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Abstract. A 5-year-profiling in production mode at the University of
Stuttgart has shown that more than 40% of the execution time of Mes-
sage Passing Interface (MPI) routines is spent in the collective commu-
nication routines MPI Allreduce and MPI Reduce. Although MPI im-
plementations are now available for about 10 years and all vendors are
committed to this Message Passing Interface standard, the vendors’ and
publicly available reduction algorithms could be accelerated with new al-
gorithms by a factor between 3 (IBM, sum) and 100 (Cray T3E, maxloc)
for long vectors. This paper presents five algorithms optimized for dif-
ferent choices of vector size and number of processes. The focus is on
bandwidth dominated protocols for power-of-two and non-power-of-two
number of processes, optimizing the load balance in communication and
computation. The new algorithms are compared also on the Cray X1 with
the current development version of Cray’s MPI library (mpt.2.4.0.0.13)

Keywords. Message Passing, MPI, Collective Operations, Reduction.

1 Introduction

MPI Reduce combines the elements provided in the input vector (buffer) of each
process using an operation (e.g. sum, maximum), and returns the combined
values in the output buffer of a chosen process named root. MPI Allreduce is
the same as MPI Reduce, except that the result appears in the receive buffer of
all processes.

MPI Allreduce is one of the most important MPI routines and most vendors
are using algorithms that can be improved by a factor of more than 2 for long
vectors. Most current implementations are optimized only for short vectors. A
5-year-profiling [12] of most MPI based applications (in production mode) of
all users of the Cray T3E 900 at our university has shown, that 8.54% of the
execution time is spent in MPI routines. 37.0% of the MPI time is spent in
MPI Allreduce and 3.7% in MPI Reduce. Based on the profiled number of calls,
transferred bytes, and used processes, combined with benchmark results for the
vendor’s reduction routines and the optimized algorithms, Fig. 1 show that the
communication time can be reduced by a factor of 20% (allreduce) and 54%
(reduce) with the new algorithms. The 5-year-profiling has also shown, that 25%



2 Rolf Rabenseifner and Panagiotis Adamidis

of all execution time was spent with a non-power-of-two number of processes.
Therefore, a second focus is the optimization for non-power-of-two numbers of
processes.

Fig. 1. Benefit of new allreduce and reduce protocols optimized for long vectors.

2 Related Work

Early work on collective communication implements the reduction operation as
an inverse broadcast and do not try to optimize the protocols based on different
buffer sizes [1]. Other work already handle allreduce as a combination of basic
routines, e.g., [2] already proposed the combine-to-all (allreduce) as a combi-
nation of distributed combine (reduce scatter) and collect (allgather). Collective
algorithms for wide-area cluster are developed in [5, 7, 8], further protocol tuning
can be found in [3, 4, 9, 15], and automatic tuning in [16]. The main focus of the
work presented in this paper is to optimize the algorithms for different numbers
of processes (non-power-of-two and power-of-two) and for different buffer sizes
by using special reduce scatter protocols without the performance penalties on
normal rank-ordered scattering. The allgather protocol is chosen according the
characteristics of the reduce scatter part to achieve an optimal bandwidth for
any number of processes and buffer size. This paper is based on [13] and extended
by benchmark results on Cray X1 parallel shared memory vector systems.

3 Allreduce and Reduce Algorithms

3.1 Cost Model

To compare the algorithms, theoretical cost estimation and benchmark results
are used. The cost estimation is based on the same flat model used by R. Thakur
and B. Gropp in [15]. Each process has an input vector with n bytes, p is the
number of MPI processes, γ the computation cost per vector byte executing one
operation with two operands locally on any process. The total reduction effort is
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(p− 1)nγ. The total computation time with optimal load balance on p processes
is therefore p−1

p nγ, i.e., less than nγ, which is independent of the number of
processes!

