
M
a
n

ch
e
st

e
r

C
o

m
p

u
ti

n
g

S
u
p
er

co
m

p
u
ti
n
g
,

V
is

u
al

iz
at

io
n
 &

 e
S
ci

en
ce

Adrian Tate

X1 X1 ScaLAPACKScaLAPACK Optimization Optimization

Supercomputing, Visualization & eScience2

Contents

 ScaLAPACK
 The need for ScaLAPACK Optimization
 X1 problems
 CAF on X1
 Changes to BLACS
 Discussion of this approach
 CAF at a higher level
 Further optimizations

Supercomputing, Visualization & eScience3

ScaLAPACK

 Parallel Dense Linear Algebra Numerical Library

 No longer funded directly, but several vendors include as a component
of scientific library (Cray, SGI, Intel, IBM).

 Widely used in electro-magnetics, solid-state physics, astrophysics,
climate modelling and QCD.

 Other people involved in ScaLAPACK porting, optimization and support
within LibSci:
– Mary Beth Hribar

– John Lewis

– Jim Hoekstra (ISU)

– Chao Yang

 Approach - make whatever necessary alterations to ScaLAPACK to
achieve good performance on X1/X1E and BW

Supercomputing, Visualization & eScience4

Justification

 Distributed memory and distributed memory style programming models
remain popular and are expected to remain popular

 Major architectures are DSM
 Even on SMP like systems like p690, ScaLAPACK needed.
 X1 – ratio of computation to communication is too low.

– X1E processors will double, same network
– Future systems, ratio will return to X1 level

 Other systems – SGI Altix more biased towards processor speed, IBM
have no interconnect roadmap beyond Federation.

Supercomputing, Visualization & eScience5

Software structure

Supercomputing, Visualization & eScience6

Problems

 Can get lower latency, higher bandwidth than the current
MPI based comms layer gives.

 To integrate Fortran and C with MPI, many intermediate
routines are called, too many function calls.

 C/C ratio low

 Leads to bottlenecks on X1.

Supercomputing, Visualization & eScience7

Co-array Fortran

 First step in the optimisation is to make alterations to the
communications layer.

 Plan - to replace MPI with Co-array Fortran
– One sided transfer

– Lower latency

– Higher bandwidth

– No buffering

– No function call

 First point of this list is important in itself

Supercomputing, Visualization & eScience8

1 sided versus 2-sided.
blocked parallel transpose

Supercomputing, Visualization & eScience9

One sided vs 2-sided

Supercomputing, Visualization & eScience10

Very simple CAF code

temp(:,:) = transpose(a(:,:))

call sync_all

a(:,:)[partner] = temp(:,:)

call sync_all

Supercomputing, Visualization & eScience11

How to achieve a CAF ScaLAPACK

 We can directly replace MPI in BLACS layer

 Pass regular arrays into comms routine, use co-arrays
inside.

 Can achieve this using a co-array of derived type.
– Most powerful feature of CAF programming on X1

Supercomputing, Visualization & eScience12

Using pointers to access non-
symmetric memory

subroutine cafp (A, C, len , dest)
type caf
real, pointer, dimension (: , :) :: co
end type

real :: A(*),C(len)
type (caf) :: B[*]
integer :: len,dest

B%co => A(1 : len)

call sync_all()

B[dest]%co(1 : len) = C(1 : len)

end subroutine

subroutine nonsymtrans(A,m,n,iam,dest)

Real :: A(len), C(len) ,D(*)

Pointer(aptr,D)

Integer :: iam, dest

integer*8 :: flag

call shmem_pu64(flag, loc(A), 1 , dest)

call shmem_barrier_all()

aptr = flag

flag = 0

call shmem_put(D, C, len ,dest)

end subroutine

(LESS POWERFUL)

Supercomputing, Visualization & eScience13

Modifying BLACS

 Improvements can be made by extending the functionality
of BLACS

 pXswap routine, formally used a blacs point to point sends
and receives, now replaced with a routine that performs a
swap within single routine – less synchronization

 Used heavily in LU factorization

 Used CAF, with pointer method to make a CAF vector
swap BLACS routine.

Supercomputing, Visualization & eScience14

LU factorization

 Used heavily by ORNL, plus (probably) other sites.
 Shows poor performance in row pivoting area
 In addition to problems already mentioned, MPI packs and

unpacks non-contiguous data into contiguous buffers, this
is directly avoided in new routine.

 New BLACS CAF pivoting routine added to libsci

Supercomputing, Visualization & eScience15

LU performance

 0

 50

 100

 150

 200

 250

 2 4 6 8 10 12 14 16

LU
 fa

ct
or

iza
tio

n
tim

e
(s

ec
s)

No of MSPs

Cray X1
SGI Origin 3000

Supercomputing, Visualization & eScience16

1st level of Optimization

 5

 10

 15

 20

 25

 30

 35

 2 4 6 8 10 12 14 16

LU
 fa

ct
or

iz
at

io
n

tim
e

(s
ec

s)

No of MSPs

X1 with new BLACS pivots
X1 Original

Supercomputing, Visualization & eScience17

Blacs Broadcasts

 CAF Can give excellent performance for collective
communications

 In a broadcast, each processor can simultaneously get the
source data from the source processor.

 No memory or network contention due to intelligent
memory structure of X1.

 1st round of broadcasts came in 5.2, next set are coming
soon.

