
High Performance Genome Scale Comparisons
for the
SAGE Method Utilizing
Cray Bioinformatics Library Primitives

Eric Stahlberg
The Ohio Supercomputer Center

Cray User Group Meeting
May 20, 2004

Ohio Supercomuter Center

• OSC holds a unique niche among Supercomputer
Centers
– Primarily state funded; allows flexibility
– Inclusive of all Ohio universities and colleges –

not merely a subset of institutions
– OSC foundation:

• reliable network, computational services, & training with an impact
• TFN (OARnet) and HPC form complimentary foundation

• Excellent reputation, but not as well publicized
as other centers in Ohio and out

OSC Hardware On Floor

Sun Fire 6800
Cray SV1

BALE Cluster

Xeon Cluster

SGI Altix

HP Itanium2 Cluster

•~2 TeraFLOP

•300 GB
total memory

•Common home
 file system

•Command Line
and Portal access

•500 TB Storage Tank

Introductions and
Acknowledgements

• Guo-Liang Wang: PI and lead researcher on rice and
rice pathogens (OSU)

• Malali Gowda: Post-doc in Wang lab directing the
specific project analysis (OSU)

• Shankar Manikantan: Graduate assistant developing
critical Java pre/post processing elements (OSC)

• Jeff Doak: Engineer/Analyst doing heavy
performance lifting (Cray)

• Eric Stahlberg: Technical lead (OSC)
• Acknowledgements: NSF for rice project, Cray for

hardware access

SAGE Rice Project Description

The SAGE Method

• SAGE = Serial Analysis of Gene Expression
• Originally developed for cancer research at

Johns Hopkins (1995)
• Characteristic signatures identified in DNA

and RNA
• Qualitative and Quantitative validity
• Map characteristic signatures to location and

function for gene annotation

The SAGE Tag

• Four nucleotide locus of interest – CATG
• Maps into regions of interest in RNA/DNA
• Extends limited distance for uniqueness

– Original SAGE 14 nucleotides
– RL-SAGE extends to 21 nucleotides

• Both direct and reverse complement
identification needed

ATGAGACAGACGTACGACATGACGTACGTATGGTTAATGGA

The SAGE Method
for Rice Studies

• Rice is a good genome for study
– Scientifically: sequenced, good prototype
– Agriculturally: worldwide dependence, improved

productivity has major value

• Computationally
– Reasonable size: 450 Megabases

• Goals of research
– Annotate gene function
– Characterize plant response to rice blast disease

Problem Definition –
Challenge of Terminology

• Scan SAGE tags
through chromosomes,
EST and cDNA
sequences

• Account for potentially
sequencing errors

• Track location and
sense of match

• Locate substrings in long
strings

• Allow for single or double
character mismatches

• Record position and
whether match was a
reverse complement

“The Need for Speed”

• Automatically generating
thousands of sequences
and tens of thousands of
tags

• Analysis time needs to be
short to keep from being
made obsolete

• New methods generate
even more SAGE tags

Why Choose CBL and PCBL?

• Desire to stay on high performance
platforms

• Leverage the work of others –
– primitive methods that are proven

• Easy transition between application
development and benchmarking

Speed Improvement with
cb_read_fasta()

• Memory mapping of entire file makes
indexing to elements very fast

• Need to be able to read entire dataset
• Portability – pick the right API

The Simple Approach First

• Search all tags against
all targets

• O(nm) complexity
• Works and efficient in

parallel (15.9/16)
• Not yet fast enough
• Lots of misses
• Use cb_searchn()

SA
G

E
Ta

gs
SA

G
E

Ta
gs

Target sequencesTarget sequences

Results:
Exhaustive and

Sparse

Results:
Exhaustive and

Sparse

A Reformulation to
Exact Match Only

• Exact matches are the most important
element to the research project

• Need to screen multiple target lists
quickly

• Search for sequencing errors later

A Refined Approach For Speed

• Sort all tags and candidate
tags in targets

• Better than
O(n lgn + m lg m)
complexity

• Does not use cb_searchn()

So
rt

ed
 S

AG
E

Ta
gs

So
rt

ed
 S

AG
E

Ta
gs

So
rt

ed
 T

ar
ge

t
VT

ag
s

So
rt

ed
 T

ar
ge

t
VT

ag
s

Results: CompactResults: Compact

Dual Track CompareDual Track Compare

The Good, Bad and the Ugly

• Increases number of
elements to compare

• Limited to exact matching
• Requires preprocessing

• Can be 4000x faster
• Generalizable to a point

Good Bad

CATG FINDER
A Java routine that calculates

the CATG locations in the
sequence and plots them in a

HTML form

OUTPUT SAX PARSER
A Java routine that parses the

output XML hits file for
relevant information that is

required

Initial Tag

Library
Sequences got
from WANG lab

DITAG FINDER
A Java routine that generates

ditags (length 38-42) from the
initial extracted sequences

SAGE TAG MAKER

A Java routine that generates
sage tags from the ditag file
generated in the previous step

TARGET Sequences
(TIGR EST, KOME,

Genomic Sequences)

TARGET SAGE TAG MAKER
A Java routine that generates

Sage Tags for Direct Matching.

