
M
a
n

ch
e
st

e
r

C
o

m
p

u
ti

n
g

S
u
p
er

co
m

p
u
ti
n
g
,

V
is

u
al

iz
at

io
n
 &

 e
S
ci

en
ce

Lee Margetts, Mike Pettipher, Ian Smith
(lee.margetts@man.ac.uk,
m.pettipher@man.ac.uk,
Ian.smith@man.ac.uk)

19th May 2004
Cray User Group
Knoxville, Tennessee

ParaFEMParaFEM Library Library

A Suite of Finite Element Analysis Codes

ParaFEM, CUG May 20042

Acknowledgements

 Cray Inc. for access to Cray systems.

 Andrew Jones at University of Manchester for running the
codes.

ParaFEM, CUG May 20043

FEA on HPC

 FEA typically not one of the major users of HPC.
 In UK, neither national HPC service initially provided FEA

software for HPC users.
 Major third party codes such as Abaqus do not currently

scale well on large numbers of processors.
 Many engineers have limited their research to 2D because

of compute requirements, both cpu and memory, of large
3D problems.

 Increasing pressure to address this.
 Summer School in ‘HPC in FEA’ jointly run by UoM and

National Science Foundation at Manchester in September
2003.

ParaFEM, CUG May 20044

Engineering Areas at Manchester

 Geotechnics:
– ‘Traditional’ structural analysis

– Stochastic analysis

 Biomechanics
– Medical School

– Dentistry

 Mechanical Engineering
– Pressure Vessels

– Pipe whiplash

 Chemical Engineering

 Earth Sciences

 Aeronautics (CFD)

ParaFEM, CUG May 20045

Engineering codes at Manchester - 1

 Third Party Codes
– Abaqus

• Most widely used FEA code – site license.

• Used on local systems including SGI Origin and IBM SP

• Jobs typically large memory and small numbers of processors.

• Problem size limited by memory and scalability

• Widely used in other UK universities.

– FLUENT
• Small number of users, licensed individually.

– Other software
• Generally licensed for specific research groups

• CFX etc.

 Similar at other UK institutions

ParaFEM, CUG May 20046

Engineering Codes at Manchester - 2

 FEA suite of codes written by Prof Ian Smith (Manchester)
and Dr Vaughan Griffiths (Colorado)

 Areas covered:
– Static equilibrium of structures

– Static equilibrium of linear elastic solids

– Material nonlinearity

– Steady State flow

– Transient problems (uncoupled)

– Coupled problems

– Eigenvalue problems

– Forced Vibrations

ParaFEM, CUG May 20047

Engineering codes at Manchester - 3

 FEA Suite of Codes:
– About 50 example codes (and 100 library routines).

– Fortran 90 serial codes used by many engineers at Manchester, and also
at many institutions wolrdwide.

– Element-by-element approach. No matrix assembly.

– PCG, BiCGStab, Lanczos solver (Harwell library)

– Low memory, efficient code (matrix operations)

– Structured or unstructured grids.

– Problem size limited by cpu and memory of single processor.

ParaFEM, CUG May 20048

Engineering Codes at Manchester - 4

 How do we (computing service) encourage engineers to
exploit HPC?
– Wait for third party packages to scale well?

– Encourage users to start using alternative parallel software, e.g. PetSC,
ScaLAPACK?

– Provide alternative based on parallelising current codes?

ParaFEM, CUG May 20049

ParaFEM Library - objectives

 Implement highly parallel version of suite of FEA codes.

 Retain code style of serial codes, so engineers can use
with little if any knowledge of the parallel coding.
– Provide both message passing (MPI) and shared memory (OpenMP, MTA)

versions.

 Integrate with other packages for mesh generation,
preconditioners, alternative solvers and post
processing/visualisation.

 Provide framework for engineers to exploit HPC
architectures.

ParaFEM, CUG May 200410

Element By Element

 Inherent loop based parallelism throughout code.

 Non-linear and timestepping codes essentially involve
loops around the linear solver – thus if linear solver works
well, all other codes will (should).

