
The Cray X1 supports a variety of communication protocols including message passing, shared
memory, and remote memory access (RMA) put/get model. This paper uses the parallel dense matrix
multiplication as an example of a bandwidth-intensive computational kernel and discusses tradeoffs
associated with optimizing performance of this kernel using different shared memory communication
schemes. We show that the differences in the architectural support for shared memory communication
on the SGI Altix and Cray X1 call for different techniques for performance optimization of the parallel
matrix multiplication algorithm. Our findings indicate that explicit awareness of the task mapping to
exploit cacheability attributes of shared data plays an important role in optimizing performance of this
important kernel algorithm.

1. Introduction
The current architectures differ in several key aspects from those of the earlier massively parallel
processor (MPP) systems. Regardless of the processor architecture (e.g., commodity vector, or
commodity RISC, EPIC, CISC microprocessors), to improve the cost-effectiveness of the overall
system, both the high-end commercial designs and the commodity systems employ as a building block
Symmetric Multi-Processor (SMP) nodes connected with an interconnect network. All of these
architectures provide hardware support for load/store communication within the underlying SMP
nodes, and some extend the scope of that protocol to the entire machine (Cray X1, SGI Altix). The
focus of this paper is on determining how we can take advantage of hardware shared memory
communication to optimize performance of applications that have high bandwidth requirements and
exhibit spatial and temporal locality in data access. As an example, we use a parallel dense matrix
multiplication and, in particular, a shared memory version of SRUMMA [1], which on shared memory
machines represents a parallel version of the serial block-based algorithm in Figure 1. The parallel
version of SRUMMA has been implemented on shared memory systems such as SGI Altix and Cray
X1 by exploiting hardware support for globally accessible shared memory. However, the nonuniform
memory access (NUMA) costs of shared memory operations require special attention.

In the current effort, we found that cacheability of data stored in shared memory plays a fundamental
role in optimizing application performance on the two architectures, both relying on caches to
maximize serial processor performance. On the SGI Altix that provides systemwide cache-coherent
shared memory, direct shared memory access leads to the best performance. However, the Cray X1
with its ability to cache only shared memory data on the same SMP node required us to switch between
direct shared memory and shared memory copy protocols, depending on location of the data, to avoid
very significant performance degradation in direct access to remote memory that cannot be cached.
Thanks to the hardware support for shared memory communication, an efficient implementation of the
matrix multiplication is feasible. For example, in multiplication of square matrices 2000 x 2000, on
128 processors of the Cray X1 the baseline SRUMMA achieves 7.2 higher aggregate GFLOPs
performance level than ScaLAPACK pdgemm optimized by Cray. However, by exploiting differences

Exploiting Architectural Support for Shared Memory Communication on
the Cray X1 to Optimize Bandwidth-intensive Computations

Manojkumar Krishnan Jarek Nieplocha Vinod Tipparaju
Computational Sciences & Mathematics
Pacific Northwest National Laboratory

in cacheability attributes of the shared memory within and between SMP nodes, we have been able to
improve the performance even further. For example, for matrix size 600x600, an improvement of
18.2% was recorded on 16 CPUs and 15.2% on 64 CPUs relative to the baseline SRUMMA
implementation.

The paper is organized as follows. The Section 2 describes the SRUMMA algorithm, its efficiency
model, and implementation. In Section 3, we describe the shared memory implementation on the Cray
X1 and the SGI Altix systems. Section 4 analyzes performance results for the matrix multiplication
algorithm as a function of different communications schemes, and compares it to the pdgemm matrix
multiplication in PBBLAS/ScaLAPACK. Conclusions are given in Section 5.