Target

SAGE
maker is

bypassed for
>0 Mismatch

SAGE SPY

The SAGESPY program
helps to match the SAGE
tags with the target

sequences, Match results
upto 2 mismatches (0,1,2)

can be calculated

HITS.XML

Sagespy.out

Targethit.fsa

Taghit.fsa

TagReject.fsa

STAGE I
PREPROCESSING

STAGE II
MATCHING

STAGE III
RESULTS & ANALYSIS

VIRTUAL TAG GENERATOR

A Java routine that generates
virtual tags of required length

from any target file

XSLT TOOL

The input to this tool
is the XML output,

The output is an
HTML table

representation of
the same XML data

Shell Scripting utilities like GREP, SED and AWK are used to analyse the sequences.
The results are added into a MySQL database for later querying and presentation.

Microsoft Excel is also used for plotting the graphs.

MySQL

The CRAY Bioinformatics library

routines perform searching, sorting,
low level bit manipulation

operations useful in the analysis of
nucleotide and amino acid

sequence data. These libs make
use of unique hardware features
and compressed data formats to

speed throughput and minimize
storage. Referenced through C /

Fortran

SV1

X1

JAVA

U
T

I
L

I
T

Y

P

R
O

G
R
A

M
S

FASTADETECT
A Java routine that detects

duplicates in a Fasta File. Also
has the ability to provide the

unique sequences along with
the copy numbers.

REVERSE COMPLIMENTOR
A Java routine that generates
the reverse compliment of a

nucleotide sequence.

SEQUENCE SUBTRACTOR
A Java routine that subtracts

one Fasta file from another.

SEQUENCE FINGERPRINT
A Java routine that gives

information about the
sequence like GC%,
Character count etc...

SAGE ANALYSIS (OSC and Dept. of PLANT PATHOLOGY)

One at a Time
vs. Target Fusion

One Target at a Time

DO I=1,nqueries,1
 DO j=1,ntargets,1

CALL cb_searchn()
Save results

 ENDDO
ENDDO

Target Fusion to One Target

DO I=1,nqueries,1
CALL cb_searchn()
Discard bad results

ENDDO

Reduced overhead on calls speeds >30x

Something Completely
Different

• Using XOR for tag matches
• Limitations

– Target and tags same length
(no more than 32 nucleotides)

– Preprocessing required

• Enhancements
– No calling overhead
– Dramatic 500-2000x speedup

• New API
obl_short_searchn(threshold,len,nq,qd,nt,td,maxhits,hits,nhits)

Cray SV1 and X1 cb_searchn
Routine Performance Details

• SV1 cb_searchn
– version is written in CAL
– 6 functional units for bit operations
– BMM is full speed
– has snake shift

• X1 cb_searchn
– version is Fortran version of SV1 CAL code
– 3 functional units for bit operations
– BMM is half speed
– does not have snake shift

• End result: X1 is 1.3x SV1 performance

Comparative Timings X1 and SV1
(100 Tag Benchmark Set)

100 Tag Set Number
of Targets

SV1
XOR

X1
XOR

SV1
Fused

X1
Fused

SV1 single X1
single

Chrom1 634952 1.35 0.36 33.57 27.80 716.42 1372.61

Chrom2 566094 1.20 0.32 30.22 25.11 638.72 1235.54

Chrom3 602420 1.29 0.34 32.93 27.40 679.71 1301.10

Chrom4 472536 1.00 0.27 25.82 21.54 533.17 1026.72

Chrom5 410074 0.87 0.24 21.98 18.11 462.69 890.75

Chrom6 449616 0.96 0.26 23.90 19.78 507.30 973.52

Chrom7 417020 0.89 0.25 22.24 18.39 470.52 902.95

Chrom8 403882 0.86 0.23 21.50 17.94 455.70 871.40

Chrom9 331252 0.71 0.19 17.71 15.18 373.75 714.06

Chrom10 284020 0.61 0.16 15.77 13.19 320.46. 618.16

Chrom11 364548 0.77 0.20 20.20 16.89 411.32 792.54

Chrom12 360950 0.77 0.21 20.01 16.73 407.26 782.21

TIGR 470924 1.00 0.26 40.29 33.87 531.35 1015.72

KOME 475998 1.01 0.27 32.17 27.11 537.07 1026.53

SAGESPY Core Application

• Uses tag and target files as input
• Creates FASTA files of tags and targets matched
• Creates FASTA files of tags and targets not matched
• XML detail file of match characteristics
• Latest versions proven on Cray hardware

Tags

Targets

Misses

Hits

Hit Detail
(XML)

SAGESPY Availability

• General availability later this summer
• Adopting portable I/O APIs
• Incorporating maximum speed improvements
• Quality assurance prior to distribution
• Java processing suite
• Available via Ohio Bioscience Library (OBL)

– Relies on CBL and PCBL
– Extensions to CBL and PCBL APIs
– Applications and higher level abstractions

Conclusions

• CBL and PCBL are viable APIs for
development

• Higher level APIs are useful for application
development

• Portability and implementation compatibility a
detail to address

• Optimization has lead to improvements in
time to solution greatly exceeding parallel
improvements alone

