

X1 StorNext SAN

Jim Glidewell
Information Technology Services
Boeing Shared Services Group

Current HPC Systems

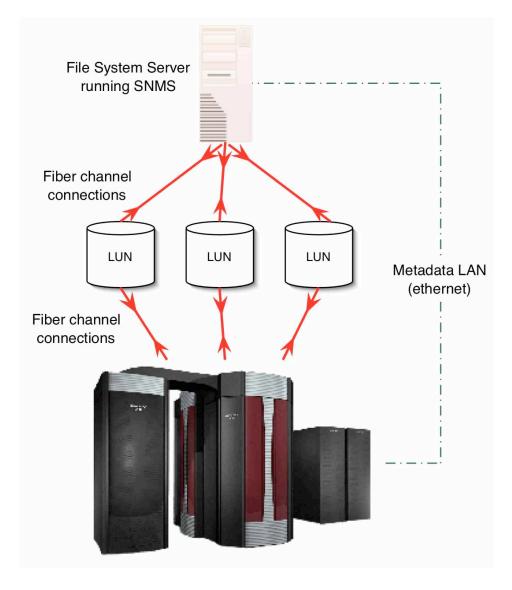
- Two Cray T-90's
- A 384 CPU Origin 3800
- Three 256-CPU Linux clusters
- Cray X1

Longtime DMF Site

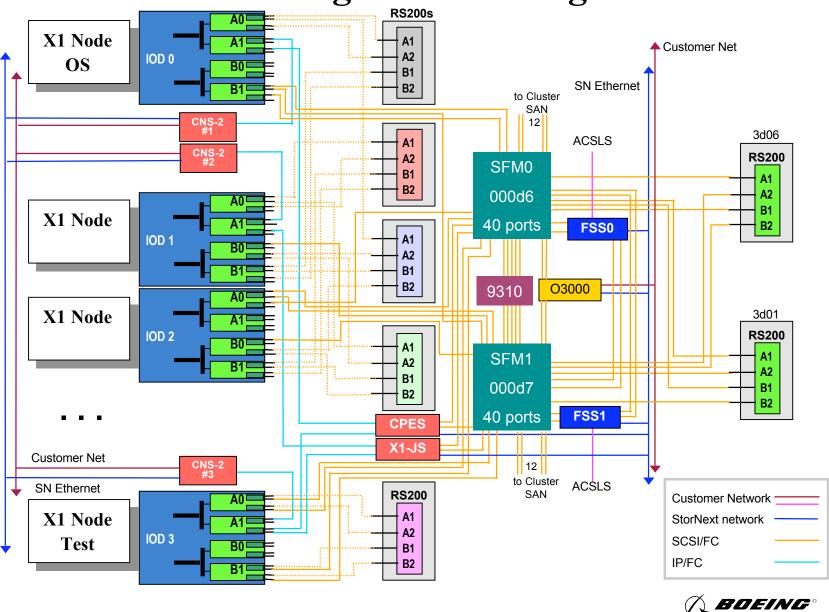
- Started using DMF in 1990 on Cray systems
 - 16 EScon STK 9840A drives shared between two T-90s
 - Past drives include 4490, 4490E, and Timberline
 - 37 terabytes of migrated T-90 data
- Using DMF since 1998 on SGI Origins
 - Six fiber-channel STK 9840B
 - Previously used Redwood drives
 - 38 terabytes of migrated data

Hardware

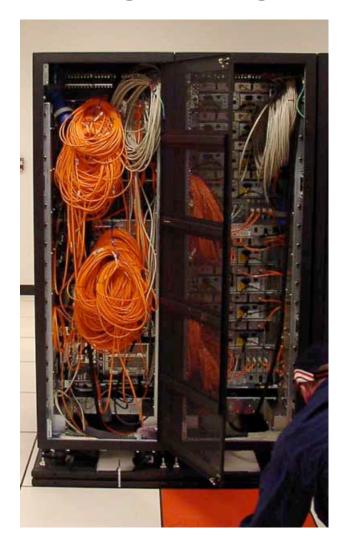
- Fully configured single chassis X1 (64 MSPs, 512GB)
- 26 TB of LSI RAID disk
 - 7TB currently configured into SAN
 - Roughly 1600MB/sec total bandwidth across all controllers
- Three Storagetek 9310 Powderhorn silos
 - Using ACSLS 7.0
 - Serving two T-90s, Origin 3800, Linux cluster, and X1
- ADIC SNMS SAN
 - Hosted on Dell 2650 servers running Linux
 - Six fiber-channel STK 9840C drives
 - STK drives selected for compatibility with other services in the datacenter
 - Chose 9840C over 9940C for faster load time
 - ADIC tape libraries used at other Boeing locations



