
Page 1 of 8

A Use Case Model for RAS in an MPP Environment

Suzanne M. Kelly
Sandia National Laboratories*

Scalable Systems Integration Department
PO BOX 5800

Albuquerque, NM 87185-0817
smkelly@sandia.gov

ABSTRACT
A use case model is an effective way of
specifying how Reliability, Availability, and
Serviceability (RAS) features would be
employed in an operational Massively Parallel
Processors (MPP) system. As part of a research
project on RAS for MPPs, one such model was
developed. A brief introduction to the use case
technique is followed by a discussion of the
developed model.

Keywords
RAS, MPP, use case, storyboard.

1.0 The Unified Modeling Language
The fundamental concepts in use cases existed in
previous techniques such as story boarding and
scenario development. The use case model itself
has been evolving since Ivar Jacobson
introduced it in 1992 [1]. In the mid 1990’s, the
use case model was incorporated into the Unified
Modeling Language (UML) standard [2], which
has been adopted as a standard by the Object
Management Group (OMG) [3].

The UML is an object modeling language. It
unifies the models of Booch [4], Rumbaugh [5],
and Jacobson [1]. UML is not a method. There
is no notion of process. It consists of (currently)
12 diagrams, of which the use case diagram is
one. One can incorporate some or all of the
UML notations and diagrams into their chosen
software development process. Some of the
diagrams are targeted to Object-Oriented
analysis and design (OOAD), such as the Class
Diagram and the Package Diagram. Others such

 * Sandia is a multiprogram laboratory operated
by Sandia Corporation, a Lockheed Martin
Company for the United States Department of
Energy’s National Nuclear Security
Administration under contract DE-AC04-
94AL85000.

as the use case diagram and the state transition
diagram are applicable to non-OOAD
development methodologies.

The purpose of standard diagrams is improved
communication. If the notations are well
understood by a broad community, the graphical
view can provide volumes of information to the
reader in just a page or two.

1.1 Use Case Concepts
The key concepts in a use case model are
 Use case
 Actor

A use case is a specific way of using the system
by performing some part of the functionality.
Each use case constitutes a complete course of
events initiated by an actor [e.g. user] and it
specifies the interaction that takes place between
the actor and the system [1].

An actor is a representation of what interacts
with the system. It may be a person, another
system, or something else [e.g. cron daemon].
Actors represent someone or something that
needs to exchange information with the system;
but they are not part of the system [1].

Ovals represent use cases and stick figures
represent actors. An arrow between indicates the
direction of initiation, which is not necessarily
the direction of data flow. These simple
notations were selected so that sophisticated
tools are not required to use the model. Both use
cases and actors are assigned names. The author
prefers to name each use case with a verb
followed by an object. The initiating actor
implies the subject.

1.2 Use Case Example
 Figure 1 shows an example of a single use case
for an ATM system:

Page 2 of 8

Figure 1: Single Use Case Example

In this trivial example, the actor is named the
“ATM customer” and the use case is named
“request cash withdrawal.” This use case would
be one of many use cases for an ATM system.
Fleshing it out a bit further, we would have
something like:

Figure 2: Simple Use Case Diagram

The entire collection of use cases is called the
use case diagram. Each use case is accompanied
by use case documentation. At a minimum,
there is a description and one flow of events, or
scenario. The author’s preferred use case
documentation template is based on one in [6]
and consists of:

- Description
- Actors
- Pre & Post conditions
- Detailed Flow of Events
- Alternate Flows
- User Interface
- Data Requirements

Provide one or two sentences describing the use
case. Identify the actors that are involved.
Mention any conditions that must pre-exist. If
the end of the use case will have reached a key
state, identify it as a post-condition. The flow of
events, also called a scenario, gives a step-by-
step description of the interaction between the
system and the actor(s). The typical scenario is
first described in detail. Alternative flows may
provide documentation on error conditions or
less likely scenarios. The user interface section
is often a graphic showing what the actor(s) will
see if a GUI (graphical user interface) is
involved. Lastly, the data items used in the use
case are enumerated. When generating use case
documentation, one assumes the necessary data
is available—almost as if it is floating in space,
ready to be retrieved from or added to. How data
is actually maintained is not the focus of use
cases.

An example may again prove illuminating. The
following text contains the beginning portions of
what would be included in the documentation for
a use case.