2. Background
For many scientific applications, matrix multiplication is one of the most important linear algebra
operations. Computer vendors have optimized the standard serial matrix multiplication interface in the
open source Basic Linear Algebra Subroutines (BLAS) to deliver performance as close to the peak
processor performance as possible. Because the optimized matrix multiplication can be so efficient,
computational scientists, when feasible, attempt to reformulate the mathematical description of their
application in terms of matrix multiplications. Parallel matrix multiplication has been investigated
extensively in the last two decades [2-22]. Agarwal et al. [18] developed a matrix multiplication
algorithm that overlaps communication with computation. SUMMA [19] is closely related to
Agarwal’s approach, and is used in practice in pdgemm routine in PBLAS [20], which is one of the
fundamental building blocks of ScaLAPACK [21]. DIMMA [22] is related to SUMMA but uses a
different pipelined communication scheme for overlapping communication and computation. In the
earlier studies, researchers targeted their parallel implementations for MPP architectures with
uniprocessor computational nodes (e.g., Intel Touchstone Delta, Intel IPSC/860, nCUBE/2) on which
message passing performed very well and was typically the only communication protocol available. In
particular, these algorithms relied on optimized broadcasts or send-receive operations.

At the high level, SRUMMA (Shared and Remote-memory based Universal Matrix Multiplication
Algorithm) follows the serial block-based matrix multiplication (see Figure 1) by assuming the regular
block distribution of the matrices A, B, and C and adopting the “owner computes” rule with respect to
blocks of the matrix C. Each process accesses the appropriate blocks of the matrices A and B to
multiply them together with the result stored in the locally owned part of matrix C. The specific
protocol used to access non-local blocks varies depending on whether they are located in the same or
other shared memory domain [1] as the current processor.

1: for i=0 to s-1 {
2: for j=0 to s-1 {
3: Initialize all elements of Cij=0 (optional)
4: for k=0 to s-1 {
5: Cij = Cij + Aik×Bkj
6: }
7: }
8: }

Figure 1: Block matrix multiplication for matrices N × N and block size N/s × N/s

In principle, the overall sequence of block matrix multiplications can be similar to that in Cannon’s
algorithm. However, unlike Cannon’s algorithm, where skewed blocks of matrix A and B are shifted
using message-passing to the logically neighboring processors, our approach fetches these blocks
independently, as needed, without requiring any coordination with the processors that own the matrix
blocks. This is possible by the use of direct remote memory or shared memory access protocols. In
addition, the specific sequence in which the block matrix multiplications are executed is determined
dynamically at run time to more efficiently schedule and overlap communication with computations.
The absence of sender-receiver synchronization/coordination (such in Cannon’s algorithm) based on
message passing makes the overall algorithm more asynchronous and thus more suited for the
execution environments where the computational threads share a CPU with other processes and
system daemons (e.g., on SGI Altix and commodity clusters). This is because synchronization
amplifies performance degradations due to the nonexclusive use of the processor by the application.

2.1 Baseline Efficiency Model
Consider a matrix multiplication operation C = AB, where the order of matrices A, B, and C is m x k, k
x n, and m x n, respectively. Let us denote tw as the data transfer time per element, ts the latency (or
startup cost), p x q the process grid in two-dimensional fashion, and P as the number of processors.We
assume (as in [7, 30]) that the cost of the addition and multiplication floating point operation takes unit
time (line 5 in Figure 1). For our analysis, we assume a two-dimensional matrix distributed as shown
in Figure 2. The sequential time Tseq of the matrix multiplication algorithm is N3 (for simplicity,

m=n=k=N and p=q= P). The parallel time Tpar_rma is the sum of computation time and the time to
get the blocks of matrices A and B. Each process gets q blocks of matrix A and p blocks of matrix.
From [1],

 Tpar_rma = PstwtP

N
P

N
2

2
2

3
++ (1)

For a network with sufficient bandwidth, ts can be neglected when compared to the total
communication time. Therefore, the parallel efficiency (�) is

 � = Speedup/P �

wt
N

P2
1

1

+
 =

�
�

�

�

�
�

�

�
+

N
P

O1

1 (2)

The isoefficiency function of this algorithm is O (P3/2), which is the same as Cannon’s algorithm [7,
19].

= x

Figure 2: Matrix distribution example. In a 4 × 4 process grid, process P00 needs blocks of matrix A
from P00, P01, P02, and P03, and blocks of matrix B from P00, P10, P20, and P30.

P00 P03 P02 P01

 P10 P13 P12 P11

P20

P23 P22 P21

P30 P33 P32 P31

2.2 Details of the Parallel Algorithm
The following algorithm has been proposed in [1]. It assumes the underlying hardware is a cluster of
SMP nodes. We will discuss in Section 3 how the algorithm is modified for shared memory systems.