 Stages of codes …
– Geometric – mesh generation/partitioning

– Boundary conditions

– Application of loads

– Preconditioning (Simple diagonal preconditioner in PCG)

– Solver (PCG, BiCGStab, Lanczos)

– Stress recovery

– Interpretation of results - visualisation

ParaFEM, CUG May 200411

PCG Solver - Serial
 !--------------------preconditioned c. g. iterations---------------------------
 iters = 0

 iterations : DO

 iters=iters+1; u_pp=0._iwp; pmul_pp=.0_iwp

 elements_2 : DO iel = 1, nels

 g=g_g(:,iel); pmul=p(g)

 utemp_pp = MATMUL(km,pmul_pp)

 u_pp(g) = u_pp(g) + utemp_pp

 END DO elements_2

 !--------------------------pcg equation solution-------------------------------

 up=DOT_PRODUCT(r_pp,d_pp); alpha= up/ DOT_PRODUCT(p_pp,u_pp)

 xnew_pp = x_pp + p_pp* alpha ; r_pp=r_pp - u_pp*alpha

 d_pp = diag_precon_pp*r_pp; beta=DOT_PRODUCT(r_pp,d_pp)/up

 p_pp=d_pp+p_pp*beta

 CALL checon(xnew_pp,x_pp,tol,converged)

 IF(converged .OR. iters==limit) EXIT

 END DO iterations

 WRITE(11,'(A,I5)')"The number of iterations to convergence was ",iters

 WRITE(11,'(A,E12.4)')"The central nodal displacement is :",xnew_pp(1)

ParaFEM, CUG May 200412

PCG kernel

 Element–by-element approach dominated by:

pmul = p(g) ! gather
utemp = MATMUL(km,pmul) ! matrix-vector

u(g) – u(g) + utemp ! Scatter

 And vector operations involving (global) dot products

ParaFEM, CUG May 200413

Parallel Implementation

 Partitioning: simple …
– Elements split across processors

– Equations spilt across processors

– Matrix multiplication is local

– Splits cannot match exactly – nodes (generating equations) are shared by
elements which reside on different processors. Could duplicate nodes and
update correspondingly, but not done at present.

– Thus gather and scatter must be performed across processors.

– Gathering variable amounts of data from different processors. Cannot use
simple MPI_GATHER. Could use MPI_GATHERV if appropriate
communicators set up. Decided to write our own gather and scatter:

ParaFEM, CUG May 200414

PCG Solver - Parallel

 !--------------------preconditioned c. g. iterations---------------------------
 iters = 0
 iterations : DO
 iters=iters+1; u_pp=0._iwp; pmul_pp=.0_iwp
 CALL gather(p_pp,pmul_pp)
 elements_2 : DO iel = 1, nels_pp
 utemp_pp(:,iel) = MATMUL(km,pmul_pp(:,iel))
 END DO elements_2
 CALL scatter(u_pp,utemp_pp)
!--------------------------pcg equation solution--------------------------------
 up=DOT_PRODUCT_P(r_pp,d_pp); alpha= up/ DOT_PRODUCT_P(p_pp,u_pp)
 xnew_pp = x_pp + p_pp* alpha ; r_pp=r_pp - u_pp*alpha
 d_pp = diag_precon_pp*r_pp; beta=DOT_PRODUCT_P(r_pp,d_pp)/up
 p_pp=d_pp+p_pp*beta
 CALL checon_par94(xnew_pp,x_pp,tol,converged,neq_pp)
 IF(converged .OR. iters==limit) EXIT
 END DO iterations
 IF(numpe==1)THEN
 WRITE(11,'(A,I5)')"The number of iterations to convergence was ",iters
 WRITE(11,'(A,E12.4)')"The central nodal displacement is :",xnew_pp(1)
 END IF

ParaFEM, CUG May 200415

Serial -> Parallel

 Call gather()
– Performs gather for all elements – increasing memory requirements and

increasing size of messages, but reducing number of messages

 Matmul
– For all elements. When element types all the same, stiffness matrix, km is

the same, so can perform matrix matrix. In a more general case, km is
replaced by storkm(nels_pp,:,:).

 Call scatter()
– Scatter for all elements

ParaFEM, CUG May 200416

Dot products, convergence criteria
etc.