Figure 3: Example Use Case Documentation

1.3 The Value of Use Cases
Hopefully the previous description has given the
reader an appreciation for the purpose of use
cases. They can be an excellent communication
vehicle between software developers and
software users. They make minimal use of

Request Cash
Withdrawal

ATM Customer

Request Cash
Withdrawal

ATM Customer Make Deposit

Change PIN

Service Provider

Replenish Supplies

Timer

Download Status

Log Transaction
«uses»

«uses»

Page 3 of 8

computer science terms. They define system
behavior in a way that can be understood and
appreciated, rather than the traditional laundry
list of requirements. Once the system is
developed, the test cases can be based on the use
cases themselves. Also the user documentation,
or at least the table of contents, falls out naturally
from the use cases. Much of the graphical user
interface is drafted. And many of the data items
for a data repository or database are identified.

There are limits to the value of use cases. They
only define the customer-visible portion of the
system. Much of the system is still a black hole:

Figure 4: Use Cases present external interfaces only

As such, they provide minimal information for
system architectural design. The UML offers 11
additional diagrams to help with those aspects of
system development.

2.0 RAS Study
The previous tutorial set the stage for describing
an effort undertaken at Sandia National
Laboratories. Sandia has a strong commitment
to high performance computing (HPC) and in
particular, to massively parallel processor
systems. These systems are made up of tens of
thousands of hardware components. Just due to
the volume, failures happen on a regular basis.
The software components running on these
systems tend to be equally sophisticated and are
rarely trouble-free. These facts make RAS
difficult to achieve. The Sandia study looked at
RAS features and how to employ them in an
MPP to achieve good reliability, availability, and
serviceability. The results of that study are
documented in [6].

2.1 Definition of RAS
There is a community of professionals that apply
specific meaning to the terms comprising RAS.
The terms and their definition follow:

Reliability: the likelihood a system or
component will sustain full functional operation

over its lifetime. This is sometimes referred to
as fault avoidance.

Availability: the likelihood a system is
operational at any given time. This is sometimes
referred to as fault tolerance.

Serviceability: the measure of a system’s ability
to sustain repairs to faulty components. This is
referred to as fault identification and repair.

How one measures these individual attributes
can vary from computer system to computer
system. Reliability is often the most perplexing.
One hears of MTBI (mean time between
interrupts) and MTBF (mean time between
failures), but the definitions and application of
interrupts and failures is not standard.
Availability is measured in percent of time the
system is operational. But that too can vary
depending on one’s determination of when a
system is “up.” Serviceability is measured in
MTTR (mean time to repair). It has a strong
influence on the availability statistics, but again,
the determination of the time between “repaired”
and “up” may vary considerably, due to issues
such as long boot sequences.

2.2 Use Case Model for RAS in an MPP
One of the products of the Sandia RAS study
was the use case model. It was used as a
communication and analysis tool for gleaning the
unique features that a RAS system needed to
provide for a MPP. The model looked at
providing RAS features for both hardware and
software components.

We began by identifying all the actors in the
RAS system. These are all the persons and
“things” that interact with the RAS system.

Asynchronous Event – an event that happens at
any time
Manager – a person responsible for ensuring the
system meets its RAS goals.
Operator – a person trained to monitor specific
system-generated observable events and to
follow a set of procedures based on the
observable events.
Synchronous Event – an event that happens at a
predetermined time.
System Hardware Administrator (SHA) – a
person trained to monitor system hardware logs
and resolve hardware problems.
System Software Administrator (SSA) – a
person trained to install and configure software

Page 4 of 8

components, monitor system logs, and resolve
problems. This person will usually be the one to
differentiate hardware and software problems.
System Software Programmer (SSP) – a
person engaged in on-going software engineering
that results in updates to the operating system(s)
and other low-level service programs.
User – a person running and/or developing
applications on the system.

Note that one person may fill one or more of the
human roles. For example, the system software
administrator may be the only operator of the
system. Figure 5 shows the inheritance of roles
envisioned for the actors.

Figure 5: The RAS Actors

Once the actors were identified, we brainstormed
what they needed from a RAS system. These
became the use cases. The entire use case
diagram is given at the end of this paper. The
short description of each use case was then
written and is repeated here.

2.2.1 Use Cases Initiated by the User
Determine status of system resources – A user
attempts to quantify the status of the MPP
system resources to determine if the MPP system
is available to run compute job(s).

Determine status of job(s) that were or are
running – A user wants to determine the status
of compute job(s) they had previously submitted
to the MPP to be run.

Review the logs of jobs(s) that were run – A
user wants to review the STDOUT, STDERR,
job summary, and any other logs associated with
submitted and terminated job(s).

