
CUG 2004 Proceedings 1

Fortran 2003

 Bill Long, Cray Inc

ABSTRACT: Fortran 2003 is the popular name for the latest revision of the Fortran
programming language. This revision contains several new features to address shortcomings
of the previous standard, as well as major new additions to the language in the areas of
interoperability with C, object oriented programming, I/O, and support for the IEEE floating
point arithmetic standard. Selected new features are reviewed along with the current
implementation plan for a standard conforming compiler for the Cray X1. Proposed features
for the following standard are also discussed.

1. Introduction

The original programming language named Fortran was
designed almost 50 years ago to be the language of choice
for scientific programming. It continues to evolve through a
series of revisions that incorporate more modern
programming paradigms while retaining a focus on
scientific computing and computational efficiency. Major
milestones were the 1966 (f66), 1978 (f77) and 1991 (f90)
standards, with a minor revision in 1997 (f95). The latest
revision is complete and represents a major enhancement
over f95. There was some discussion about whether to
change the name, as was done for the transition from C to
C++ or UPC, but tradition prevailed and the new language
is informally known as Fortran 2003, or f03.

The completion of a new standard for Fortran involves
the collaboration of two standards organizations. The ISO
committee, named WG5, creates a list of features to be
included in a new standard based on input from member
countries and comments from the wider community. Once
the specification of requirements is completed, it is
transferred to the technical committee, named J3, which is
charged with writing the document that defines Fortran.
During development of a new standard, the document goes
through a series of drafts.

A copy of the final Working Draft document for f03,
document number 04-007, is available at the J3 committee
web site: j3-fortran.org. You can download a copy in PDF
format by clicking on the “Fortran 2003” label in the left
column. This document was completed on May 10, 2004,
and will be submitted to ISO for a final yes or no country
vote this summer. The official ISO registration of the
standard is expected in September of 2004 at which time it
will replace the old f95 standard as the definition of Fortran.
While the final ISO voting process allows for correction of
very minor typographical errors, it does not allow for any

technical changes. The May 10 version of the Working
Draft of the J3 Fortran committee contains all the technical
description of f03. Any non-trivial changes made before the
next Fortran standard will take place though the same
interpretations process that has been used with previous
standards.

Fortran 2003 retains backward compatibility with f95,
with very few exceptions, while including a significant
number of changes. These changes were described in the
paper “Fortran 2000” in the CUG 2003 proceedings. Apart
from noting changes that were made to the f03 proposal
since then, the complete list will not be replicated here.

The remainder of this paper is organized into three
broad sections discussing a selected subset of the new
features in f03, the plan for Cray’s implementation, and a
preview of the proposals already being discussed for the
next revision of Fortran envisioned for 2008 or 2009.

2. Selected f03 features

Fortran 2003 contains many new features and
enhancements. A recent, informal survey within DOE asked
users to rank the importance of these features grouped into
nine categories. The results suggested that C interoperability
was far and away the most important new feature. Next in
priority were procedure pointers, object oriented
programming support, allocatable components and dummy
arguments, and new I/O enhancements. These features are
discussed in the following subsections.

C Interoperability
iso_c_binding module

The iso_c_binding intrinsic module contains definitions
for constants and types that provide a way to portably link
with programs written using the system’s C compiler. KIND
values are defined that tie Fortran intrinsic data types to

CUG 2004 Proceedings 2

corresponding C data types. For example, C_INT is defined
to be the kind value for which an integer(c_int) declaration
specifies a data object that has the same size as an int object
in C. Constants are defined for all the C data types that
have analogs in Fortran. If the Fortran processor does not
support a particular combination of type and kind, the
corresponding constant in the iso_c_binding module is –1.
The module also defines certain standard character constants
widely used in C programs, such as C_null_char, and
C_new_line. Finally, the module defines new types.
C_PTR and C_FUNPRT. These are used to specify
variables that can be used as actual arguments or structure
components corresponding to C data and function pointers.

