
Cray Proprietary

Fortran 2003

Bill Long, Cray Inc.

21-May-2004

May 04 Cray Proprietary 2

Fortran 2003

• Specification for Fortran 2003 (f03) is finished

• Standard should be official in September

• 569 pages including Appendices and Index

• Document is available at j3-fortran.org

• Also available internally at Cray

• Working document number is 04-007

• formats: postscript, pdf, ASCII text

May 04 Cray Proprietary 3

Fortran 2003

• f03 is a major revision of f95

• Will replace f95 as the definition of “Fortran”

• Selected new features:

• C interoperability

• Procedure pointers

• Object Oriented Programming

• Allocatable components, dummy arguments

• Asynchronous and Stream I/O

• IEEE arithmetic support

May 04 Cray Proprietary 4

Organization

• New f03 features

• Implementation status

• Fortran 2009 proposals

May 04 Cray Proprietary 5

C Interoperability overview

• The most popular new feature

• Relating Fortran and C types

• Sharing global data between Fortran and C

• Fortran can call C functions

• C can call Fortran procedures

May 04 Cray Proprietary 6

C Interoperability - types

• KIND constants in new intrinsic module

use,intrinsic :: iso_c_binding

integer(c_long) :: long_int_var
real(c_double) :: double_real_var
integer(c_int32_t) :: pid

type,bind(c) :: timeval
 integer(c_long) :: tv_sec
 integer(c_long) :: tv_usec
end type

May 04 Cray Proprietary 7

C Interoperability - enum

• Enumerators match types with C

enum,bind(c)

 enumerator :: red=4, blue, yellow

end enum

May 04 Cray Proprietary 8

C Interoperability - Data

• Sharing data values between Fortran and C

module global_data
 use,intrinsic :: iso_c_binding
 integer(c_int),bind(c,name=“Mc”) :: mc

 common /tblock/ t
 common /mblock/ r,s
 real(c_float) :: r,s,t
 bind(c) :: /tblock/
end module global_data

int Mc; struct{float r,s} mblock; float tblock;

May 04 Cray Proprietary 9

Fortran calling C

• Binding gets name mangling correct

• Allows for arguments passed by VALUE

use,intrinsic :: iso_c_binding

interface
 function kill(pid,sig) bind(c) result(r)
 import c_int, c_int32_t
 integer(c_int) :: r
 integer(c_int32_t),value :: pid
 integer(c_int), value :: sig
 end function kill
end interface

May 04 Cray Proprietary 10

C calling Fortran

subroutine cb_revcompl(db,dbc,dblen,m) bind(c)
use,intrinsic :: iso_c_binding

 integer(c_long),intent(in) :: db(*)
 integer(c_long),intent(out):: dbc(*)
 integer(c_long),value :: dblen
 integer(c_long),value :: m

! Code here
end subroutine cb_revcompl

void cb_revcompl(long *db, long *dbc,
 long dblen, long m);

May 04 Cray Proprietary 11

New C related intrinsics

type(c_ptr) - matches C pointer type

c_loc(fobj) returns pointer to Fortran object

c_f_pointer(cptr,fptr[,shape]) creates a
 Fortran pointer from a C pointer

c_associated(cptr1 [,cptr2]) is like associated
 except for type(c_ptr) arguments

c_funloc(fproc) creates a C pointer to the
 Fortran procedure fproc.

c_f_procpointer(cfun, fptr) makes f03 pointer

May 04 Cray Proprietary 12

Procedure pointers

• The new procedure declaration statement can
be used to declare a procedure pointer.

abstract interface
 function rfun(x)
 real,intent(in) :: x
 real :: rfun
end interface

procedure(rfun),pointer :: funp => null()

funp => gamma

May 04 Cray Proprietary 13

Object Oriented Programming

• User defined types can be extended

• parent type is available as a component

• Type bound procedures are allowed

• Possible to override type bound procedures

• FINAL procedures are a special case

• PASS object dummy arguments

• Polymorphic dummy arguments, CLASS(*)

• select type construct

• Benefit: code reuse and collapse of multi-layer
derived types

May 04 Cray Proprietary 14

Allocatable Components

• Allocatable components of derived types

• Was a TR - implemented almost everywhere

• New implicit allocation on assignment

type foo
 real,allocatable :: grid(:,:)
end type foo

type(foo) :: old,new

new = old ! causes new%grid allocation

May 04 Cray Proprietary 15

Allocatable Dummy args

• Dummy arguments can be allocatable

• Was a TR - implemented almost everywhere

• The objects survive the procedure return

• Allocatable function results are a special case

subroutine getdata (lun, array, nwords)
integer,intent(in) :: lun
real,allocatable,intent(out) :: array
integer,intent(out) :: nwords
… ! compute or read in nwords
allocate(array(nwords))
…

May 04 Cray Proprietary 16

Asynchronous I/O

• Allows other work to overlap I/O operations

• Similar to old buffer in/buffer out statements

open(10,file=‘big.dat’,asynchronous=‘yes’)

read(10,100,asynchronous=‘yes’,id=iw) BIG
… ! other work that does not involve BIG

wait(10,id=iw)

… ! now BIG can be used

May 04 Cray Proprietary 17

Stream I/O

• File is treated as a sequence of bytes

• Alternative to sequential and direct

character :: c,d
open(10,file=‘bytes’,access=‘stream’,
 form=‘unformatted’)

! read 34’th byte in the file

read(10,pos=34) c

! read 35’th byte in the file

read(10) d

May 04 Cray Proprietary 18

IEEE support

• Enable and disable interrupts

• Control rounding modes

• Intrinsics return representations of Inf, NaN

• Inquiry intrinsics like IEEE_IS_NAN(x)

• Named constants for exception flags

• Inquire about hardware support

May 04 Cray Proprietary 19

Implementation

• Fortran 2003 Implementation status for the
Cray Fortran compiler for X1.