The communication time is modeled as α + nβ, where α is the latency (or
startup time) per message, and β is the transfer time per byte, and n the message
size in bytes. It is assumed further that all processes can send and receive one
message at the same time with this cost model, i.e., p parallel processes can
send in parallel p messages each with n bytes (e.g., pairwise or in a ring pattern)
with the communication time α + nβ. In reality, most networks are faster, if
the processes communicate in parallel, but pairwise only in one direction (uni-
directional between two processes), e.g., in the classical binary tree algorithms.
Therefore αuni+nβuni is modeling the uni-directional communication, and α+
nβ is used with the bi-directional communication. The ratios are abbreviated
with fα = αuni/α and fβ = βuni/β. These factors are normally in the range 0.5
(simplex network) to 1.0 (full duplex network).

3.2 Principles

A classical implementation of MPI Allreduce is the combination of MPI Reduce
(to a root process) followed by MPI Bcast sending the result from root to all
processes. This implies a bottle-neck on the root process. Also classical is the
binary tree implementation of MPI Reduce, which is a good algorithm for short
vectors, but that causes a heavy load imbalance because in each step the num-
ber of active processes is halved. The optimized algorithms are based on a few
principles:

Recursive vector halving: For long-vector reduction, the vector can be split
into two parts and one half is reduced by the process itself and the other half is
sent to a neighbor process for reduction. In the next step, again the buffers are
halved, and so on.

Recursive vector doubling: To return the total result in the result vector,
the split result vectors must be combined recursively. MPI Allreduce can be
implemented as a reduce-scatter (using recursive vector halving) followed by an
allgather (using recursive vector doubling).

Recursive distance doubling: In step 1, each process transfers data at dis-
tance 1 (process P0 with P1, P2–P3, P4–P5, ...); in step 2, the distance is
doubled, i.e., P0–P2 and P1–P3, P4–P6 and P5–P7; and so on until distance p

2 .

Recursive distance halving: Same procedure, but starting with distance p/2,
i.e., P0–P p

2 , P1–P(
p
2 + 1), ..., and ending with distance 1, i.e., P0–P1, ... .

Recursive vector and distance doubling and halving can be combined for
different purposes, but always additional overhead causes load imbalance if the
number of processes is not a power of two. Two principles can reduce the over-
head in this case.

Binary blocks: The number of processes can be expressed as a sum of power-of-
two values, i.e., all processes are located in subsets with power-of-two processes.
Each subset is used to execute parts of the reduction protocol in a block. Over-
head occurs in the combining of the blocks in some step of the protocol.
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Ring algorithms: A reduce scatter can be implemented by p−1 ring exchange
steps with increasing strides. Each process computes all reduction operations for
its own chunk of the result vector. In step i (i=1 .. p-1) each process sends the
input vector chunk needed by rank+i to that process and receives from rank−i
the data needed to reduce its own chunk. The allreduce can be completed by an
allgather that is also implemented with ring exchange steps, but with constant
stride 1. Each process sends its chunk of the result vector around the ring to the
right (rank + 1) until its left neighbor ((rank + p − 1) mod p) has received it
after p− 1 steps. The following sections describe the algorithms in detail.

3.3 Binary Tree

Reduce: The classical binary tree always exchanges full vectors, uses recursive
distance doubling, but with incomplete protocol, because in each step, half of
the processes finish their work. It takes dlg pe steps and the time taken by this
algorithm is Tred,tree = dlg pe(αuni + nβuni + nγ)).

For short vectors, this algorithm is optimal (compared to the following algo-
rithms) due to its smallest latency term dlg peαuni.

Allreduce: The reduce algorithm is followed by a binary tree based broadcast.
The total execution time is Tall,tree = dlg pe(2αuni + 2nβuni + nγ)).

3.4 Recursive Doubling

Allreduce: This algorithm is an optimization especially for short vectors. In
each step of the recursive distance doubling, both processes in a pair exchange
the input vector (in step 1) or its intermediate result vector (in steps 2 ... dlg pe)
with its partner process and both processes are computing the same reduction
redundantly. After dlg pe steps, the identical result vector is available in all pro-
cesses. It needs Tall,r.d. = dlg pe(α+nβ+nγ))+(if non-power-of-two αuni+nβuni)
This algorithm is in most cases optimal for short vectors.

