
CascadeCascade

Burton Smith
Cray Inc.

Burton Smith
Cray Inc.

The DARPA HPCS Program

 DARPA’s High Productivity Computer Systems
program has three central objectives:
0 Improve HPC system productivity
0 Improve HPC programmer productivity
0 Improve system robustness (reliability and security)

 Three phases are planned:
0 Phase 1 (7/02–7/03): Define a system concept

 Cray, HP, IBM, SGI, Sun
0 Phase 2 (7/03–7/06): Prepare a development plan

 Cray, IBM, Sun
0 Phase 3 (7/06–7/10): Develop a system

 Two awardees

Our approach to HPCS

 High system productivity
0 Implement very high global bandwidth
0 Use that bandwidth (the “wires”) well
0 Provide configurability to match user needs

 High human productivity and portability
0 Support a mixed UMA/NUMA programming model
0 Deliver strong compiler and runtime support
0 Pursue higher level programming languages

 System robustness
0 Virtualize all resources
0 Make all resources dynamically reconfigurable
0 Use introspection to detect bugs or intrusion

Bandwidth is expensive

 High global system bandwidth is a “good thing”
0 It determines performance for many problems
0 It also makes improved programmability possible

 Sadly, connection costs badly trail Moore’s law
0 Packages, circuit boards, wires, optical fibers…
0 Most of hardware cost is connection cost

 Cray builds systems with high global bandwidth
0 This strongly influences most of what we do

 Cray needs to stay competitive
0 We must make bandwidth cost less
0 We must use bandwidth wisely

 These ideas motivate much of Cascade’s architecture

Making bandwidth cost less

 Tune bandwidth (∴ cost) to match customer needs
 Use the cheapest link technology that fits each bill

0 Optical or electrical
 Make data rates as fast as the technology permits

0 Spending transistors in this cause is a bargain
 Design routers that use all the network links well

0 Randomized non-minimal routing, for example
 Use efficient network topologies

0 High degree routers

Network Topology

 If network link load is well balanced, node injection
bandwidth B times average distance d (in hops) is
bounded by link bandwidth β times node degree Δ

 Cost/node is proportional to β times Δ
0 Signaling rate and package pin count determine it

 Increasing the degree Δ lowers the average distance d
0 β can be lowered to maintain (or even improve) cost
0 B will increase as d decreases

 Conclusion: trading high node degree for link bandwidth
can yield better injection bandwidth, latency, and cost

Using bandwidth wisely

 Implement shared memory (UMA/NUMA hybrid)
0 Eliminate overhead to enable small messages

 Tolerate memory latency
0 CC-NUMA wastes bandwidth moving data around
0 Use vectors and multithreading instead

 Exploit temporal locality in “heavyweight” processors
0 Compiler-directed data cache
0 Architectural support for streaming

 Exploit spatial locality in “lightweight” processors
0 Threads migrate to follow the spatial locality

 Use other types of locality whenever possible
0 e.g. atomic memory operations

Lightweight Processor
multithreaded

DRAMDRAMDRAMDRAMDRAMDRAMDRAMDRAM

Lightweight Processor
multithreaded

DRAMDRAMDRAMDRAMDRAMDRAMDRAMDRAM

Lightweight Processor
multithreaded

DRAMDRAMDRAMDRAMDRAMDRAMDRAMDRAM

Lightweight Processor
multithreaded

DRAMDRAMDRAMDRAMDRAMDRAMDRAMDRAM

Lightweight Processor
multithreaded

DRAMDRAMDRAMDRAMDRAMDRAMDRAMDRAM

Lightweight Processor
multithreaded

DRAMDRAMDRAMDRAMDRAMDRAMDRAMDRAM

Lightweight Processor
multithreaded

DRAMDRAMDRAMDRAMDRAMDRAMDRAMDRAM

Lightweight Processor
multithreaded

DRAMDRAMDRAMDRAMDRAMDRAMDRAMDRAM

A locale building block

Heavyweight Processor
vector, streaming,

multithreaded

Compiler-directed
data cache

Network
router

To other locales

Locale
interconnect

Compiler-directed data cache

 The compiler often knows if data are safely cacheable,
i.e. are temporarily private or temporarily constant

 It can tell the hardware what data to cache and when
to flush or simply invalidate it
0 Dead values as well as constants are invalidated

 Unnecessary coherence traffic is eliminated
 Latency and network bandwidth demand are reduced
 Threads within a processor can communicate and

synchronize within cache to exploit streaming locality
 The cache becomes a much more general tool for

exploiting many forms of temporal locality

Lightweight threads in memory

 Lightweight threads in the memory can exploit spatial
locality by migrating to memory they refer to
0 Some remote references just block the thread
0 Others cause migration to the remote memory

 Memory is block-hashed to provide a compromise
between spatial locality and reference distribution