• Features already implemented

• Features planned for Cray Fortran 5.3

May 04 Cray Proprietary 20

Implementation status - 1

• f03 features in Cray Fortran 5.2

mixed component accessibility
public entities of private type
keywords in structure constructors
allocatable components
allocatable dummy arguments
allocatable function results
auto allocation of allocatable components
auto allocation of allocatable arrays (-ew)
VOLATILE attribute
INTENT specification for pointer arguments
MIN and MAX intrinsics for character args

May 04 Cray Proprietary 21

Implementation Status - 2

• f03 features in Cray Fortran 5.2 - continued

specified lower bounds in pointer assignment
parameters in complex constants
PROTECTED attribute
enumerators
FLUSH statement
named constants for key I/O units
carriage control characters removed
access to command line arguments
access to environment variables
255 continuation lines (unlimited)
optional KIND arguments in several intrinsics

May 04 Cray Proprietary 22

Implementation Status - 3

• f03 features in Cray Fortran 5.2 - continued

C interoperability - all except:
 comma before bind(c) for subprograms
 c_funloc()
 c_f_procptr()

May 04 Cray Proprietary 23

Implementation Status - 4

• f03 features planned for ftn 5.3 (October, 2004)

type specs in array constuctors
[…] syntax for array constructors
pointer rank remapping
asynchronous and stream I/O
comma instead of . in formatted numbers
access to I/O error messages
procedure declarations
procedure pointers
renaming user defined operators
63 characters in names
finish KIND arguments in intrinsics
generic form of SYSTEM_CLOCK
finish C interoperability

May 04 Cray Proprietary 24

The next Fortran version

• WG5/J3 attention is now on the next revision.

• Planned for 2008 or 2009. I like f09.

• One feature already set: Submodules

• Major Features being considered:

 Co-Arrays

 Typeless

 Generic programming

May 04 Cray Proprietary 25

Submodules

• TR already written - out for vote now.

• Effectively part of f03.

• Put module procedure interfaces in the main
module along with public data

• Put implementations of the procedures in
submodules.

• Submodules in separate files. Good for:

 > dividing up work on big projects

 > avoiding compilation cascades

May 04 Cray Proprietary 26

Co-Array concepts

• Parallel programming is pervasive in HPC.

• Co-Array model is SPMD with N identical
images of a program cooperating.

• Co-Arrays provide a simple syntax for
referencing the memory in another image.

• It is possible to implement Co-Arrays on top
of MPI or some other communications scheme
so performance is no worse than MPI.

• Performance can be MUCH better than MPI.

• Ease of programming is significantly higher.

May 04 Cray Proprietary 27

Co-Array examples

real :: a(100)[*]
real,allocatable :: b(:)[:]
integer :: odd_team(4) = [1,3,5,7]

allocate (b(n)[*])

mype = this_image()

x = a(20)[1]
call sync_all()
if (any(odd_team == mype)) then
 call sync_team(odd_team)
end if

May 04 Cray Proprietary 28

TYPELESS

• New data “type”

• Has kind and rank, but not traditional type

• Basically a known size block of bits

• BOZ constants are typeless

• List directed I/O is in Z format

• Sizes corresponding to the integers and reals

typeless(8) :: X, Array(10)

X = z’0000ffff0000ffff’

May 04 Cray Proprietary 29

TYPELESS operations

• Assignment involves no change in bits

• Argument association based on size only,
type matching not involved.

• Bitwise operations (and, or, xor, not) defined

• Relational operations (< > == /= <= >=) defined

• Can ‘cast’ using REAL, INT, …

• Replaces many of the uses of unsigned ints.

• Standardizes many common intrinsics,
including shiftr, shiftl, dshiftr, dshiftl, popcnt,
leadz. Overloads old ones like IOR, IAND,
IEOR.

May 04 Cray Proprietary 30

TYPELESS examples

real(8) :: r,s(10)
integer(8) :: i,j(10)

r = z’fff0000000000000’ ! -Inf
call bcst(r,s,10)
i = typeless(r)
call bcst(i,j,10)

subroutine bcst(x,y,n)
 integer :: n
 typeless(8) :: x,y(n)
 y = x
end subroutine bcst

May 04 Cray Proprietary 31

Generic Programming

• Capability similar to C++ templates

• Avoids having many very similar procedures

• Actual versions of the routines created at
compile time based on call usage

• There are several competing proposals still on
the table.

May 04 Cray Proprietary 32

Links

• Bill Long - longb@cray.com

• J3 web site: j3-fortran.org

• General information: fortran . com