For each processor p and corresponding matrix block Cij held on that processor,

1. Build a list of tasks (where a task computes each of the AikBkj products) corresponding to the block

matrix multiplications in

 �
=

=
pn

k
kjikij BAC

1

 (3)

2. Reorder the task list according to the communication domains for processors at which the Aik, Bkj
are stored. The tasks that involve matrix blocks stored in the shared memory domain of the current
processor are moved to the beginning of the list. This is done to ensure overlap of computations
and nonblocking communication required to bring matrix blocks from other cluster nodes to
compute the other tasks on the list. Because the tasks at the beginning of the list use data accessible
directly, we do not have to wait to start the pipeline. Another consideration in sorting the task list is
to optimize the locality reference so that the currently held Aik matrix block is used in consecutive
matrix products before its copy is discarded and the corresponding buffer reused.

3. For each task on the list,

• Issue a nonblocking get operation for the matrix block involved in the next task on the list if it is
not on the same node.

• Wait for the nonblocking get operation bringing Aik and/or Bkj needed to execute the current task.
• Call serial matrix multiplication dgemm that computes AikBkj and adds the result to the Cij block.

4. Two temporary buffers (B1 and B2) are used internally, one for communication and one for
computation. At a given step, a processor receives data in B2 while computing the data in B1. In
the next step, data received in B2 is used for computation and B1 is used for receiving data.
Overlapping communication with computation is achieved in all steps except the first.

As a further refinement of the algorithm, the “diagonal shift” algorithm [1] is used in Step 2 to sort the
task list so that the communication pattern reduces the communication contention on clusters. We
verified experimentally on the IBM SP that this indeed improves performance.

3. Shared Memory Implementation
Although the high-performance implementations of message passing can exploit shared memory
internally, the performance is less competitive than direct loads and stores. Multiple studies have
attempted to exploit the OpenMP shared memory programming model in the parallel matrix
multiplication, either as a standalone approach on scalable shared memory systems [23, 24] or as a
hybrid OpenMP-MPI approach [25, 26] on SMP clusters. Overall, the reported experiences in
comparison to the pure MPI implementations were not encouraging. Unlike OpenMP, our approach is
based on using shared memory within the process model. The SRUMMA algorithm was designed to be
aware of the memory hierarchy in the system and take advantage of multiple communication methods.
On clusters, it uses remote memory access (RMA)—often the fastest communication protocol
available, especially when implemented in hardware as zero-copy remote direct memory access

(RDMA) write/read operations and shared memory with the SMP node. Each cluster node is assumed
to provide efficient load/store operations that allow direct access to the data. In other words, a node of
the cluster represents a shared memory communication domain. SRUMMA is explicitly aware of the
task mapping to shared memory domains—that is, it is written to use shared memory to access parts of
the matrix held on processors within the domain of which the given processor is a part, and other
mechanisms to access parts of the matrix outside of the local shared memory or RMA domain.
Implementing matrix multiplication directly on top of shared and remote memory access
communication and realizing the memory hierarchy helps us optimize the algorithm with a finer level
of control over data movement and hence achieve better performance.

The design and implementation of SRUMMA on X1 is based on the algorithm for scalable shared
memory systems. We will provide an overview of the Cray X1 and SGI Altix as the two shared
memory systems used in the current study and then describe details of the implementation.