C global objects

Names of objects in the data part of a module can be
linked to C global data using the bind(c) attribute. This
allows Fortran and C routines to have access to shared data
using standard syntax. The name of the corresponding
global C object defaults to the Fortran name in lower case
letters. Optionally, the user can specify a different name
with a character constant. Data of any interoperable Fortran
intrinsic type may be shared. In addition, a derived type
may be specified to interoperate with C with certain
restrictions. Interoperable derived types must not have the
SEQUENCE attribute, allocatable or Fortran pointer
components, or derived type components that are not
interoperable. Derived types can be specified to replicate
the form of a C structure. A mechanism is also provided to
share data in Fortran common blocks with C. Examples
illustrating the new syntax:

! First example ----------

module global_data
use,intrinsic :: iso_c_binding
 type,bind(c) :: flag_type

 integer(c_long) :: ioerror_num
 integer(c_long) :: fperror_num
end type flag_type

type(flag_type),bind(c):: error_flags

end module global_data

! The name of error_flags is specified
! in C as

typedef struct{
 long ioerror_num;
 long fperror_num;
 } flag_type

flag_type error_flags;

! Second example --------

module global_data2
use,intrinsic :: iso_c_binding

integer(c_int),bind(c,name=’Fc’)::fc

common /block/ r,s
common /tblock/ t
real(c_float) :: r,s,t
bind(c) :: /block/, /tblock/

end module global_data2

! The corresponding C declarations are:

int Fc;
struct {float r,s;} block;
float tblock;

The first example illustrates specification of an
interoperable derived type and a data object of that type.
The value of c_long is obtained from the iso_c_binding
module.

The second example shows how to connect common block
variables to C global variables. The global symbol is the
name of the common block. The names of the entries in the
common block are local, and may be different in different
Fortran program units. As is the case with most attributes,
the bind(c) attribute can be used either as a qualifier in a
type declaration or as a separate statement. The separate
statement form must be used for common blocks.

Interoperating with C functions.

Interoperation with C functions using standard syntax is
a major new feature of Fortran 2003. To correctly link with
a C function, as caller or callee, the compiler needs to know
the correct interface information. This is specified by
extensions to the interface block syntax. The bind(c)
attribute identifies an external procedure as conforming to
the C calling conventions. If there is no name clause in the
bind(c) attribute, the C name of the procedure is the Fortran
name in lower case letters. If there is an explicit name
specified in bind(c,name=’…’) the leading and trailing
blanks are removed from the character value and that name
is used as the C name. In the special case that the character
value is all blank or zero length, no binding name is
specified. This can be used when the procedure might be
passed to a C routine by means of a procedure pointer (as a
call back routine, for example) and the C name is not
actually needed. The external routine could be written in a
language other than C, as long as its interface can be
expressed in terms of C prototype. The constants from the
iso_c_binding module are used in dummy argument
declarations. A new attribute, VALUE, is optional for
dummy arguments. If a dummy argument with the value

CUG 2004 Proceedings 3

attribute is defined within the subprogram, the
corresponding actual argument is not changed. The value
attribute effectively causes the argument to be passed by
copy-in value. The dummy arguments in an interface for a
bind(c) procedure must be interoperable with C data types.
It is always possible to write a corresponding C prototype to
describe the function interface. There is a syntax change
since the CUG 2003 paper worth noting. The comma the
preceded the bind(c) clause is no longer part of the syntax
for subroutine and function statements. Cray’s
implementation will support the new syntax in the version
5.3 compiler and will continue to support the previous
syntax, with the comma, as an extension. Example:

use,intrinsic :: iso_c_binding
interface

function foo(ptr,val) &
 bind(c,name=’Foo’) &
 result(bar)
 import :: c_int, c_long
 integer(c_int) :: ptr, bar
 integer(c_long),value :: val
end function foo

end interface
integer(c_int) :: x,n
integer(c_long) :: y

…
n = foo(x,y)

Corresponding C interface:

int Foo(int *ptr, long val);

C interoperability intrinsics

Five new intrinsic functions are provided as part of the
iso_c_binding module. These are used to create and test C
style pointers that are sometimes needed as actual
arguments to C functions or as values of components of
derived type objects interoperating with C structs.

C_LOC(fortran_data_arg) returns a type(C_PTR)
pointer to the data argument.

C_ASSOCIATED(cp1 [,cp2]) returns true if the C
pointer cp1 is associated, or if the two arguments are
associated with the same target. This is analogous to the
associated intrinsic function for Fortran pointers.

C_F_POINTER is a subroutine that associates the
target of a C data pointer with a Fortran pointer.

C_FUNLOC(for t ran_proc_arg) re tu rns a
type(C_FUNPTR) pointer to the Fortran procedure
argument.

C_F_PROCPOINTER is a subroutine that associates
the target of a C function pointer with a Fortran procedure
pointer.