 Different versions of PCG implemented

 Can reduce number of dot products and reduce impact of
convergence testing.

 Developments based on paper by Dongarra et al 2004

ParaFEM, CUG May 200417

Typical coding

 Main codes typically about 150 lines – serial or parallel.

 FEA library modules for:
– Geometry – for different element types

– Utility

– …

 Parallel library modules for:
– Partitioning

– Gather/scatter

– …

ParaFEM, CUG May 200418

Generic coding

 Changes made for parallel MPI version, particularly use of
gather and scatter routines, can be used in serial and
shared memory versions.

 Have run shared memory versions with OpenMP and on
MTA (reported at CUG 2003 – MTA particularly suitable for
minimising time in gather and scatter).

 Thus single generic main program may be used in any of
these environments – user maintains only one version,
selecting appropriate library code via f90 USE statement.

 Primary development is for MPI version.

ParaFEM, CUG May 200419

Performance

 Work started on Cray T3D/T3E
 Subsequently most development on SGI Origin/Altix and

IBM SP
 Peformance depends on good matrix-vector (or matrix-

matrix) and good communiations.
 Original simplistic assumptions about partitioning etc not a

problem on best balanced systems (=> Cray!).
 Typically time for gather/scatter is similar to time for

matmult, but scales consistently. (Improved versions under
development.)

 As communication/computation ratios increases,
performance has become more of an issue.

ParaFEM, CUG May 200420

Vector Machines

 What about vector machines – X1?

 Work is dominated by matrix-vector or matrix-matrix, which
should work well if vectors are long enough.

 20 node brick elements generate vectors of length 60 – is
this enough?

 Is there enough computation?

ParaFEM, CUG May 200421

Single node performance

 Typical performance on scalar systems. Matrix
multiplication (60x60 x 60xnels) about 50% peak
performance.

 On X1 SSP:
– Initial results - about 1% peak!
– Eventually discovered the problem is the calculation:

flops = 2.0*ndof*ndof*nels*iters
(used only in the calculation of a flop count to report performance) . The
answer should be about 230GB, but the value returned was about 4GB –
2.0 *maxint

– By ensuring real arithmetic is used, the correct figure is obtained giving
about 80% peak!

– Note that the matrix multiplication was performed with f90 MATMUL –
using BLAS resulted in lower performance (because MATMUL is inlined,
avoiding the overheads associated with calling subroutines).

ParaFEM, CUG May 200422

Matrix-matrix/matrix-vector

 Code does do repeated matrix-vector, but X1 recognised that this can
be replaced by matrix-matrix, so automatically did so. (Unless it can do
matrix-vector at 80% peak!) Not all other compilers do this. On one
system, had to use explicit dgemm call for best performance.

 Problems with identical elements (e.g. in biomechanics, use of CT
scans can generate voxel elements) can use matrix-matrix, thus
achieving very good performance.

 The other extreme with every element different results in matrix-vector
computations, potentially with little data re-use.

 Some simple test programs on the X1 indicated that matrix-vector runs
about half the performance of matrix-matrix, but this will be very
dependent on vector length.

 These provide upper and lower bounds for performance.

ParaFEM, CUG May 200423

Matrix-vector improvements

 Many problems will have some elements the same or at
least the same shape and property. This results in
duplication, which can be exploited:

ParaFEM, CUG May 200424

Reducing Element Stiffness Storage

 Consider the full Magnetohydrodyamics stiffness matrix
– There are 13 unique submatrices for each element

– Each submatrix has 400 entries

 Break up the element matrix vector computation, replacing

do iel=1,nels_pp
 u ’ = matmul (C11 , x ’)
end do
do iel=1,nels_pp
 u ’ = matmul (C55 , x ’)
end do
do iel=1,nels_pp
 u ’ = matmul (C15 , x ’)
end do

do iel=1,nels_pp
 u=matmul(ke,x)
end do

ParaFEM, CUG May 200425

Percentage Peak Performance

0

10

20

30

40

50

0 50 100 150 200 250 300

Number of Processors

%
 P

ea
k

P
er

fo
rm

an
ce

Origin 3800 ~300,000 unknowns

Matrix vector

Matrix vector + communication

ParaFEM, CUG May 200426

Matrix-vector: Superelements

 Can combine elements to generate vectors of length 120,
180 etc.