3.1 Overview of the Cray X1 and SGI Altix
The Cray X1 combines the features of previous Cray vector systems and MPP systems into one
design. Like the Cray T90, the X1 has high memory bandwidth. Along the lines of the Cray T3E, the
X1 has a high-bandwidth, low-latency, scalable interconnect. The X1 design utilizes commodity
CMOS technology and incorporates nontraditional vector concepts like vector caches and
multistreaming processors. X1 addresses two of the major issues with large scale NUMA machines by
providing a scalable cache coherency protocol and a scalable address translation mechanism. The X1
uses hierarchical design for its processor, memory, and network. There are two level processor
hierarchies—MSP (multistreaming processor) and SSP (single-streaming processor). Each MSP is
composed of 4 SSPs (Figure 1). Each MSP is capable of 12.8 GFlop/sec for 64-bit operations. Each
SSP contains 32 vector registers holding 64 double-precision words and one two-way super-scalar unit
and can deliver 3.2 GFlop/sec. The SSP uses two clock frequencies, 800 MHz for the vector units and
400 MHz for the scalar unit. The four SSPs share a 2 MB “Ecache.” The “Ecache” is designed to fill
the gap between the bandwidth to main memory and the operation rate of vector units. Each X1
processor is designed to have more single-stride bandwidth than an NEC SX-6 processor. Each node
determines whether a memory reference is local to the node or whether the reference is to a memory
location on a remote node. Remote memory references are implemented through the network
interconnect; however, remote memory cannot be cached due to the memory coherency protocol. Each
node contains 32 network ports, and each port supports 1.6 GBps peak per direction. The Cray X1
runs the UNICOS/mp operating system. The UNICOS/mp operating system is based on the IRIX 6.5
operating system with Cray enhancements. It is designed to sustain the high-capacity, high-bandwidth
throughput provided by Cray X1 systems. A single UNICOS/mp kernel image runs on the entire
system or on each partition of the system. The Cray compilers automatically perform register
allocation, scheduling, vectorization, and multistreaming to give optimal performance. Compiler
vectorization provides loop-level parallelization of operations and uses the high-performance vector
processing hardware. Multistreaming code generation by the compiler permits tightly coupled
execution across the four SSPs of an MSP on a block of code.

The SGI Altix 3000 is a scalable cache-coherent shared memory system. It is based on the Intel's
Itanium 2 processors and nonuniform memory access (NUMA) design of the SGI's NUMAflex global
shared-memory architecture. The NUMAflex design permits modular packaging of CPU, memory,
I/O, graphics, and storage into components known as bricks. The bricks can then be combined and

configured into larger systems. Two Itanium processors share a common front-side bus and memory.
This constitutes a node in the SGI NUMA architecture: access to other memory (on another node) by
these processors has a higher latency, and lower bandwidth. Two such nodes are packaged together in
each computer brick. The network router uses dual-plane, fat-tree topology and deliver 6.4 GB/sec
bidirectional bandwidth per link. Each of the Itanium-2 processors has an on-die L3 cache with 6MB
memory.

3.2 Implementation
The SRUMMA algorithm when running on a system with one shared memory communication domain
reduces to shared memory version. However, this algorithm has two versions; the one used depends on
whether remote shared memory is locally cacheable or not. The Cray X1 with its partitioned shared
memory supports load/store operations for its entire memory. It can be visualized as a cluster with four
multistream processors (MSPs) on each node. A virtual memory address includes node number and

address within that node. The memory on other nodes can be accessed with the load/store operations;
however, it cannot be cached due to the memory coherency protocol [31]. Because the performance of
the serial matrix multiplication depends critically on the effective cache utilization, on the Cray X1 we
copy nonlocal blocks of matrices A and B to a local buffer before calling the serial matrix
multiplication.

On the other hand, the SGI Altix is a shared memory system where shared memory data can be cached.
Therefore, the matrix multiplication does not require explicit memory copies. Instead, the appropriate
blocks of matrix A and B are passed directly to the serial matrix multiplication subroutine. The node
interconnect in X1 is implicit, and loads and stores are extended to beyond a node. Even SHMEM and
MPI are implemented on top of loads and stores in the X1. The cache coherency protocol in X1 is
scalable but does not allow remote memory to be cached. This implies that every time remote data is

Figure 2: The X1 system: 4 multistreaming processors (MSPs) per node and structure of each MSP

 SSP SSP SSP

 0.5 MB
Cache

 0.5 MB
Cache

 0.5 MB
Cache

12.8 GF
(64 bit)

MSP

Local Routing Switches

Memory

I/O

Node
Interconnect
Network

12.8 GF
(64 bit)

MSP

12.8 GF
(64 bit)

MSP

12.8 GF
(64 bit)

MSP

0.5 MB
Cache

V V

S S

V V

S

V V

S

V V

needed, it has to be loaded over the network. Because the serial dgemm relies on blocking and reuse of
the data, direct access to noncacheable data is expected to be less efficient.