Enumerators

Enumerators are provided as a way to declare a set of
integer constants that have the same kind as constants
specified in a corresponding C enumeration type. Example:

enum,bind(c)
enumerator :: red = 4, blue, yellow

end enum

This example defines three parameters, red=4, blue=5, and
yellow=6. The kinds of these constants correspond to the
interoperable kinds that would have resulted from an
analogous enum statement in C.

Procedure Declarations and Pointers

PROCEDURE statement

The PROCEDURE statement is an extension of the
module procedure statement from f90, used to define a
generic interface. The specific procedures named in a
procedure statement do not have to be contained in the
module, as is the case with the module procedure statement.
Interfaces for the procedures need to be visible. Example:

interface sgemm
procedure sgemm_44, sgemm_48
procedure sgemm_84, sgemm_88
procedure cgemm_44, cgemm_48
procedure cgemm_84, cgemm_88

end interface

interface dgemm
procedure sgemm_44, sgemm_48
procedure sgemm_84, sgemm_88
procedure cgemm_44, cgemm_48
procedure cgemm_84, cgemm_88

end interface

The example illustrates a mechanism for making the
BLAS matrix multiply routine completely generic. The
numbers at the ends of the specific routine names indicate
the kind values for integer and real (or complex) arguments.
Interfaces for the generic names cgemm and zgemm would
be written in the same way. Interfaces for all of the specific
routines need to be visible.

Procedure declarations and abstract interfaces

CUG 2004 Proceedings 4

The procedure declaration statement can declare names
to be of external procedures and identify an interface. An
abstract interface specifies the interface information for a
hypothetical procedure, and hence the procedure name itself
is not made external. Abstract interfaces are used as
templates for the interfaces of actual procedures. A
procedure statement may reference either an abstract
interface or an actual interface. Examples:

abstract interface
function fun_r(x)
 real,intent(in) :: x
 real :: fun_r
end function fun_r

end interface

procedure(fun_r) :: gamma, Bessel

interface
subroutine sub_r(x)
 real :: x
end subroutine sub_r

end interface

procedure(sub_r) :: sub
procedure(real) :: psi

The declarations for gamma and Bessel use the abstract
interface fun_r. The declaration for sub uses the explicit
interface for sub_r. The declaration for psi uses an implicit
interface, and is equivalent to real,external :: psi.

Procedure pointers

The procedure declaration statement may be used to
declare procedure pointers. The pointer name may be used
in place of the target name in CALL statements, function
references, or as an actual argument. Procedure pointers
may be components of derived types. Examples, assuming
the abstract interface for fun_r above:

procedure(fun_r),pointer :: &
 special_fun => null()

special_fun => gamma

The name special_fun is effectively an alias for gamma.
In the declaration statement, special_fun was initialized to a
status of disassociated.

type proc_ptr
procedure(fun_r),pointer :: fun

end type proc_ptr

type(proc_ptr) :: special(10)

special(3)%fun => Bessel

ans = special(3)%fun(arg)

The second example declares a list of 10 procedure
pointers, associates the third one with the Bessel function,
and shows the syntax for referencing the target function
Bessel by using the procedure pointer. This is equivalent to
ans = Bessel(arg).

Object Oriented Programming
Extended types

Derived types are often extended from a general parent
type to a larger type that contains additional variables for a
more specific case. In f90 this was typically done be
defining a new type for the specific case and including a
component of the parent type. This technique requires a
multiple part reference for the components of the base type.
If the specific type is extended again, the complexity of
references to the parent types increases. Fortran 2003
allows explicit extension of a type such that the parent
components are also components of the extended type. The
parent components are “inherited” by the extended type.
This eliminates the reference part explosion, and is also
more in keeping with the style of object oriented
programming. Example:

type :: dna
 integer,allocatable :: ascii_text(:)

integer :: length
end type dna

type(extends(dna)) :: ocdna
integer :: ssdid
integer :: ssdsize
integer :: state

end type ocdna

The derived extended type ocdna (out of core version of
dna) contains five components, the three specified along
with the two inherited from the parent type dna. There is
also an implied component named dna that allows multi-part
access to the parent types in the f90 style. This can be useful
in cases where dummy argument type matching requires an
object of the parent type.

Most derived types may be extended, though sequence
and bind(c) types are not extendable. A type can inherit
components from only one parent, commonly known as
single inheritance. However, several extended types may
have the same parent.