SAN Hardware



Basic StorNext SAN Architecture



Boeing SAN Cabling

SAN Cabling During Installation

Terminology

- SNMS StorNext Management Suite
 - Manages migration, backup, monitors space, etc.
- SNFS -StorNext File System
 - Journaled file system server and client
 - Appears as local file system to host
- Division between SNMS and SNFS seems "fuzzy"
 - SNMS is essential for a functioning file system
- Terms such as migrated, online, offline, etc. are same as DMF
- When files go offline, they are "truncated" by SNMS

Setup and Configuration

- Goal was maximal performance with heterogeneous mix of file sizes, data access, and access patterns
- We did not have adequate guidance during our initial attempts at configuration
 - Our original plan had over 20 filesystems defined
 - We were told after the machine arrived that a reasonable limit was 8, four if failover was desired
- Setup took months even with a Cray SAN analyst on site most of the time
- A permanent Cray test bed would have been useful
- Tuning guides, both general and client specific, would be helpful
- Training was adequate, but not in the depth we felt we needed
- Initial performance was less than expected...

Performance

- Performance (especially writes) less than expected
 - Much lower than same disks directly attached
 - Appears to be an I/O bottleneck
- Mount options have hidden some of the performance problems
 - Same mount options on Linux made performance worse...
- X1 client very slow to remove large number of files
 - Other clients do not have this problem
- Deviated from Cray standard configuration to improve performance
 - Enabled CTQ (Command Tag Queueing)
 - Turned on write caching on LSI RAID controllers

SAN vs. Direct Attached Disk

	Reads		Writes	
	Direct	SAN	Direct	SAN
ср	130 MB/s	250 MB/s	120 MB/s	30 MB/s
cvcp	367 MB/s	175 MB/s	300 MB/s	97 MB/s

Operational Issues

- Not as resilient as we had hoped
 - SNMS needs to be running for mv's to work
 - Recycling the MSM component may abort outstanding requests
 - Huge log files can fill /usr, requiring an eventual reboot
- The SNMS <->ACSLS (STK library) interface needs work in order to meet our needs
 - SNMS wants to control entire library (which is shared...)
 - Disaster recovery should not require whole library to be audited
 - Tape mounts pause as we enter tapes into the library
 - Still trying to understand the process of adding/removing tapes

Operational Issues continued...

- fsmedcopy is slow and awkward
 - More testing of this feature is needed
- If file system server rebooted, clients sometimes fail to recover
 - Remount the SAN filesystem
 - Reboot the host system (!)
- Tested many failure modes before production
- Long list of SAN-related SPRs

User Interface Issues

- No dmget equivalent on host
 - This could be a significant problem in the future
 - Request for this functionality has been made to ADIC
- GUI access is preferred method of user control
- Slow response to metadata actions

Production Experience So Far

- SAN production started April 25th
- No service interruptions in the first two weeks of production
- Most of our users never noticed
 - A good sign in a transition of this type...
 - No user complaints
- Despite some operational issues, StorNext provides valuable features for our site
 - Ability to manage data in excess of our physical disk capacity
 - Trickle backup
 - Option of sharing file systems between heterogeneous hosts
 - Familiar "DMF-like" characteristics
 - Support for duplicate copies of backup media
- Cray and ADIC support was a key factor in our decision to move forward with production

Linux server platform

- Linux, as a StorNext server platform, appears immature for Boeing needs
- StorNext only recently released for Linux
- Linux I/O is somewhat primitive for the needs of a StorNext file server
- Limited number of failover paths (max_scsi_lun)
- Good long-term strategy

Conclusions

- Setup was significantly more difficult than expected
 - For both Cray and us
 - Took months instead of weeks
 - The lack of a StorNext test bed had serious impacts
 - Earlier direct involvement by ADIC would have been beneficial
 - Lessons learned at our site are likely to benefit others
- Boeing would have benefited from a more "turnkey" solution to managed storage
- Performance issues (particularly writes) need to be addressed for our environment
- Linux as a server platform is in line with long-term HPC strategy, but is still immature
- StorNext appears to be a solid product, but needs more polish for our needs
 - Ease of setup
 - HPC features (dmget, ACLs, etc.)
 - Handling of exceptions
- We have been in production since April 25th
- Cray has made significant efforts to make this installation succeed

Coming soon...