3.5 Recursive Halving and Doubling

This algorithm is a combination of a reduce scatter implemented with recur-
sive vector halving and distance doubling1 followed by a allgather implemented
by a recursive vector doubling combined with recursive distance halving (for
allreduce), or followed by gather implemented with a binary tree (for reduce).

In a first step, the number of processes p is reduced to a power-of-two value:
p′ = 2blg pc. r = p− p′ is the number of processes that must be removed in this
first step. The first 2r processes send pairwise from each even rank to the odd

1 A distance doubling (starting with distance 1) is used in contrary to the re-
duce scatter algorithm in [15] that must use a distance halving (i.e., starting with
distance #processes

2
) to guarantee a rank-ordered scatter. In our algorithm, any order

of the scattered data is allowed, and therefore, the longest vectors can be exchanged
with the nearest neighbor, which is an additional advantage on systems with a hier-
archical network structure.
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Fig. 2. Recursive Halving and Doubling. The figure shows the intermediate results
after each buffer exchange (followed by a reduction operation in the 1st part). The
dotted frames show the overhead caused by a non-power-of-two number of processes.

(rank + 1) the second half of the input vector and from each odd rank to the
even (rank − 1) the first half of the input vector. All 2r processes compute the
reduction on their half.

Fig. 2 shows the protocol with an example on 13 processes. The input vec-
tors and all reduction results will be divided into p′ parts (A, B,..., H) by this
algorithm, and therefore it is denoted with A–Hrank. After the first reduction,
process P0 has computed A–D0−1, denoting the reduction result of the first
half of the vector (A–D) from the processes 0–1. P1 has computed E–H0−1, P2
A–D2−3, ... . The first step is finished by sending those results from each odd
process (1 ... 2r − 1) to rank − 1 into the second part of the buffer.

Now, the first r even processes and the p− 2r last processes are renumbered
from 0 to p′ − 1.

This first step needs (1+ fα)α+ 1+fbeta
2 nβ+ 1

2nγ and is not necessary, if the
number of processes p was already a power-of-two.

Now we start with the first step of recursive vector halving and distance
doubling, i.e., the even / odd ranked processes are sending the second / first half
of their buffer to rank′+1 / rank′−1. Then the reduction is computed between
the local buffer and the received buffer. This step costs α+ 1

2 (nβ + nγ).
In the next lg p′− 1 steps, the buffers are recursively halved and the distance

doubled. Now, each of the p′ processes has 1
p′ of the total reduction result vector,

i.e., the reduce scatter has scattered the result vector to the p′ processes. All
recursive steps cost lg p′α+ (1− 1

p′ )(nβ + nγ).
The second part implements an allgather or gather to complete the allreduce

or reduce operation.

Allreduce: Now, the contrary protocol is needed: Recursive vector doubling
and distance halving, i.e., in the first step the process pairs exchange 1

p′ of the

buffer to achieve 2
p′ of the result vector, and in the next step 2

p′ is exchanged to

get 4
p′ , and so on. A–B, A–D ... in Fig. 2 denote the already stored portion of

the result vector. After each communication exchange step, the result buffer is
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Fig. 3. Binary Blocks.

doubled and after lg p′ steps, the p′ processes have received the total reduction
result. This allgather part costs lg p′α+ (1− 1

p′ )(nβ).

If the number of processes is non-number-of-two, then the total result vector
must be sent to the r removed processes. This causes the additional overhead
α+ nβ. The total implementation needs
• Tall,h&d,n=2exp = 2 lg pα+ 2nβ + nγ − 1

p (2nβ + nγ)
' 2 lg pα+ 2nβ + nγ if p is power-of-two,

• Tall,h&d,n6=2exp = (2 lg p′ + 2 + fα)α+ (3 + 1+fbeta
2 )nβ + 3

2nγ − 1
p′ (2nβ + nγ)

' (3 + 2blg pc)α+ 4nβ + 3
2nγ if p is non-power-of-two (with p′ = 2blg pc).