Type-bound procedures

Procedures can be bound to a type, automatically
carrying along interface information with each variable of

CUG 2004 Proceedings 5

that type. Type-bound procedures are part of the overall
OOP features of Fortran 2003. Procedures are declared with
PROCEDURE, GENERIC, or FINAL statements. The type
contains only the declaration for the procedure. The actual
procedure is defined elsewhere. Only the interface for the
procedure must be visible to the type definition. A type-
bound procedure may have an implied argument of the
containing type, specified with the PASS attribute.
Example:

type strange_int
 integer :: n

contains
 generic :: operator(+)=> strange_add

end type

The interface for strange_add must be either supplied
by an interface block, or by defining the function in an
accessible module.

Polymorphic objects

The CLASS type specifier is used to declare
polymorphic objects. These declarations must be for dummy
arguments, or for objects with the allocatable or pointer
attribute. The primary use of polymorphic objects is as
dummy arguments. Actual arguments of the type specified,
or any extension of that type, are type compatible with the
corresponding dummy argument. Assuming the
subprogram uses only components from the declared type,
all extensions of that type will also have those components
and hence be a reasonable type for actual arguments. The
specification of a polymorphic dummy argument allows the
routine to be called with arguments of the declared type or
any of the extended types. It is possible to declare
something CLASS(*), or unlimited polymorphic. Such an
object is type compatible with any type object. Use of an
unlimited polymorphic object is limited to allocate
statements or statements within a select type construct,
where more information about the actual type can be
determined. Example:

function strange_add (a,b) result (c)
class(strange_int),intent(in) :: a,b
type(strange_int) ::c

c%n = iand(a%n+b%n, 1)
end function strange_add

This function is assumed to be in the same module that
defines the type strange_int above.

Select Type construct

The select type construct allows alternate execution
paths based on the actual type of a polymorphic object. The
selection clauses are TYPE IS, CLASS IS, or CLASS

DEFAULT. If the type of the argument specified in the
select type statement matches one of the types specified in a
TYPE IS clause statement, then the code block following
that statement is executed. If none of the TYPE IS types
match the type of the selector, then the CLASS IS clauses
are tried. The most extended type that matches is selected. If
none of the CLASS IS statements has a compatible type, the
CLASS DEFAULT block is executed. CLASS IS (*) is not
allowed because it is redundant with CLASS DEFUALT.
Example, assuming the definition of strange_int from
above:

type,extends(strange_int)::strange_mint
integer :: m

end type strange_mint

class(strange_int) :: a,b,c

select type(a)
type is (strange_int)

c%n = iand(a%n+b%n,1)
class is (strange_int)

i = min(a%m,b%m)
c%n = iand(a%n + b%n, 2**i-1)
c%m = i

end select

The select type construct above represents a way to
implement the computation in the function strange_add for
more than one type in the class strange_int.

Finalizers

A finalizer is a special type of type-bound procedure
that is executed when an object of the containing derived
type becomes undefined. A variable may become undefined
by various means, including the initial state of an intent(out)
dummy argument, or the state of a unsaved local variable at
procedure exit. Finalizers are specified with the FINAL
declaration. Example:

type foo
 real,pointer :: bar(:)
contains
 final :: foo_cleanup
end type

subroutine foo_cleanup(x)
 class(foo) :: x
 deallocate(x%bar)
end subroutine foo_cleanup

Allocatable components and arguments

CUG 2004 Proceedings 6

Allocatable components

One of the least satisfactory aspects of f95 is the
requirement that dynamically sized components of a derived
type be declared as a pointer. Because a compiler cannot
determine all the possible aliases for pointer target data,
optimization of expressions involving such data is restricted.
The new standard allows allocatable components, which do
not have this performance problem. Example:

type :: foo
 real,allocatable :: bar(:)
end type foo

Allocatable dummy arguments

The size needed for an actual argument associated with
a dummy argument may be computed inside the called
procedure. With f95, such an argument had to be a pointer,
resulting in the disadvantages of pointers being forced on
the programmer. Fortran 2003 allows allocatable dummy
arguments, resolving this shortcoming of f95. The storage
for an allocatable dummy argument is not automatically
deallocated at the end of the procedure. Example:

integer,allocatable :: db(:)
call sub(db,nwords)

subroutine sub(db,n)
 integer,allocatable :: db

integer :: n

read *, n
allocate(db(n))
read *, db

end subroutine sub

Allocatable function results

 Function results can be considered equivalent to an
additional argument to a subroutine. A natural extension of
the allocatable dummy argument feature is the allocatable
function result. This is included in Fortran 2003. Example:

function foo(x) result (foo_r)
 real,dimension(:),intent(in) :: x
 real,dimension(:),allocatable ::foo_r
… ! foo_r must be allocated in foo
end function foo