Utilize application checkpoint/restart
capability – A user wants to make an application
utilize the checkpoint/restart capability of the
MPP system to maximize availability of the
application by minimizing the lost work when
having to restart an application from a
checkpoint.

Utilize application monitoring capabilities – A
user wants to make an application utilize the
monitoring capability of the MPP system to
detect and resolve problems in an automated
way.

2.2.2 Use Cases Initiated by the System
Software Administrator (SSA)
Determine the status of jobs – An SSA wants
to determine the status of all jobs running,
queued, and otherwise that the system knows
about.

Manage user jobs – An SSA wants to manage
any/all of the jobs running, queued, and
otherwise that the system knows about.

Determine the status of system software
components – An SSA wants to know the status
of any/all system software components, i.e.,
daemons, service agents, operating systems,
communication layers, file systems, etc.

Determine the status of system hardware
components – An SSA wants to know the status
of some or all system hardware components.

Restart failed hardware/software components
– An SSA has determined that there are
hardware / software components in the MPP
system in a failed state and wants to attempt to
fix the component(s) by restarting them.

Startup/shutdown/reboot system components
– An SSA needs to startup or shutdown or reboot
system components. This includes scenarios of
booting the entire MPP system from scratch,
rebooting the entire system, etc.

Run tests and diagnostics – An SSA wants to
run tests and diagnostics on any of the MPP
system’s hardware or software components or on
the MPP system as a whole.

User

System Software Administrator

System Hardware Administrator

Manager

Operator

System Software Programmer

Asynchronous Event Synchronous Event

Page 5 of 8

Data mine current and historical information
– An SSA wishes to collect information on a
specific topic or question. The SSA may be
interested in statistics such as uptime, reliability,
repair time, hardware replacement rates, compute
processor utilization, memory utilization, disk
utilization, communication network utilization,
user job characteristics, etc. The system
provides some predetermined reports, but allows
for what-if and what-about questions.

Review system logs – An SSA wishes to review
any logs or event histories for the MPP system.

Manage disk space – An SSA performs
maintenance on the disks and associated file
systems.

2.2.3 Use Cases Initiated by the System
Software Programmer (SSP)
Analyze post-mortem a system software
failure – The system software programmer
attempts to determine the root cause of a
software problem.

Obtain verbose debugging information – A
need has arisen which requires detailed
debugging information. The additional debug
information may reduce system
performance/throughput.

Upgrade system software – The SSP has
determined that an upgrade to system software is
necessary. The revised software is in hand and
must be tested locally and then installed for
production use. The change may require a
complete new boot disk or only a portion of the
system software may be replaced.

2.2.4 Use Cases Initiated by the System
Hardware Administrator (SHA)
Diagnose questionable hardware – An SHA has
identified questionable hardware and wishes to
run diagnostics on the hardware to ascertain if
there is a failure of some sort.

Add/Remove/Replace hardware components –
An SHA has identified hardware that needs to be
added, removed, or replaced in the system.

2.2.5 Use Cases Initiated by the Operator
Receive audible/visible notification of
problems – Some components may provide an
audible and/or visible indicator when a problem
is detected. This indicator may be necessary

because the component does not have the
capability to report problems in a more electronic
fashion to a central location. Or the indicator
may be a backup/duplicate mechanism to an
electronic message.

Check if system is operational – A simple,
intuitive interface gives the operator a clear
indication that the MPP is operational or not. It
may be possible to extract additional details
about what the problem area might be.

Follow notification procedure – The operator
has evidence that there is a problem with the
MPP. The operator will follow a prescribed
procedure to notify the responsible party.

2.2.6 Use Case Initiated by the Manager
Retrieve performance statistics – A manager
wishes to collect information on a specific topic
or question. The manager may be interested in
statistics such as uptime, reliability, repair time,
hardware replacements rates, or resource
utilization trends. The system provides some
predetermined reports, but allows for what-if and
what-about questions.

2.2.7 Use Cases Initiated by a Synchronous
Event
Perform proactive system diagnostics – On a
configurable schedule, some diagnostic tests are
automatically run.

Backup selected files – Key static and dynamic
system files are copied to physically separate
media for safekeeping.

2.2.8 Uses Cases Initiated by an Asynchronous
Event
Asynchronous event causes failure of system
software service – An unexpected event caused
a software service/daemon to fail or hang. The
event could be a hardware glitch, invalid input, a
toxic combination of valid input, a race
condition, or something else.