This protocol is good for long vectors and power-of-two processes. For non-
power-of-two processes, the transfer overhead is doubled and the computation
overhead is enlarged by 3

2 . The binary blocks protocol (see below) can reduce
this overhead in many cases.

Reduce: The same protocol is used, but the pairwise exchange with sendrecv
is substituted by single message passing. In the first step, each process with the
bit with the value p′/2 in its new rank identical to that bit in root rank must
receive a result buffer segment and the other processes must send their segment.
In the next step only the receiving processes continue and the bit is shifted 1
position right (i.e., p′/4). And so on. The time needed for this gather operation
is lg p′αuni + (1− 1

p′ )nβuni.

In the case that the original root process is one of the removed processes,
then the role of this process and its partner in the first step are exchanged
after the first reduction in the reduce scatter protocol. This causes no additional
overhead.

The total implementation needs
• Tred,h&d,n=2exp = lg p(1 + fα)α+ (1 + fβ)nβ + nγ − 1

p (n(β + βuni) + nγ)
' 2 lg pα+ 2nβ + nγ if p is power-of-two,

• Tred,h&d,n6=2exp = lg p′(1 + fα)α + (1 + fα)α + (1 + 1+fbeta
2 + fβ)nβ + 3

2nγ −
1
p′ ((1 + fβ)nβ + nγ)

' (2 + 2blg pc)α+ 3nβ + 3
2nγ if p is non-power-of-two (with p′ = 2blg pc).
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3.6 Binary Blocks

The algorithm starts with a binary block decomposition of all processes in blocks
with power-of-two number of processes, see example in Fig. 3. Each block exe-
cutes its own reduce scatter with the recursive buffer halving and distance dou-
bling algorithm as described in the previous section. Then, starting with the
smallest block, the intermediate result (or the input vector in case of 20 process)
is split into the segments of the intermediate result in the next higher block, sent
to the processes there and the reduction operation is executed there. This causes
a load imbalance in computation and communication compared to the execution

in the larger blocks. In our example, in the 3rd exchange step in the 23 block,
each process sends one segment (e.g., B in P0), receives one segment (A), and
computes the reduction of one segment (A). The load imbalance is introduced

here by the blocks 22 and 20 : In the 22 block, each process receives and
reduces 2 segments (e.g. A–B on P8), while in the 20 block (here only P12),
each process has to send as many messages as the ratio of the two block sizes
(here 22/20). At the end of the 1st part, the highest block must be recombined
with the next smaller block. Again, the ratio of the block sizes determines the
overhead.

Therefore, the maximum difference between the ratio of two successive blocks,
especially in the low range of exponents, determines the imbalance. On the other
hand, this difference may be small, e.g., the most used non-power-of-two num-
bers of processes on our Cray T3E fall into the categories δexpo,max = 1 (96
[12% of system usage with MPI applications], and 60 PEs [procesing elements]),
δexpo,max = 2 (61, 80, 235, 251 PEs), and δexpo,max = 3 (36, 77, 100 PEs).2

Allreduce: The 2nd part is an allgather implemented with buffer doubling and
distance halving in each block as in the algorithm in the previous section. The
input must be provided in the processes of the smaller blocks always with pairs
of messages from processes of the next larger block.

Reduce: If the root is outside of the largest block, then the intermediate result
segment of rank 0 is sent to root and root plays the role of rank 0. A binary tree
is used to gather the result segments into the root process.

For power-of-two number of processes, the binary block algorithms are iden-
tical to the halving and doubling algorithm in the previous section.

