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Introduction

• The decomposition poses an interesting I/O 
problem when the matrix becomes too large to fit 
in memory 

• We investigate two different disk storage formats: 
Slabs and Blocks

• Development occurred on AHPCRC’s X1 and our 
X1
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Slab LU Algorithm

•The Slab LUD and Solve are based on work 
done by benchmark group in Cray 
Research, Inc.
• first completed around 1988 to support a 

government customer
•Subsequent versions were maintained by 

CRI until 1998 when LMC Program, CSCF, 
began maintaining code for internal use 
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Basic Slab LU Algorithm 

1 2 3

• Uses buffered asynchronous I/O (AIO) and BLAS 
routines

• One buffer is used to hold slab M 
to be worked on
• The other two are used to hold 
slabs 1 through M-1 needed to 
decompose slab M
• Alternate between computations 
and I/O



5

Basic Slab LU Algorithm

•For slab M of the matrix:
• Read slab M into a buffer
• Read slab 1 into one of the other buffers
• Schedule the read of slab 2 into the third buffer
• Compute using slabs 1 and M
• Schedule the read of slab 3 into the buffer space that 

slab 1 held
• Compute using slabs 2 and M
• Repeat until done
• Compute on slab M itself
• Write out the result and start reading slab M+1
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Basic Slab Solve Algorithm 

1 2 3

• Uses buffered Asynchronous I/O (AIO) and BLAS 
routines

• One buffer is used to hold a slab 
of right hand side vectors
• The other two are used to hold the 
matrix slabs
• Alternate matrix slab buffers 
between computations and I/O both 
forward and backward solve
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Basic Slab Solve Algorithm

•For a upper solution of RHS slab:
• Read RHS slab into a buffer
• Read slab 1 into one of the other buffers
• Schedule the read of slab 2 into the third buffer
• Compute partial upper solution with slab 1
• Schedule the read of slab 3 into the buffer space that 

slab 1 held
• Compute partial upper solution with slab 2
• Repeat for all matrix slabs
• Write out the result and start reading in the next RHS 

slab
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Basic Slab Solve Algorithm

•For a lower solution of RHS slab:
• Read RHS slab into a buffer
• Read slab N into one of the other buffers
• Schedule the read of slab N-1 into the third buffer
• Compute partial lower solution with slab N
• Schedule the read of slab N-2 into the buffer space that 

slab N held
• Compute partial upper solution with slab N-1
• Repeat for all matrix slabs
• Write out the result and start reading in the next RHS 

slab
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LUD/Solve Algorithm Times

•For contested runs on a single MSP
• 133,000 complex unknowns

• 4 problems running concurrently on single MSPs
• 2.7 gigabytes of buffer memory
• 208 hours wall clock

• 77,500 complex unknowns
• 8 problems running concurrently on single MSPs
• 2.7 gigabytes of buffer memory
• 35 hours wall clock
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Slab LU Algorithm Comments

•Slab algorithm minimized disk writes to one 
per slab

•Slab algorithm provides almost optimal I/O 
for the LUD computation

•Slab algorithm requires double the I/O 
actually needed to solve against the RHS 
vectors



11

Slab Work in Progress

• Multi-MSP LU and Solve approaches 
minimize disk I/O by passing slabs 
between MSPs

– Two approaches for passing slabs 
between MSPs in evaluation

• Algorithms in work
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Block LU Algorithm

• Uses buffered Asynchronous I/O (AIO) and BLAS 
routines (CGEMM, CTRSM, CSCAL, CTRSV, 
CGEMV)
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Block Solve Algorithm

• Uses buffered (AIO) and BLAS routines (CGEMM, 
CTRSM)
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Comparison of I/O for Block 
and Slab Solvers
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Block LU Benchmarks
Total Run Time for Three Cases
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Scaling

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14
MSPs

S
in

gl
e 

M
S

P
 W

al
l T

im
e/

M
ul

tip
le

 M
S

P
 W

al
l T

im
e

36,864 unknowns
(324 total blocks)

61,440 unknowns
(900 total blocks)

122,880 
unknowns (3600
total blocks)
Ideal

36,864      10.9 GFLOPS !
61,440      11 GFLOPS !



17

N3 Scaling

y = Cx3
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Comparison of C I/O, AIO and 
Direct AIO for 36,864 Unknowns

When AIO is used to overlap I/O and computations, 
it is approximately 22% faster than using 
synchronous C I/O

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0 2 4 6 8 10 12 14

MSPs

W
al

l C
lo

ck
 T

im
e 

(h
ou

rs
)

Direct AIO (1296
total blocks)

Buffered AIO (1296
total blocks)

Buffered AIO (324
total blocks)



19

Changing the Block Size – 36,864 
Unknowns

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0 2 4 6 8 10 12 14

MSPs

W
al

l T
im

e 
(h

ou
rs

)

Small (1296 total blocks)
Medium (324 total blocks)
Large (81 total blocks)



20

Changing the Block Size – 122,880 
Unknowns
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Block Solve Benchmarks
36,864 Unknowns with 900 Right Hand Sides
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Problems
• Software

• I/O too small – fixed
• sync_file – fixed?
• AIO off node – fixed
• MPT problem - fixed
• 16 MB direct I/O limit – not fixed
• 50% of peak bandwidth – not fixed
• BPT errors – not fixed

• Hardware
• Like with any new architecture, AHPCRC’s X1 was 

down quite a bit early on (last spring/summer) some 
due to upgrades
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Back Up Slides
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Why Amount of I/O Decreases 
as Block Size Increases

• Number of I/O requests scales as 
• Total I/O = number of requests*block size
• 16 total blocks – 1 MB each

– Number of requests = 161.5 = 64
– Total I/O = 64*1 MB = 64 MB

• 4 total blocks – 4 MB each
– Number of requests = 41.5 = 8
– Total I/O = 8*4 MB = 32 MB
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