Supercomputing, Visualization & eScience18

Broadcast Algorithms – ring
broadcast

Supercomputing, Visualization & eScience19

Broadcast algorithms – 1-tree

Supercomputing, Visualization & eScience20

Broadcasts with one-sided

Supercomputing, Visualization & eScience21

Broadcasts with one-sided

Supercomputing, Visualization & eScience22

Direct Broadcasts

 Requires an intelligent memory system that can allow each
processor to make simultaneous copies.

 Also requires intelligent interconnect technology, since
there is potential for a bottleneck.

 Paul Burton, Bob Carruthers, Greg Fischer, Brian Johnson
and Robert Numrich Converting the Halo-Update
Subroutine in the MET Office Unified model to Co-array
Fortran, ECMWF World Scientific, January 2001.

 Expect to perform much better, especially at high process
counts (e.g 64 processors doing an ‘All’ broadcast’)

Supercomputing, Visualization & eScience23

Broadcast performance

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140

LU
 ti

m
e

Number of processors

20000 New bcast

20000

10000 New bcast

10000

5000 new bcast

5000

Supercomputing, Visualization & eScience24

Troubles

 Important information in the BLACS is stored in external C
structures that are not easily accessible from the new
Fortran90 routines.
– Needed to develop a mechanism for information sharing

– Needed to make several changes to Blacs grid initialization routines to
support this

– Fortran 2003 allows interoperability between C structures and Fortran
derived types

 Other problems held up bug fixes and prolonged
development.

Supercomputing, Visualization & eScience25

CAF ScaLAPACK

 This idea of having CAF inside communications routines
is not ideal
1) Much of BLACS code is made redundant

2) Higher function call count

3) Pointer method inefficiency (?)

4) Current PBLAS algorithms are written for 1-sided communications
– Consider the same blocked transpose, where we make direct, generic

replacements to BLACS.

Supercomputing, Visualization & eScience26

Transpose Example

Supercomputing, Visualization & eScience27

Optimised software structure

Co-array Fortran

Supercomputing, Visualization & eScience28

Proposed software structure

CAF

Supercomputing, Visualization & eScience29

Important Questions

 Is the pointer method actually less efficient than passing
co-arrays?

 Are there other reasons why we might want to change to
new structure?

Supercomputing, Visualization & eScience30

Important Questions

 Is the pointer method actually less efficient than passing
co-arrays?

Sometimes…

 Are there other reasons why we might want to change to
new structure?

Supercomputing, Visualization & eScience31

Important Questions

 Is the pointer method actually less efficient than passing
co-arrays?

Sometimes

 Are there other reasons why we might want to change to
new structure?

Maybe…

Supercomputing, Visualization & eScience32

Testing pointer method

 Test code – uses CAF to perform a series of blocked
transposes in three ways

 Case 1 = Co-array real argument and co-array dummy
argument

 Case 2 = Co-array pointer method

Supercomputing, Visualization & eScience33

Results of Pointer method test
16 MSPs

 0

 2e+008

 4e+008

 6e+008

 8e+008

 1e+009

 1.2e+009

 1.4e+009

 0 1e+006 2e+006 3e+006 4e+006 5e+006 6e+006 7e+006 8e+006 9e+006 1e+007

clo
ck

 c
yc

le
s

Vector Dimension

pointer

passed co-array

Supercomputing, Visualization & eScience34

Smaller vectors

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 1.4e+006

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

cl
oc

k
cy

cl
es

Vector Dimension

pointer

passed co-array

Supercomputing, Visualization & eScience35

Expense

 Is it not vector dimension being passed that is the problem,
but the number of array references being made.
– Referencing a pointer is slower than referencing an array directly.

– Repeated tests with number of references to data being constant.
• Pointer method was slower but at a constant rate

 Can deduce two things from this
– Each call to the pointer method involves some additional cost

• Cost of pointer assign

– Expense of using pointer method is related to number of array accesses

 In BLACS do we need to make many array references?
– Even though we are only transferring data, we make array references,

since we need to designate array sections (i.e. A(1: lda))

– Sometimes need to transpose

Supercomputing, Visualization & eScience36

Expense within BLACS

 Primarily though, these routines are for communication
only, and shouldn’t need to perform many operations.

 Unless block size is very big, it is unlikely that the overhead
is going to hurt too much.

 For 64x64 block size, if address of every 4096 array
elements had to be calculated individually, we don’t expect
a crippling loss of performance.

Supercomputing, Visualization & eScience37

Further Questions

 If we make higher level changes to make ScaLAPACK
arrays co-arrays, can we allow them to passed through the
PBLAS ‘unharmed’
– Theoretically, yes

– CAF interoperability will need to be improved before we can comfortably
achieve this.

 Should we just re-write PBLAS in UPC? (or in Fortran and
CAF?)
– Big job.

Supercomputing, Visualization & eScience38

Conclusions

 There is not sufficient overhead from pointer to warrant a
re-write of PBLAS layer,

 Also, the uncertainty in mixing with C, and amount of effort
in rewriting PBLAS.

 so for now, keep BLACS with imbedded CAF.

 We can still -
– replace all MPI calls, except those that are not likely to be within loops (grid

initialization etc).
– Look for areas where 2 sided pattern is being assumed and make changes

at PBLAS layer.
– Strip away redundant code and interfaces

Supercomputing, Visualization & eScience39

Additional Optimizations

 Optimal Blocking factors

 Effect of ScaLAPACK blocking factor on LAPACK blocking
factor and LDA.
– X1 gives varying performance for block sizes and leading dimensions for

BLAS

– we may want to remove the dependence of leading dimension on
distribution blocking factor

– Can we introduce a more dynamic system?

 Customer driven, routine specific optimisations.

 Address user interface.

 Parallel libraries in Cascade