Hybrid Approach
To maximize performance on the Cray X1, we must distinguish between two types of shared memory
(SMP and off-SMP) at run time and use direct and copy-based protocols. The resulting hybrid
algorithm is shown in Figure 3. The implementation of this algorithm is fairly simple. However,
because the Cray does not provide an interface to query task mapping to the physical nodes, the most
challenging part was to determine dynamically at run-time task mapping to the SMP nodes of the
machine. In the current work, as a part of the initialization and setup we determine SMP node mapping
by analyzing the time each task requires to add a series of numbers located in shared memory
associated with other neighboring (in a logical sense) tasks. This scheme is sufficient, given the
current task mapping strategy used by Cray.

4. Experimental Results
The performance of SRUMMA on the SGI Altix is shown here to contrast the architectures. In the
current paper we implement and optimize SRUMMA on the Cray X1. The numerical experiments
were conducted on the Cray X1 at ORNL and SGI Altix 3000, shared-memory NUMA system with
128 1.5-GHz Intel Itanium-2 CPUs at PNNL. For the comparison, we used the pdgemm routine from
PBLAS/ScaLAPACK. The same dgemm (double precision serial matrix multiplication) routines from
a vendor-optimized math library (-lscs for Altix, -lsci for the X1) were used in all parallel algorithms.

4.1 Evaluation of direct access approach
We demonstrate performance of the two basic strategies—copy-based and direct access represented in
Figure 3. The SGI Altix is a shared memory system where shared memory data can be cached.
Therefore, the matrix multiplication does not require explicit memory copies. Instead, the appropriate
blocks of matrix A and B are passed, A comparison between these two schemes for C = ATB and C =

Figure 3: Hybrid algorithm on the Cray X1

�

�

� ��

�

�

� ��

 � ���

���	
������

��	��������

����	����

		������

���	
��������� ����

�����������	������

�������	���������

AB on these two platforms is illustrated in Figure 4. The SGI Altix uses 1.5-GHz Intel Itanium-2
processors rated at 6 GFLOP/s whereas the Cray X1 processor is rated at 12.8 GFLOP/s. As expected,
the copy-based version is faster than the direct access version on the Cray X1 and somewhat slower on
the SGI Altix (the gap between these two versions actually increases for larger processor counts on the
Altix).

4.2 Performance of baseline implementation
As shown in Figures 5 and 6, the baseline SRUMMA algorithm outperforms pdgemm and scales
better, on both shared memory systems, Cray X1 and SGI Altix. This is in part due to the benefit
shared memory communication offers on these architectures over message passing.

0

20

40

60

80

100

120

140

160

A
gg

re
ga

te
 G

FL
O

P
/s

Altix X1
ATB copy ATB direct AB copy AB direct

Figure 4: Matrix multiplication (N = 2000) performance on 16 processors using direct access and copy on
Altix and X1. AB denotes product of two matrices whereas ATB denote that transposed matrix A is multiplied
by matrix B.

N e w A lg o r i th m (S G I A ltix)

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

0 3 2 6 4 9 6 1 2 8
p r o c e s s o r s

G
F

L
O

P
/s

6 0 0

1 0 0 0

2 0 0 0

4 0 0 0

8 0 0 0

1 2 0 0 0

S c a L A P A C K (S GI A ltix)

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

0 3 2 6 4 9 6 1 2 8
p r o c e s s o r s

G
FL

O
P

/s

6 0 0

1 0 0 0

2 0 0 0

4 0 0 0

8 0 0 0

1 2 0 0 0

Figure 5: Performance of SRUMMA and pdgemm on the SGI Altix

4.3 Performance of hybrid protocol
To understand performance advantages of the hybrid protocol, we ran matrix multiplication tests and
varied the matrix size and the number of processors (see Figure 7). As expected, the impact of using
hybrid protocol is larger for smaller matrices where the communication cost is higher relative to the
cost of computations. For example, the hybrid protocol on N = 600 improved performance by as much
as 18.2% relative to the baseline SRUMMA implementation.

