k-

Cray X1
Architecture Overview and
Optimization
CUG Workshop
May, 2004

N\
%
m
2
m
5
2

James L. Schwarzmeier
Cray Inc.

jads@cray.com
715-726-4756

Cray Proprietary

Cray X1 Performance after One e

« many improvements in PE, OS, optimization knowledge base
X1 vector processor:
— typical % peak (12.8 GF) on decent vector code 15-40%

— typical speedup over (5.2 GF) Power 4 ~ 7-30x

X1 network:

— plenty of bandwidth (except GUPS)

— MPI latency improving

— CAF/UPC exceptional for collective operations

customers doing problems on X1 they could never do before (some
discussed at CUG)

— vectorization can be work, but a demonstrable path to HPC

« X1 often limited more by CPU and memory latencies than memory
bandwidth = good for Cray X1E (lower bandwidth and lower latency

than X1)

D))
CUG 2004

2

Cray PVP

» Powerful single processors
 Very high memory bandwidth
* Non-unit stride computation

» Special ISA features

 Modernized the ISA

Cray T3E

* Distributed shared memory

* High bw scalable network

» Optimized communication
and synchronization features

* Improved via custom
processors

Extreme scalability with high bandwidth custom processors

hY

CUG 2004

3

Cray X1 Multi-Streaming

=AY
Processor
4 v v
) custom
12.8 Gflops (64 bit) S S S S _~blocks
vd
25.6 Gflops (32 bit) V]|V v]|v v]|v v][v]*
A A A A
51 GB/s 4 . ’\'/‘ ‘
25-41 GB/s 4 << S
\ 4 \ 4 \ 4 \ 4
0.5 MB 0.5 MB 0.5 MB 0.5 MB
2 MB Ecache $ $ $ $

VvV VYyY VVYVYVY VVVYY VYVYYVY

At frequency of

400/3800 MHz To local memory and network: 25.6 GB/s T

12.8 - 20.5 GBI/s }

\

CUG 2004

4

Cray X1 Node (a T932 on a board) CRAaYyY

SEEE EEEE pEEE BmEEE
et || s | | | || s
sllsilslls) |ls)is)(sis)] |(s)ls)is]ls)] |[s)(s)[s]s
I\I | | |

mem mem mem mem mem mem mem mem mem mem mem mem mem mem mem

(@) 1O
LYY
\ AR A/
Inter node network: I/O connections: Local memory:
2 ports per M chip 4 ports per node 200 GB/s peak bw
1.6 GB/s full duplex per link 1.2 GB/s full duplex per link 8-32 GB per node
\
CUG 2004

5

To M chips

mp | | | [[| [| L]]

II)/I

A = |
JEII e

* Re-implement P and E chips in 0.08mm IC technology

 Place two MSPs on each MCM
= Double the processor density (8 MSPs/module)

153

:

\ | [
6 \

« Significant frequency increase (~50%) CUG 2004

6

NUIVIA SCalable up 10 1LUz4
Nodes

Interconnection

Network

o 32 parallel networks for bandwidth
« Quad-bristled hypercubes to 512 CPUs h

CUG 2004

7

Network for Small Systems =

« Upto 16 CPUs, can connect directly via M chip ports

Node O

Node 3

Slice 0 Slice 15

N

CUG 2004

8

‘Stack’: Scalable Network Building Block

. Re

i

Hypercube
Network

Slice 0

CRANY

Slice 15

Node O

Ro

Node 7

N

CUG 2

004

9

cabinet

2x 16 x 1.6 GB/s
Bi-directional

CUG 2004
10

Programmer’s View CRANY

e X1 as a collection of shared memory SMP nodes, each
running OpenMP or single processor vector jobs, with Single
System Image (SSI) over whole machine

— MSP-mode automatically by compiler, or SSP-mode
— OpenMP, pthreads (using either 4 MSPs or 16 SSPs)

— 51 GFLOPS nodes, high UMA memory bandwidth, 16-32 GB/node
OR

« X1 as a large MPP with vector processors running
distributed memory jobs, with high bandwidth interconnect
between processors

