The compute engine
may be run serially on a singe processor or in parallel on poten-
tially thousands of processors, with final rendering performed on
the local machine.

Removal of unnecessary domains, will enhance performance
since they are removed before the compute engine component
actually sees the data.

While our current Attila model does not adequately test the
VisIt performance capabilities, we have seen documented
evidence of easily handling models with 13.8 million elements.
although this level of elements takes on the order of 275 seconds,
through the ability to generate in parallel, this time drops down
to approximately 25 seconds using 32 processors.

The Attila model presented in this paper consists of 398,775
nodes and 1,361,682 tetrahedral elements. While size of this
model does not effectively demonstrate the ability of VisIt to
handle large tera-scale models, it does demonstrate it’s ability to
handle smaller problems and smaller hardware architectures.

A large amount of visualization by VisIt will requires no
specialized hardware or software. Images for this paper were
generated on a Dell Inspiron 8000 laptop with a P4 800Mhz
processor with standard integrated graphics. We have several
users utilizing VisIt on their desktop Linux workstations, both
single and multiprocessor environments, with adequate perfor-
mance.

In our Attila database implementation, we noticed severe
performance problems while parsing the Attila plot file. The
bottleneck was traced to the STL containers being used.

Recognizing that the original STL implementation provided
by MS Visual C++ is not the most efficient, we set about
installing and integrating the STLport [5] STL implementation.
This required changing some of the VisIt source files to remove
all non-standard STL include references, primarily the iostream
related includes. This was required due to the fact that STLport
provides it’s iostream implementation in shared libraries rather
than include files.

Once this was all straightened out, we noticed a significant
improvement in performance. In fact, the MS Windows imple-
mentation now runs faster that a Linux implementation on a
mcahine with a faster clock. The original MS Windows imple-
mentation required approximately 1.5 minutes to read the Attila
input file (94,435,979 bytes) on a 800 Mhz class machine while
the Linux implementation only required 15 seconds on a 2 Ghz
class machine. Following implementation of the STLport STL
libraries, the MS Windows implementation now only takes 10
seconds on the 800 Mhz class machine.

It is apparent that the STL library implementation in the
Windows environment has a significant impact on a database
reader implementation using STL containers and iostreams.
Detailed performance differences of the rendering engine of
VisIt were not done before and after the STLport implementa-
tion. Based on the performance we see in the database reader
implementation, it leads us to believe that the rendering engine

8

CUG 2004

 Proceedings

would also see significant performance improvements in the
areas where STL containers or iostreams were utilized.

7 Conclusion

We have found that the VisIt visualization tool is quite
adequate, both in performance and functionality, for our current
and expected scientific visualization problems. It provides
extensive functionality in it’s standard plot types and operators
and provides the ability to extend the existing set of plot types,
operators, and supported databases via it’s plugin capabilities.

We are able to utilize VisIt on a wide array of hardware plat-
forms and are not currently concerned with performance impli-
cations. As the models become larger, we will utilize VisIt’s
parallel capabilities in a cluster environment as necessary.

While the user documentation is adequate, the documentation
concerned with the extension of the plot, operator, and database
capabilities is minimal and not yet available via the VisIt
website. While this is true, we have found very good response
via the telephone and e-mail to various software engineers
involved with VisIt’s design and development and received
much information, including sample code, to assist us in our
endeavours.

VisIt also supports the need for reporting results in formal
documents and making “movies” or animations for demonstra-
tions through it’s ability to generate output in several different
standard graphic file formats.

While other tools may provide similar capabilities, VisIt was
found to provide the necessary functionality and performance
for our current and anticipated needs. It is definitely a generic
solution to a generic problem. And, by the way, the price is
right.

About The Authors

James A. Galbraith is a Software Engineer in the HPC/Visu-
alization group at the INEEL. He is currently involved in
migrating various applications to utilize VisIt for visualization
of scientific data and addressing data migration issues. He may
be reached at galbja@inel.gov. L. Eric Greenwade is the group
lead for the HPC/Visualization group at the INEEL. He may be
reached at leg@inel.gov.

References

[1] Attila, Los Alamos National Laboratory,
www.lanl.gov/attila.

[2] Attila, Radion Technologies, www.radiative.com.

[3] AVS, Advanced Visual Systems, Inc. www.avs.com.

[4] ParaView, KitWare, Inc. www.paraview.org.

[5] STLport, STLport Consulting, www.stlport.org.

[6] Tecplot, Tecplot, Inc., www.tecplot.org.

[7] VisIt, Lawrence Livermore National Laboratory,
www.llnl/visit.

[8] VTK, KitWare, Inc., www.vtk.org.