4. Summary and Conclusions
This paper describes the advantages of using memory/cache hierarchy in bandwidth-intensive
computational kernels with parallel matrix multiplication algorithm used as an example. Unlike the
other leading parallel algorithms based on message passing, the current approach exploits shared
memory. Overall, the algorithm achieved consistent and substantial performance gains over the
parallel matrix multiplication in ScaLAPACK. We found that the differences in the architectural

New Algorithm (Cray X1)

0

200

400

600

800

1000

1200

1400

0 32 64 96 128
processors

G
F

L
O

P
/s

600

1000

2000

4000

8000

12000

ScaLAPACK (Cray X1)

0

200

400

600

800

1000

1200

1400

0 32 64 96 128
processors

G
FL

O
P

/s

600

1000

2000

4000

8000

12000

Figure 6: Performance of SRUMMA and pdgemm on the Cray X1

0

40

80

120

160

200

0 16 32 48 64 80

 P ro cesso rs

A
g

g
re

g
at

e
G

F
L

O
P

s

hybrid

baseline
pdgemm

0

100

200

300

400

500

600

0 16 32 48 64 80

 P r oc e ssor s

A
g

g
re

g
at

e
G

F
L

O
P

s

hybrid

baseline

pdgemm

Figure 7: Performance of baseline SRUMMA and hybrid version and pdgemm on the Cray X1for matrix
sizes N = 600 (left) and 2000 (right)

support for shared memory communication on the SGI Altix and Cray X1 require different
communication strategies to maximize performance of the parallel matrix multiplication algorithm.
Our findings indicate that explicit awareness of the task mapping to exploit cacheability attributes of
shared data plays an important role in optimizing performance of this important kernel algorithm.
They should also apply to other algorithms that have similar characteristics in terms of bandwidth
requirements and locality of reference.

Acknowledgments
This work was performed under the auspices of the U.S. Department of Energy (DOE) at Pacific
Northwest National Laboratory (PNNL).It was supported by the DoE-2000 ACTS project, Center for
Programming Models for Scalable Parallel Computing, both sponsored by the Mathematical,
Information, and Computational Science Division of the DOE Office of Computational and
Technology Research, and the Environmental Molecular Sciences Laboratory. PNNL is operated by
Battelle for DOE under Contract DE-AC06-76RL01830.

References
[1] M. Krishnan, J. Nieplocha, ”SRUMMA: A Matrix Multiplication Algorithm Suitable for Clusters

and Scalable Shared Memory Systems”, in IPDPS’2004.
[2] L. E. Cannon, “A cellular computer to implement the Kalman Filter Algorithm”, Ph.D.

dissertation, Montana State University, 1969.
[3] G. C. Fox, S. W. Otto, and A. J. G. Hey, “Matrix algorithms on a hypercube I: Matrix

multiplication”, Parallel Computing, vol. 4, pp. 17-31. 1987.
[4] G. C. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, Solving Problems on

Concurrent Processors. vol. 1, Prentice Hall, 1988.
[5] G.H. Golub, C.H Van Loan. Matrix Computations. Johns Hopkins University Press, 1989.
[6] J. Berntsen, “Communication efficient matrix multiplication on hypercubes:, Parallel Computing,

vol. 12, 1989.
[7] A. Gupta and V. Kumar, “Scalability of Parallel Algorithms for Matrix Multiplication”, Proc

.Parallel Processing,’93.
[8] C. Lin and L.Snyder, “A matrix product algorithm and its comparative performance on

hypercubes”, in SHPCC, 1992.
[9] Q. Luo and J. Drake, "A Scalable Parallel Strassen's Matrix Multiply Algorithm for Distributed

Memory Computers", http://citeseer.nj.nec.com/517382.html
[10] S. Huss-Lederman, E. M. Jacobson, and A. Tsao, "Comparison of Scalable Parallel Matrix

Multiplication Libraries",Proc. Scalable Parallel Libraries Conference’94.
[11] C. T. Ho, S. L. Johnsson, A. Edelman, Matrix multiplication on hypercubes using full bandwidth

and constant storage, Proc.of Distributed Memory Computing Conference. 1991.
[12] H. Gupta and P. Sadayappan, “Communication Efficient Matrix Multiplication on Hypercubes”,

in Proc. of ACM Symposium on Parallel Algorithms and Architectures, 1994.
[13] J. Li, A. Skjellum, and R. D. Falgout, “A Poly-Algorithm for Parallel Dense Matrix

Multiplication on Two-Dimensional Process Grid Topologies,” Concurrency, Practice and
Experience, vol. 9(5),’97.