3.7 Ring

While the algorithms in the last two sections are optimal for power-of-two pro-
cess numbers and long vectors, for medium non-power-of-two number of pro-
cesses and long vectors there exist another good algorithm. It uses the pair-
wise exchange algorithm for reduce scatter and ring algorithm for allgather (for

2 δexpo,max is the maximal difference of two consecutive exponents in the binary
representation of the number of processes, e.g., 100 = 26 + 25 + 22, δexpo,max =
max(6− 5, 5− 2) = 3.
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allreduce), as described in [15], and for reduce, all processes send their result
segment directly to root. Both algorithms are good in bandwidth usage for non-
power-of-two number of processes, but the latency scales with the number of
processes. Therefore this algorithm can be used only for a small number of
processes. Independent of whether p is power-of-two or not, the total implemen-
tation needs Tall,ring = 2(p− 1)α+ 2nβ + nγ − 1

p (2nβ + nγ) for allreduce, and

Tred,ring = (p−1)(α+αuni)+n(β+βuni)+nγ− 1
p (n(β+βuni)+nγ) for reduce.

4 Choosing the Fastest Algorithm
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Based on the number of
processes and the vector
(input buffer) length, the
reduction routine must
decide which algorithm
should be used. Fig. 4
shows the fastest pro-
tocol on a Cray T3E
900 with 540 PEs. For
buffer sizes less than or
equal to 32 byte, recur-
sive doubling is the best,
for buffer sizes less than
or equal to 1KB, mainly
vendor’s algorithm (for
power-of-two) and binary
tree (for non-power-of-
two) are the best but
there is not a big dif-
ference to recursive dou-
bling. For longer buffer
sizes, the ring is good
for some buffer sizes
and some #processes less
than 32 PEs. A de-
tailed decision is done for
each #processes value,
e.g., for 15 processes,
ring is used if length
≥ 64KB. In general, on
a Cray T3E 900, the
binary block algorithm
is faster if δexpo,max <
lg( vector size

1Byte )/2.0−2.5 and
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vector size ≥ 16 KB and more than 32 processes are used. In a few cases, e.g.,
33 PEs and less then 32KB, halving&doubling is the fastest algorithm.

Fig. 5 shows for 32KB buffer size that the new protocols are clearly better
than the vendor’s protocol (MPT.1.4.0.4) and the binary tree for all numbers of
processes. Up to 32 PEs, all numbers of processes are measured. For more than
32 PEs, only selected values with small and large δexpo,max are measured. One
can verify, that binary blocks’ bandwidth depends strongly on δexpo,max and that
halving&doubling is faster on 33, 65, 66, 97, 128-131, ... PEs. The ring is faster
on 3, 5, 7, 9-11, and 17 PEs.

5 Comparison

Fig. 6 shows that with the pure MPI programming model (i.e., 1 MPI process per
CPU) on the IBM SP, the benefit is about 1.5x for buffer sizes 8–64KB, and 2x –
5x for larger buffers. With the hybrid programming model (1 MPI process per
SMP node), only for buffer sizes 4–128KB and more than 4 nodes, the benefit
is about 1.5x – 3x.

Fig. 7 compares the new algorithm with the old MPICH-1’ algorithm (without
the halving&doubling). The new algorithms show a performance benefit of 3x –
7x with pure MPI and 2x – 5x with the hybrid model.

Fig. 8 shows, that in many cases the new algorithms are 3x – 5x faster than the
vendors algorithm with operation MPI SUM and due to the very slow implemen-
tation of structured derived datatypes, a factor up to 100x with MPI MAXLOC.

On Cray X1, we compare the new algorithms with the current develop-
ment version of Cray’s MPI library (mpt.2.4.0.0.13). Our measurements have
shown, that the shared memory based implementation of MPI Allreduce and
MPI Reduce [10] has an up to 14 times shorter latency (6–14µs) as the proto-
cols based on point-to-point message passing and presented in this paper (39–
137µs) at MPI Allreduce computing the sum of vectors, each with 1 double
element. On the other hand, Fig. 9 shows that the new MPI Allreduce protocols
are significantly faster for longer vectors. Looking at 96 and more MSPs (Multi
Streaming Processors, consisting internally of 4 CPUs) and 32 kB (= 4k doubles)
and more vector size, we can see that the new presented protocols are more than
35% faster than Cray’s mpt. For 96 and more MPSs and vector sizes with 256
kB (=32k doubles) and more, the new protocols are 4 to 10 times faster than
Cray’s mpt, although [10] states that this mpt uses already butterfly protocols
for longer buffers. The lower diagram indicates, which protocol has achieved the
best bandwidth.