— MPI, shmem(), UPC, Co-Array Fortran (CAF)

— same kinds of optimizations as on microprocessor-based machines
« work and data decomposition
« cache blocking (higher BW in cache, MSP improves short VL)

— but less concern about communication/computation ratio, memory
stride and bandwidth

D))
CUG 2004

11

Update of the Cray ISA AN

Many more registers: 32 vector, 128 scalar (64 A, 64 S)

— = fewer spills, greater scheduling flexibility

All operations performed under mask (set of 8 64-bit mask

registers)
— = can vectorize loops with conditionals without scatter/gathers

32-bit integer and floating point memory refs and ops, IEEE
— = double peak speed execution

Allocating and non-allocating vector memory references
— = better application cache behavior, efficient explicit communication

Relaxed, architecture-defined memory ordering model with

explicit synchronization instructions
— = hardware is less constrained so common case can run faster

\

CUG 2004

12

Scalar
— 2-way, 0-0-0, 2-deep branch prediction, 64 active instructions
— Partitioned into address unit (A registers) and data unit (S registers)
— 8-way deep register shadowing = 1024 physical scalar registers

Vector
— 2 Vector Execution Pipes running at 800 MHz = 3.2 GFLOPS
— Double peak speed for packed 32-bit operations = 6.4 GFLOPS
— Load buffers for load renaming

Custom CMOS block

— Used once for each vector pipe, and once for scalar core
— Contains load buffers, registers, functional units and muxing

Memory

— 16 KByte Icache, 16 KByte Dcache (scalar only)
— Separate TLBs for Instruction, scalar, and vector
— 12.8 GB/s load bandwidth to Ecache (non-unit-stride)

— Up to 512 outstanding loads per SSP HNENN
CUG 2004

13

e Custom CMOS Design
— 800 MHz core - 400 MHz interface
— Used for both vector pipes and scalar A/S block
— Register file and mux to FUGs

— 32 64-bit vector registers, 32 Elements per pipe

* 3 Functional Unit Groups
— FUGL1 - Int +, FP +, Int Comp, FP Comp, Logical, Insert Imm, Byte
— FUG2 - Int *, FP *, and Shift
— FUG3 - FP /, SQRT, Convert, POP, LZ, CPYS, ABS, Logical, Merge
 Load Buffers corresponding to 8 vector loads
— 256 64-bit dwords outstanding (8x32 vector elements per pipe)

— Used to pre-load data from memory HNEN

CUG 2004
14

Design for Scalability CRAaNyY

Distributed shared memory (DSM) architecture
— Low latency, load/store access to entire machine (tens of TBs)
— Absolute minimum message latency via native vector instructions
 Decoupled vector memory architecture for latency tolerance
— Thousands of outstanding references, flexible addressing
* Very high performance network
— High bandwidth fine-grained transfers
« Architectural features for scalability

— Remote address translation (no misses — RTT can hold all required
translations on a remote node)

— Global coherence protocol optimized for distributed memory
— Fast synchronization (LSYNC, MSYNC, GSYNC, Fetch&Op)

« Parallel I/0 scales with system size

\

CUG 2004

15

Cache Coherence CRANY

e Global coherence, but only cache memory from local
node (8-32 GB)
— Supports SMP-style codes up to 4 MSP (4-way sharing)
— References outside this domain converted to non-allocate
— Keeps directory entry and protocol simple

« Explicit cache allocation control
— Per instruction hint for vector references
— Per page hint for scalar references
— Use non-allocating references for explicit communication
or to avoid cache pollution (PUT example)

e Coherence directory stored on the M chips (rather than in
DRAM)

— Low latency and really high bandwidth to support vectors
* Typical CC system: 1 directory update/proc/(100-200 ns)

e Cray X1: 3.2 directory updates/MSP/ns N\
CUG 2004

16

>

Execution time

scalar >
Fetch scalar
operands for VLSU
VLSU >
Fetch vector
operands for VXU
VXU
One One
<+«— Mem —»¢—Mem —»
Lat. Lat.