I/O Features

Asynchhronous I/O

Fortran 2003 contains syntax support for asynchronous
input and output operations. An asynchronous read or write
statement initiates the operation but allows the program to
continue before the operation is finished. A separate WAIT
statement forces the program to wait until the operation is
completed. The functionality is essentially the same as the
old buffer in and buffer out statements.

open(10,…,asynchronous=’yes’,…)

read(10,…,asynchronous=’yes’,id=idw) …

wait(10, id=idw)

Without the ID clause in the WAIT statement all
currently outstanding operations on the unit must complete.
Executing a CLOSE or INQUIRE operation on the unit has
an implied wait if the file was opened for asynchronous data
transfer.

Stream I/O

Part of the improved interoperability with C includes
support for stream I/O. Files opened for stream I/O do not
have internal record structure information. Formatted files
may have embedded newline characters, matching the
convention used by C programs to delimit records.
Unformatted files do not contain internal record size
information. The current location within the file can be
obtained or specified with a POS= keyword in the I/O
statement. Example:

open (unit=10, … access = ‘stream’, …)

IEEE features

Support for IEEE floating point arithmetic is a major
new feature in Fortran 2003. This is optional in the sense
that the features are not required on systems that do not have
hardware support for particular modes or functions. The
IEEE_FEATURES intrinsic module contains constants that
are defined if the processor supports the indicated feature.
The full list of constants is

ieee_datatype
ieee_nan
ieee_inf
ieee_denormal
ieee_rounding
ieee_sqrt
ieee_halting
ieee_inexact_flag
ieee_invalid_flag
ieee_underflow_flag

CUG 2004 Proceedings 7

Constants omitted from the module correspond to
unsupportable features. A USE of the module with an
ONLY clause can detect the absence of a feature at compile
time.

 IEEE arithmetic control

The IEEE_ARITHMETIC intrinsic module defines a
type, ieee_class_type, and constants of that type
corresponding to the possible values of ieee floating point
numbers:

ieee_signaling_nan
ieee_quiet_nan
ieee_negative_inf
ieee_negative_normal
ieee_negative_denormal
ieee_negative_zero
ieee_positive_zero
ieee_positive_denromal
ieee_positive_normal
ieee_positive_inf
ieee_other_value

The module also defines a type, ieee_round_type, and
constants of that type corresponding to the ieee rounding
modes:

ieee_nearest
ieee_up
ieee_down
ieee_to_zero
ieee_other

IEEE arithmetic functions

The IEEE_ARITHMETIC intrinsic module also defines
a set of functions to inquire about support for various
features, get and set rounding modes, and perform ieee
conforming operations. If an ieee_support_* routine returns
false, referencing other routines that depend on support for
that feature may not be meaningful. The functions defined
in the module are:

ieee_support_datatype
ieee_support_denromal
ieee_support_divide
ieee_support_inf
ieee_support_io
ieee_support_nan
ieee_support_rounding
ieee_support_sqrt
ieee_support_standard
ieee_support_underflow_control

ieee_class
ieee_copy_sign

ieee_is_finite
ieee_is_nan
ieee_is_normal
ieee_is_negative
ieee_logb
ieee_rem
ieee_rint
ieee_scalb
ieee_unordered
ieee_value

ieee_selected_real_kind

ieee_get_rounding_mode
ieee_set_rounding_mode
ieee_get_underflow_mode
ieee_set_underflow_mode

IEEE exception control

The IEEE_EXCEPTIONS intrinsic module defines two
new data types: ieee_status_type, and ieee_flag_type. The
ieee_status_type should be used to declare a variable that
holds the current value of the floating point status. The
constants of type ieee_flag_type defined in the module are:

ieee_overflow
ieee_divide_by_zero
ieee_invalid
ieee_underflow
ieee_inexact

The module also includes several routines to get and set
values of exception flags:

ieee_support_flag
ieee_support_halting
ieee_get_flag
ieee_set_flag
ieee_get_halting_mode
ieee_set_halting_mode
ieee_get_status
ieee_set_status

 If the ieee_support_flag or ieee_support_halting
routines return false for a particular flag, referencing the
corresponding get and set routines is not meaningful.

