
1

Matrix Solution Software
Out-of-Core Complex Valued
Lower-Upper Decomposition

Marianne Spurrier and Joe Swartz, Lockheed Martin
Corp. and Bruce Black, Cray Inc.

2

Introduction

• The decomposition poses an interesting I/O
problem when the matrix becomes too large to fit
in memory

• We investigate two different disk storage formats:
Slabs and Blocks

• Development occurred on AHPCRC’s X1 and our
X1

yUx
bLyL(Ux)LUxAx

bAx

=
====

=

3

Slab LU Algorithm

•The Slab LUD and Solve are based on work
done by benchmark group in Cray
Research, Inc.
• first completed around 1988 to support a

government customer
•Subsequent versions were maintained by

CRI until 1998 when LMC Program, CSCF,
began maintaining code for internal use

4

Basic Slab LU Algorithm

1 2 3

• Uses buffered asynchronous I/O (AIO) and BLAS
routines

• One buffer is used to hold slab M
to be worked on
• The other two are used to hold
slabs 1 through M-1 needed to
decompose slab M
• Alternate between computations
and I/O

5

Basic Slab LU Algorithm

•For slab M of the matrix:
• Read slab M into a buffer
• Read slab 1 into one of the other buffers
• Schedule the read of slab 2 into the third buffer
• Compute using slabs 1 and M
• Schedule the read of slab 3 into the buffer space that

slab 1 held
• Compute using slabs 2 and M
• Repeat until done
• Compute on slab M itself
• Write out the result and start reading slab M+1

6

Basic Slab Solve Algorithm

1 2 3

• Uses buffered Asynchronous I/O (AIO) and BLAS
routines

• One buffer is used to hold a slab
of right hand side vectors
• The other two are used to hold the
matrix slabs
• Alternate matrix slab buffers
between computations and I/O both
forward and backward solve

7

Basic Slab Solve Algorithm

•For a upper solution of RHS slab:
• Read RHS slab into a buffer
• Read slab 1 into one of the other buffers
• Schedule the read of slab 2 into the third buffer
• Compute partial upper solution with slab 1
• Schedule the read of slab 3 into the buffer space that

slab 1 held
• Compute partial upper solution with slab 2
• Repeat for all matrix slabs
• Write out the result and start reading in the next RHS

slab

8

Basic Slab Solve Algorithm

•For a lower solution of RHS slab:
• Read RHS slab into a buffer
• Read slab N into one of the other buffers
• Schedule the read of slab N-1 into the third buffer
• Compute partial lower solution with slab N
• Schedule the read of slab N-2 into the buffer space that

slab N held
• Compute partial upper solution with slab N-1
• Repeat for all matrix slabs
• Write out the result and start reading in the next RHS

slab

9

LUD/Solve Algorithm Times

•For contested runs on a single MSP
• 133,000 complex unknowns

• 4 problems running concurrently on single MSPs
• 2.7 gigabytes of buffer memory
• 208 hours wall clock

• 77,500 complex unknowns
• 8 problems running concurrently on single MSPs
• 2.7 gigabytes of buffer memory
• 35 hours wall clock

10

Slab LU Algorithm Comments

•Slab algorithm minimized disk writes to one
per slab

•Slab algorithm provides almost optimal I/O
for the LUD computation

•Slab algorithm requires double the I/O
actually needed to solve against the RHS
vectors

11

Slab Work in Progress

• Multi-MSP LU and Solve approaches
minimize disk I/O by passing slabs
between MSPs

– Two approaches for passing slabs
between MSPs in evaluation

• Algorithms in work

12

Block LU Algorithm

• Uses buffered Asynchronous I/O (AIO) and BLAS
routines (CGEMM, CTRSM, CSCAL, CTRSV,
CGEMV)

13

Block Solve Algorithm

• Uses buffered (AIO) and BLAS routines (CGEMM,
CTRSM)

14

Comparison of I/O for Block
and Slab Solvers

15

Block LU Benchmarks
Total Run Time for Three Cases

0.10

1.00

10.00

100.00

1000.00

0 2 4 6 8 10 12 14

MSPs

W
al

l C
lo

ck
 T

im
e

(h
ou

rs
)

36,864 unknowns
(324 total blocks)

61,440 unknowns
(900 total blocks)

122,880 unknowns
(3600 total blocks)

16

Scaling

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14
MSPs

S
in

gl
e

M
S

P
 W

al
l T

im
e/

M
ul

tip
le

 M
S

P
 W

al
l T

im
e

36,864 unknowns
(324 total blocks)

61,440 unknowns
(900 total blocks)

122,880
unknowns (3600
total blocks)
Ideal

36,864 10.9 GFLOPS !
61,440 11 GFLOPS !

17

N3 Scaling

y = Cx3

0

20

40

60

80

100

120

140

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000
Number of Unknowns

W
al

l C
lo

ck
 T

im
e

on
 O

ne
 M

SP
 (h

ou
rs

)

Series1
Power (Series1)

18

Comparison of C I/O, AIO and
Direct AIO for 36,864 Unknowns

When AIO is used to overlap I/O and computations,
it is approximately 22% faster than using
synchronous C I/O

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0 2 4 6 8 10 12 14

MSPs

W
al

l C
lo

ck
 T

im
e

(h
ou

rs
)

Direct AIO (1296
total blocks)

Buffered AIO (1296
total blocks)

Buffered AIO (324
total blocks)

19

Changing the Block Size – 36,864
Unknowns

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0 2 4 6 8 10 12 14

MSPs

W
al

l T
im

e
(h

ou
rs

)

Small (1296 total blocks)
Medium (324 total blocks)
Large (81 total blocks)

20

Changing the Block Size – 122,880
Unknowns

10.00

10.50

11.00

11.50

12.00

12.50

13.00

13.50

14.00

9 10 11 12 13

MSPs

W
al

l T
im

e
(h

ou
rs

)

Medium (3600 total blocks) Large (900 total blocks)

21

Block Solve Benchmarks
36,864 Unknowns with 900 Right Hand Sides

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

1 2 3 4 5 6 7 8 9 10 11 12
MSPs

W
al

l T
im

e
(m

in
ut

es
)

0

2

4

6

8

10

12

14

S
ca

lin
g

(S
in

gl
e

M
S

P

Ti
m

e/
M

ul
tip

le
 M

S
P

 T
im

e)

Wall Time
Scaling
Ideal Scaling

22

Problems
• Software

• I/O too small – fixed
• sync_file – fixed?
• AIO off node – fixed
• MPT problem - fixed
• 16 MB direct I/O limit – not fixed
• 50% of peak bandwidth – not fixed
• BPT errors – not fixed

• Hardware
• Like with any new architecture, AHPCRC’s X1 was

down quite a bit early on (last spring/summer) some
due to upgrades

23

Acknowledgments

•Thanks to the AHPCRC for allowing us to
use their Cray X1

•Thanks to many people at Cray for all the
help and support

24

Back Up Slides

25

Why Amount of I/O Decreases
as Block Size Increases

• Number of I/O requests scales as
• Total I/O = number of requests*block size
• 16 total blocks – 1 MB each

– Number of requests = 161.5 = 64
– Total I/O = 64*1 MB = 64 MB

• 4 total blocks – 4 MB each
– Number of requests = 41.5 = 8
– Total I/O = 8*4 MB = 32 MB

2
3
BN