CUG 2004

17

Addressing on X1 C AN

o X1 is globally addressible, meaning any processor has HW
support to read/write any memory location in the machine

X1 HW has two address translation mechanisms, the
ordinary processor TLB (‘flexible’ mode, aprun .. -F .. a.out),

or remote translation (‘accelerated’ mode, aprun ..-A .. a.out)

— same user code runs in either case
— shared memory jobs use processors and memory of one node

— DM jobs (SPMD model) have virtual processor ID as part of address

« at execution time Cray startup code sets upper bits of all virtual address
segments for all processors to contain virtual node bits (starting at zero)
and virtual processor bits, etc.

» access to ‘processor’ part of address done with libraries (MPI, SHMEM)
or through language extensions (CAF, UPC). For MPI, bcopy(x_from,
X_to, n) moves data via vector load and store: x_to(1:n) = x_from(1:n)

* OS-set processor TLBs and RTTs map virtual nodes to physical nodes
and produce complete physical addresses needed for HW to route

\

requests CUG 2004

18

Address Translation AN

6362 61 48 47 3231 16 15 0
VA: MBZ Virtual Page #
T Memory region: I Possible page boundaries:
useg, kseg, kphys 64 KB to 4 GB
A7 4645 36 35 0
I Physical address space:

Main memory, MMR, 1/O
Max 64 TB physical memory

e Source translation uses 256 entry TLBs with multiple page
sizes: virtual page # bits translated locally

— 48 bit VA gets translated to 46 bit PA = 10 b node + 36 b offset
— allows non-contiguous multi-node jobs to improve system utilization

— aprun ... -F ... a.out < ‘F instructs HW to disable remote translation

2=\

CUG 2004

19

Address Translation (cont) CRAY

 Remote translation bypasses local TLB & uses table of 64K
entries (spread across 16 M chips on each node) with 16 MB
pages to translate incoming virtual offset - physical offset on
local node

— VA =>» physical node (used to route RVA) + RVA (translated remotely)
 virtual node bits + BasePhysNode = physical node
» checks to see if Vhode = MyNode and Vnode < NodeLimit
* requires physically contiguous nodes

— sends virtual offset part of VA to remote node for translation into

physical offset on remote node

— aprun ... -A ... a.out < ‘A’instructs HW to enable RTT

— TLB only need hold translations for one node = X1 can reference
remote memory with no TLB misses

D))
CUG 2004

20

Cray X1 I/O Architecture

X1 Processors

Node Board
CPU| |CPU [@)]

<

CPU| |ICPU| | IO [«

Node Board

CPU| |ICPU| | IO [«

CPU| |ICPU| | 1O [«

o IOCA X i«
o, O FCAL ¢
a S—
RAID
-
o IOCA x RAID
& O lq
¢
o PE Server
O IOCA f <_IP ove;>
& 8 Fibre
—P

Network Server

\

CUG 2004

21

Cray X1 System

|O Architecture

CRANY

Fibre Channel Arbitrated Loop

==
==
=l
==
==
=l
==
==

Single Cabinet 64 MSP Cray X1

Direct Attach Disk Storage

Cray Programming
'ﬁ Environment Server

f (CPES)

Cray Network
Subsystem (CNS)

N

Cray Network
4_
*l Subsystem (CNS)

\

IP over Fibre Channel
(large block transfer performance)

HIPPI
GBE
Ethernet
Fibre

2=\

CUG 2004

22

256 Processor Cray X1 System
3.2 Tflops Y Y CRAayY

2=\

CUG 2004

23

	Cray X1Architecture Overview and OptimizationCUG Workshop May, 2004
	Cray X1 Multi-Streaming Processor
	Cray X1 Node (a T932 on a board)
	X1E MCM
	NUMA Scalable up to 1024 Nodes
	Network for Small Systems
	‘Stack’: Scalable Network Building Block
	
	Programmer’s View
	P Chip Summary
	Design for Scalability
	Cache Coherence
	Decoupling on X1
	Addressing on X1
	Address Translation
	Address Translation (cont)
	Cray X1 I/O Architecture
	256 Processor Cray X1 System3.2 Tflops