Fig. 10 shows, that for MPI Reduce, the differences are significantly smaller:
With more than 8 MSPs, and at least 2 MB buffer size, one can see that the
new protocols are faster than Cray’s mpt, but only with a ratio between 1.14
and 2.01.

The reduction operation loop is compiled with the pragma function Pragma(
“ CRI concurrent”). The new algorithms vectorize and multi-stream on the
MSPs, including the minloc and maxloc operation, on all available datatypes,
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except on short and byte datatypes. Internally, all datatypes are mapped to the
appropriate number of MPI BYTE elements, before MPI point-to-point message
passing routines are called. E.g., with 116 MSPs and 8 MB vector size, the min-
imal execution time is 6.84ms and 11.67ms (allreduce with sum and maxloc),
and 5.04ms and 10.94ms (reduce with sum and maxloc), which implies following
bandwidth values (based on the 8 MB) per process: 1227MB/s and 719MB/s
(allreduce) and 1664MB/s and 767MB/s (reduce). This speed is achieved with
the binary block protocol. On 64 MSPs and with recursive halving and dou-
bling, one can achieve 1362MB/s and 909MB/s (allreduce) and 1792MB/s and
1048MB/s (reduce).

The used mpt.2.4.0.0.13 is an intermediate development version from Cray.
The MPI MAXLOC and MPI MINLOC operations are not yet optimized. There-
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Fig. 8. Ratio of bandwidth of the fastest protocol (recursive doubling [allreduce only],
binary tree, ring, halving&doubling, and binary blocks) compared to the vendors al-
gorithm for Allreduce (left) / Reduce (right) and operation MPI SUM (1st row) /
MPI MAXLOC (2nd row) on a Cray T3E 900.

fore the comparison of the new protocols with Cray’s mpt shows still a ratio up to
1800 with allreduce and up to 20 with reduce. The extreme performance bug of
allreduce may be based on performance problems with an internally used bcast
on derived datatypes. These problems should be solved before this mpt.2.4 is
delivered as product.

6 Conclusions and Future Work

Although principal work on optimizing collective routines is quite old [2], there
is a lack of fast implementations for allreduce and reduce in MPI libraries for
a wide range of number of processes and buffer sizes. Based on the author’s
algorithm from 1997 [11], an efficient algorithm for power-of-two and non-power-
of-two number of processes is presented in this paper. Medium non-power-of-
two number of processes could be additionally optimized with a special ring
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Fig. 9. Ratio of bandwidth of the fastest protocol (recursive doubling, binary tree, ring,
halving&doubling, and binary blocks) compared to Cray mpt.2.4.0.0.13 algorithm for
MPI Allreduce and operation MPI SUM on a Cray X1 in MSP mode (upper diagram)
and the fastest protocol (lower diagram).
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Fig. 10. Ratio of bandwidth of the fastest protocol (binary tree, ring, halving&doubling,
and binary blocks) compared to Cray mpt.2.4.0.0.13 algorithm for MPI Reduce and
operation MPI SUM on a Cray X1 in MSP mode.

algorithm. The halving&doubling is already included into MPICH-2 and it is
planned to include the other bandwidth-optimized algorithms [11, 15]. Future
work will further optimize latency and bandwidth for any number of processes
by combining the principles used in Sect. 3.3–3.7 into one algorithm and selecting
on each recursion level instead of selecting one of those algorithms for all levels
[14].

Cray’s mpt.2.4.0.0.13 already shows excellent latency for smallest vectors. For
long vectors, there is still a big gap between the speed that can be reached and
the speed implemented by Cray’s mpt intermediate development version with
ratios up to 2 for reduce(sum), 10 for allreduce(sum), 20 for reduce(maxloc), and
1800 for allreduce(maxloc). This gap may be or should be closed in the mpt.2.4
product version.
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