Asynchronous event hangs/panics operating
system – An unexpected event caused the
operating system or one or more processors to
hang or fail. The event could be a hardware
glitch, invalid input, a toxic combination of valid
input, a race condition, or something else.

Asynchronous event causes recoverable error
– A hardware component detects an error. The
operation is retried and succeeds.

Page 6 of 8

Asynchronous event faults hardware with hot
spare – A hardware component has a problem
that can be fixed with a hot spare. The hot spare
is put into service.

Asynchronous event faults hardware that can
be isolated – A hardware component has a
problem that is not critical to system operation.
The component is isolated for subsequent repair.

Asynchronous event faults hardware that is a
single point of failure – A hardware component
fails that paralyzes the system sufficiently that no
useful work can be done.

Asynchronous event causes environmental
failure – An external, but necessary support
service fails. The most likely examples are
power or cooling.

Asynchronous event results in unknown event
– The service processor collects one or more
error reports. However, none of the predefined
rules point to any specific problem.

Notify system software administrator of
problems – A problem has been detected with
the system and the responsible party needs to be
notified.

2.2.9 Use Case Documentation
The final step in developing a complete use case
model is to prepare the full documentation for
each use case. Section 1.2 presented the
documentation template used in the RAS study.
The full documentation can be found in [7]. One
sample is provided below.

Asynchronous event causes environmental
failure
Description
An external, but necessary support service fails.
The most likely examples are power or cooling.
Actors
Asynchronous event
Preconditions
None
Postconditions
An alert is generated and the system may be shut
down.
Flow of Events
This use case begins when the environmental
support service fails.

1. A system sensor is triggered.
2. If the triggered sensor is detecting loss of

power and the alternate primary power
source is still functioning, all power is
derived from the alternate. The recovery
action is reported to the service processor
(SP).

3. If the triggered sensor indicates that all
power is lost, the UPS automatically
switches to battery and sends the recovery
action to the SP.

4. Disks should also switch to battery when all
AC is lost.

5. If a temperature alarm or multiple alarms are
triggered, each report to the SP.

6. The SP processes the alarms. In the case of
temperature alarms, the SP directs the
appropriate fans/blowers to increase speed.

7. The SP generates an alert for immediate
service using the “notify system software
administrator of problems.”

8. If the temperature is above a configurable
limit or the system is operating exclusively
on UPS, the system performs a graceful
shutdown using the “shutdown the system
use case”.

9. If the temperature is above a possibly
different configurable limit, the SP performs
an automatic power off of the MPP and then
possibly itself.

This use case ends when the alert is generated
and the system is shut down (if necessary).

3.0 References
[1] Ivar Jacobson et al., Object-Oriented Software

Engineering: A Use Case Driven Approach,
Addison Wesley, 1992.

[2] http://www.uml.org.
[3] http://www.omg.org
[4] Grady Booch, Object-Oriented Analysis and

Design with Applications, Addison-Wesley,
1993.

[5] James Rumbaugh et al, Object-Oriented
Modeling and Design, Prentice Hall, 1990.

[6] Geri Schneider and Jason P. Winters, Applying
Use Cases, Addison-Wesley, 1998.

[7] Suzanne M. Kelly and Jeffry B. Ogden, An
Investigation into Reliability, Availability, and
Serviceability (RAS) Features for Massively
Parallel Processor Systems, Technical
Report SAND2002-3164, Sandia National
Laboratories, October 2002.

The Full Use Case Diagram of RAS for an MPP Environment is given on the following two pages. Ignore wrapping.

Page 7 of 8

User

Determine status
of system resources Determine status

of job(s) that
were or are running

Review the logs
of job(s) that

were run

Utililize application
checkpoint/restart

capability

SSA

Determine the
status of jobs

Manage user jobs

Determine the status
of system software

components

Determine the status
of system hardware

components

Restart failed
hardware/software

components

Startup/shutdown/
reboot system
components

Run tests/diagnost
ics

Data mine current
and historical
information

Review logs

«extends»

System Software Programmer

Analyze post-mortem
a system software

failure

Obtain verbose
debugging informati

on

Upgrade system
software

«extends»

User

System Software
Administrator

Utilize application
monitoring capabilit

y

Manage disk space

Page 8 of 8

System Hardware Administrator

Diagnose questiona
ble hardware

Add/remove/replace
hardware components

Test hardware
component(s)

Operator

Follow notificatio
n procedure

Check if system
is operational

Receive audible/
visible notification

of problems

Manager

Retrieve performan
ce statistics

Synchronous Event

Backup selected
files

Perform proactive
system diagnostics