3. Implementation Status and Plans

Many of the new f03 features are already supported by
the Cray Fortran compiler for the X1 series systems.
Additional support is planned with each major release of the

CUG 2004 Proceedings 8

compiler. The list of features already supported and those
planned for the next major compiler release is detailed in the
next two subsections.

Fortran 2003 features in ftn 5.2

allocatable components: Components of user defined types
may be allocatable arrays or scalars. If a derived type
variable with an allocatable component appears as the
variable in an intrinsic assignment statement, the
components are automatically allocated to match the
corresponding components of the right hand side
expression.

allocatable dummy arguments: Dummy arguments may
be allocatable. If they are allocated in the procedure, they
remain allocated on return.

allocatable function results: The returned result from a
function may be allocatable. The result must be allocated
during execution of the function.

automatic array allocation: If an allocatable whole array
(not a section) appears as the variable in an assignment
statement and is not allocated, or is allocated but with a
shape different from the expression, the array is
automatically allocated or reallocated with the correct
shape. Because of the checking overhead involved, this
feature is active only if the –ew compilation is specified.

mixed component accessibility: Component names in a
user defined type may have their accessibility, either
PUBLIC or PRIVATE, specified separately for each
component.

public entities of private type: Objects declared in a
module may have PUBLIC accessibility even if their type is
PRIVATE.

keywords in structure constructors: A structure
constructor provides a means to specify the values of all the
components of a user defined type object. The component
names may be used as keywords to specify the values in any
order, or to allow writing self-documenting code. This
capability parallels the use of dummy argument names as
keywords in procedure references.

VOLATILE attribute: A variable with the VOLATILE
attribute may have its value changed by some mechanism
not visible to the routine where the variable is declared. This
is usually associated with global data shared by more than
one process. The compiler will reload values of volatile
variables from memory before each use, rather than relying
on values that may be in a register.

PROTECTED attribute: A module variable with the
PROTECTED attribute may be referenced in a program unit
using the module, but may not be defined except by

initialization in the module or by a procedure contained in
the module.

INTENT for pointer arguments: Dummy arguments that
are pointers may also have an INTENT specified. The
intent refers to the pointer association status of the pointer,
and not the definition status of the target of the pointer.

Character MIN and MAX: The MIN and MAX intrinsics
are extended to allow character arguments.

Lower bounds in pointer assignment: Explicit
specification of the lower bound for a pointer array in
pointer assignment is allowed. Previously the lower bound
was always 1.

Parameters in complex constants: The real and imaginary
parts of a complex constant may be named constants rather
than literal constants, such as eye=(zero,one) where one and
zero are declared with the parameter attribute.

Enumerators: Enumerators create a sequence of values for
a set of names, effectively shorthand for a series of
parameter declarations. This is partly aimed at C
interoperability.

FLUSH: A FLUSH statement is added that causes internal
I/O buffers to be flushed for a specified unit. This is
equivalent to the old flush library routine.

Names for I/O units: The iso_fortran_env intrinsic module
contains definitions for several run time environment values
Included are INPUT_UNIT, OUTPUT_UNIT, and
ERROR_UNIT, which are the unit numbers for the input
and output units corresponding to *, and the standard error
unit.

Carriage Control: The first character in a formatted write
output record is no longer interpreted as a carriage control
character.

Command line: The parcels of the command line that
initiated execution of the program are available through new
intrinsic routines COMMAND_ARGUMENT_COUNT,
GET_COMMAND, and GET_COMMAND_ARGUMENT.

Environment variables: The values of external
environment variables are available through the new
intrinsic routine GET_ENVIRONMENT_VARIABLE.

Continuation lines: The old limit of 39 continuation lines
is increased to 255. The Cray compiler does not limit the
number of continuation lines.

Optional KIND arguments: Several intrinsic functions,
such as COUNT, allow optional KIND arguments to specify
the kind of the result value. This is very useful if the default

CUG 2004 Proceedings 9

size if 32 bits and the values that could be returned are very
large.

C Interoperability: All components of the C
interoperability feature in Fortran 2003 are supported except
in two areas. The current implementation does not support
the form of bind(c) on a subroutine or function statement
without the preceding comma. The c_funloc() and
c_f_procptr() intrinsic procedures are not supported yet
because they require support for procedure pointers.