[14] E. Dekel, D. Nassimi, and S. Sahni, “Parallel matrix and graph algorithms”, SIAM Journal on
Computing’81. vol.10.

[15] S. Ranka and S. Sahni. Hypercube Algorithms for Image Processing and Pattern Recognition,
1990.

[16] J. Choi, J. Dongarra, and D. W. Walker, “PUMMA: Parallel Universal Matrix Multiplication
Algorithms on distributed memory concurrent computers,” Concurrency:,Practice and
Experience, vol. 6(7),‘94.

[17] S. Huss-Lederman, E. Jacobson, A. Tsao, and G. Zhang, “Matrix Multiplication on the Intel
Touchstone DELTA”, Concurrency: Practice and Experience, vol. 6 (7). 1994.

[18] R. C. Agarwal, F. Gustavson, and M. Zubair, “A high performance matrix multiplication
algorithm on a distributed memory parallel computer using overlapped communication,” IBM J.
of Research and Development ’94.

[19] R. van de Geijn, R. J. Watts, “SUMMA: Scalable Universal Matrix Multiplication Algorithm”
Concurrency: Practice and Experience, vol.9(4),’97.

[20] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and, R. C. Whaley, “A Proposal for a
Set of Parallel Basic Linear Algebra Subprograms”, University of Tennessee, Knoxville, Tech.
Rep. CS-95-292, May 1995.

[21] L. S. Blackford et. al., ScaLAPACK Users' Guide, Society for Industrial and Applied
Mathematics, 1997.

[22] J. Choi, “A Fast Scalable Universal Matrix Multiplication Algorithm on Distributed-Memory
Concurrent Computers”, in Proc. of IPPS, 1997.

[23] C. Addison and Y. Ren, “OpenMP Issues Arising in the Development of Parallel BLAS and
LAPACK libraries”, in Proceedings EWOMP’01. 2001.

[24] G.R. Luecke, W. Lin, “Scalability and Performance of OpenMP and MPI on a 128-Processor SGI
Origin 2000”, Concurrency and Computation: Practice and Experience, vol. 13, pp 905-928.
2001.

[25] M. Wu, S. Aluru, and R. A. Kendall, “Mixed Mode Matrix Multiplication”, in Proc. IEEE
CLUSTER’02.

[26] T. Betcke, “Performance analysis of various parallelization methods for BLAS3 routines on
cluster architectures”, John von Neumann-Instituts Computing, Tech. Rep. FZJ-ZAM-IB-2000-
15, 2000.

[27] J. L. Träff, H. Ritzdorf, R. Hempel “The Implementation of MPI-2 One-Sided Communication
for the NEC SX-5”, Proc. SC, 2000.

[28] J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D. K. Panda, “High Performance RDMA-Based MPI
Implementation over InfiniBand” in ACM ICS, 2003.

[29] J. Nieplocha, V. Tipparaju, M. Krishnan, G. Santhanaraman, and D.K. Panda,” Optimizing
Mechanisms for Latency Tolerance in Remote Memory Access Communication on Clusters”,
IEEE Cluster Computing’03.

[30] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to Parallel Computing, 2003.
[31] Cray Online documentation. Optimizing Applications on the Cray X1TM System.

http://www.cray.com/craydoc/20/manuals/S-2315-50/html-S-2315-50/S-2315-50-toc.html
[32] J. Nieplocha, B. Carpenter, ARMCI: A Portable Remote Memory Copy Library for Distributed

Array Libraries and Compiler Run-time Systems, Proc. RTSPP IPPS/SDP 1999.
[33] ARMCI.http://www.emsl.pnl.gov/docs/parsoft/armci
[34] ORNL Evaluation of Early Systems Webpage. http://www.csm.ornl.gov/evaluation
[35] ORNL Tom Dunigan’s Evaluation of Early Systems Webpage.

http://www.csm.ornl.gov/~dunigan/
[36] SGI Altix family of servers and super clusters http://www.sgi.com/servers/altix/