 Additional computation, but less dense. Higher flop/s but
higher flops. Is it worth it?

 Not yet implemented.

ParaFEM, CUG May 200427

Matrix-vector: Coupling

 Coupling different physics at element level
– Navier Stokes - Pressure + velocity - vector of 68

– MHD - Pressure + velocity + magnetism - vector of 128

– Biot - Fluid + solid - vector of 68

ParaFEM, CUG May 200428

Gather/Scatter - scalar systems

 On scalar systems gather/scatter typically takes similar
time to matrix multiplication, thus lowering %peak by a
factor of 2.

 Looking into ways to reduce this, but it scales, so can still
achieve 25% peak across large systems.

ParaFEM, CUG May 200429

Gather/scatter on X1

 On X1, initially, time in matmul was 25s, and that in the
scatter routine 296s!

 However, the time in scatter is dominated by a loop with
indirect addressing which was therefore not vectorised.

 There is no recursion in this loop, so the IVDEP directive
can be used.

 Time in scatter drops to 34s.
 Still slightly higher percentage of total time than on other

systems.
 Uses MPI – currently not optimal on X1. Can try SHMEM

or CAF (John Levesque showed simple CAF code for
similar scatter).

ParaFEM, CUG May 200430

Linear solver – 12M equations

33%6875.174%15261.6152.8161.464

31%12931.975%30630.581.989.1128

30%18430.174%45320.656.763.9192

37%38127.075%77121.5286.8298.032

mm/gs

%pk

mm/gs

GF

mm/gs

Sec

mm

%pk

mm

GF

mm

sec

Iters

sec

Total

secl

ParaFEM, CUG May 200431

Linear Solver – 12 M equations

12M equations

0

10

20

30

40

50

60

70

80

32 64 128 192

Processors

%
P

ea
k Matmul

Matmul/gs

ParaFEM, CUG May 200432

Linear solver – 0.75M equations

64000 elements

0

10

20

30

40

50

60

70

80

90

16 32 64 128

Processors

%
pe

ak Matmul

Matmul/gs

ParaFEM, CUG May 200433

MSP Performance

 Matrix-matrix fine:
– 10GF (~80% peak)

 However gather/scatter takes similar time to SSP, so
overall, performance is much lower than on SSP.

 Improvements in communication are key to good
performance on MSP.
– SHMEM of CAF may help, but other changes planned to minimise the

communication times likely to be most beneficial.

ParaFEM, CUG May 200434

Other Problem Types?

 Not yet run on X1.

 Given known information from running on other systems,
and results so far on X1, expect similar results.

ParaFEM, CUG May 200435

Developments

 Communications
– Approach adopted by Carey (Texas), uses element-by-element, duplicating

nodes on processors. This eliminates communications in gather and
communication in scatter is overlapped with computations.

 Provide alternative ‘components’:
– Mesh partitioning - Par Metis etc

– Preconditioners

– Solvers

– Algebraic multigrid (Adams, Livermore) – excellent performance on very
large problems and systems.

– Visualisation integration
• Virtual prototyping project

ParaFEM, CUG May 200436

Conclusions

 The ParaFEM software is designed to provide engineers
with a framework for solving FEA problems in an HPC
environment.

 Previously implemented successfully on scalar MPP
systems.

 Easy to port to X1.
– Requires only the addition of a single compiler directive to obtain good

performance on SSP, at least for 20 node brick elements.
– Vector length is certainly an issue, particularly with simpler element types,

but there are ways in which this can be addressed.

 Improvements already planned to improve communications
in scalar version will help, particularly with MSP version.

 www.parafem.org.uk

M
a
n

ch
e
st

e
r

C
o

m
p

u
ti

n
g

S
u
p
er

co
m

p
u
ti
n
g
,

V
is

u
al

iz
at

io
n
 &

 e
S
ci

en
ce

World Leading Supercomputing
Service, Support and Research

Bringing Science and
Supercomputers Together

www.man.ac.uk/sve
sve@man.ac.uk

SVE @ Manchester ComputingSVE @ Manchester Computing