Fortran 2003 features planned for ftn 5.3

Several additional Fortran 2003 features are planned for the
next major release of the Cray Fortran compiler, version 5.3,
schedules for release in October, 2004. There are
summarized below.

Procedure declarations: The new procedure declaration
statement specifies interface and attribute information for
procedures.

Procedure pointers: Procedure pointers are dynamic
aliases for procedure names. They may be components of a
structure.

C Interoperability: Add the c_funloc() and c_f_procptr()
intrinsic procedures to complete the C interoperability
feature. Remove the requirement for the comma before
bind(c) in subroutine and function statements. This will
complete the implementation of all the C interoperability
features in f03.

New array constructor syntax: In addition to the f95
syntax of (/ … /) for array constructors, the cleaner […]
syntax is added.

Type specification in array constructors: The ability to
specify a type in an array constructor eliminates the need to
attach explicit KIND parameters to each element in the
array, and allows character array constructors without the
need to pad the elements to the same length.

Pointer rank remapping: A rank-1 target array can be
associated with a pointer of higher rank by specifying shape
information in the pointer assignment statement.

Asynchronous and Stream I/O: New syntax for Open,
Read, and Write statements, and the new Wait statement,
provide portable support for asynchronous and stream I/O.

International real I/O: The form for a real value in
formatted I/O can have a comma instead of the default
decimal point.

Access to I/O error messages: The user has the capability
to capture the text of an I/O error message in a character
variable. This could be used for diagnostic output.

Operator renaming: User defined operator names can be
renamed on a USE statement.

Longer names: The maximum length for names is
increased from 31 to 63 characters.

Optional KIND arguments: The remaining intrinsic
functions that take optional KIND arguments will be
implemented.

SYSTEM_CLOCK: The system_clock intrinsic
subroutine will be generic, allowing integer arguments that
are larger than default. This addresses a long standing
problem of using default integers on 32-bit machines for
these arguments.

4. The next Fortran standard

Future directions

Over 100 suggestions already been submitted for new
features to be added to the next revision of Fortran. Many
of these will eventually rejected by WG5, and most of the
ones that are accepted will be relatively minor. Four fairly
significant features are being actively discussed for the next
revision of Fortran. These are Submodules, Co-arrays,
Typless data, and Generic Programming.

A proposal to add SUBMODULES to Fortran is already
well developed. The basic idea of submodules is to separate
the interface from the actual definition of a module
procedure. This will allow for the definitions of the
procedures to be in submodules that are in separate files.
The main benefits of this structure are a better environment
for large-scale projects with many developers, and as a
mechanism to avoid compilation cascades common with the
current module structure. The submodule facility is already
on the form of a Technical Report that has been sent to ISO
for a final vote. Once passed, vendors may implement this
feature well before the next standard is finalized.

Parallel execution dominates large-scale scientific
computations, which is the traditional focus of Fortran. The
most attractive candidate for parallel structures within
Fortran is the Co-Array Fortran (CAF) model. A proposal to
include Co-Arrays in the next standard has been submitted
by the UK national body. Wider adoption of Co-Arrays by
the user community would enhance the chances of it being
adopted as a required part of the next standard.

CUG 2004 Proceedings 10

Fortran has traditionally focused on numeric computing
and has strong support for numeric data types. Emerging
fields like bioinformatics have a significant computational
component that involves non-numeric bit manipulation. The
addition of typeless data to Fortran has been formally
proposed for the next standard. This feature would also
simplify some procedure interface issues, better handle
hexadecimal, octal, and binary constants, and standardize
some of the bit manipulation intrinsics such as popcnt.

Generic Programming, or genericity, has been proposed
in several different forms for the next standard. This facility
would allow writing reusable, type-independent code similar
to what is possible with templates in C++. The ideas at this
point are not sufficiently focused to describe a particular
approach, but the general idea has strong support.

Acknowledgments
The author would like to thank the Cray Fortran

compiler group for early implementation of many of the
Fortran 2003 features as well as substantial input on the
future implementation schedule.

About the Author
Bill Long represents Cray as a primary member of the

J3 Fortran standard committee. He is also the primary
author of the Cray Bioinformatics Library, most of which is
written in Fortran 2003. Bill can be reached at Cray Inc.,
1340 Mendota Heights Road, Mendota Heights, MN 55120,
Email: longb@cray.com.