 Processor-in-memory (PIM) technology is an ideal
implementation vehicle for this idea

 Threads are spawned by sending parcels to memory
from either heavyweight or other lightweight threads
0 Spawning and migration overheads are minimal
0 In-memory operations are handled specially

 Generally, the compiler packages temporally local loops
for heavy threads and the rest for light ones

int nrows, rowp[];
val_idx_pair a[];
double b[], c[];
for (int i = 0; i<nrows; i++) {
 double sum = 0.0;
 for(int k = rowp[i]; k < rowp[i+1]; k++){
 sum += a[k].val*b[a[k].idx];
 }
 c[i]=sum;
}
The data layout:
 rowp[i] rowp[i+1]
a[k].val: . . . ai,15 ai,42 ai,53 . . .
a[k].idx: . . . 15 42 53 . . .

Sparse matrix-vector product

Lightweight threads on SparseMV

 There are three memory references for every two flops
0 Two memory references are local and one isn’t
0 There are 2 flops per “global” memory reference
0 (Dense) inner product is the same if one or both

vectors is unit stride
 The thread context required for this loop comprises:

0 The program counter (the “method”)
0 Exception flags, etc. (perhaps packed with the PC)
0 The pointer to the vector of value-index pairs a[]
0 A limit for loop control, set to &rowp[i+1]
0 Two pointers to the vectors of doubles b[]and c[]
0 The double accumulator sum
0 A few temporaries, e.g. for b[a[k].idx]

Productive programming

 Matlab lets scientists be productive programmers
0 Execution performance is marginal at best
0 Manual translation to Fortran is the typical fix

 We are developing Chapel, a programming language
aimed at both programmability and performance

 Its key features:
0 Interprocedural polymorphic type inference
0 Locality abstraction via first-class domains
0 Explicit parallel operations over domains
0 Implicit parallelism packaging and optimization
0 Automatic thread and memory management
0 Open-source implementation

 We will also support mixed-legacy-language programs
0 Fortran, C++, MPI, shmem, coarray languages

NAS CG conj_grad() in Chapel

function conj_grad(A, X): {
 const cgitmax = 25;

 var Z = 0.0;
 var R = X;
 var P = R;
 var rho = sum R**2;

 for cgit in (1..cgitmax) {
 var Q = sum(dim=2) (A*P);

 var alpha = rho / sum (P*Q);
 Z += alpha*P;
 R -= alpha*Q;

 var rho0 = rho;
 rho = sum R**2;
 var beta = rho / rho0;
 P = R + beta*P;
 }
 R = sum(dim=2) (A*Z);
 var rnorm = sqrt(sum (X-R)**2);

 return (Z, rnorm);
}

Parameter types elided
(inferred from callsite)

Function return type elided
(inferred from return statement)

Built-in array reductions

Sequential iteration over
an anonymous domain

Partial array reductions

Promotion of scalar operators,
values, and functions

Support for tuples

Operate on sparse arrays
as though dense,

and independently of
implementing data

structures

Fortran+MPI = 173-288 lines (1265 tokens)
Chapel = 20 lines (150 tokens)

Global view ⇒
processors not exposed in
computation, array sizes

Separation of concerns ⇒
locale views, domain/array
distributions & alignments,
and sparse data structures
are expressed elsewhereComposable parallelism ⇒

this (parallel) function
could be called from a

parallel task (which in turn
could be called from

another…)

Local variable types elided
(inferred from initializer, uses)

Whole-array operations ⇒
data parallel implementation

A few more Cascade tasks

 Operating system
0 Scalability, robustness, utility

 System infrastructure
0 RAS system, power, cooling

 Interconnect implementation
0 Router design, network topology

 Productivity assessment
0 Metrics, modeling, prediction, applications

 Implementation technology
0 Interconnect, chip packaging, power, cooling

 Debugging
0 Correctness, performance

 Marketing
0 Costs to develop and manufacture, sales outlook

Cascade collaborators

 Cray Inc.
0 Burton Smith, David Callahan, Steve Scott, . . .

 Caltech/JPL
0 Thomas Sterling, Hans Zima, Larry Bergman, . . .

 Notre Dame
0 Peter Kogge, Jay Brockman, . . .

 Stanford
0 Bill Dally, Christos Kozyrakis, . . .

Our experience base

The Cray team has experience in these technologies:
 Latency-tolerant vector NUMA systems
 Latency-tolerant multithreaded UMA systems
 Processor-in-memory technology
 High bandwidth interconnection networks
 High-productivity compiler technology
 Whole-program, incremental compilation
 Run-time systems for fine-grain synchronization
 Scalable, highly productive operating systems
 Supercomputer system integration

Conclusions

 HPCS matches Cray business objectives well
 We and our collaborators have expertise in the

technological directions we intend to pursue
 We are confident of a successful outcome

