
Optimization of the Selected Quantum Codes on the Cray X1

L. Bolikowski, F. Rakowski, K. Wawruch,
M. Politowski, A. Kindziuk, W. Rudnicki,

P. Bala, M. Niezgodka

June 30, 2004

Abstract

In this paper we present optimization of the selected Quantum Chemistry applications on Cray X1,
and performance of selected bioinformatic code created from scratch for Cray X1. In particular we have
optimized some density functional – molecular dynamics codes used for the investigation of the properties
of molecular and biomolecular systems, and Smith-Waterman algorithm with appropriate filter.

1 Introduction

ICM is Interdisciplinary Centre for Mathematical and Computational Modeling, located at Warsaw Univer-
sity in Poland. To serve its purpose for the scientists using our supercomputers, ICM has worked on porting
and optimizing selected Quantum Chemistry applications on Cray X1.

The applications we have selected for development are:

• DFTB – Dense Functional – Tight Binding Method code;

• VASP – Vienna Ab-Initio Simulation Package;

• GROMOS – molecular dynamics code;

• CHARMM – Chemistry at Harvard Macromolecular Mechanics, a program for macromolecular en-
ergy, minimization and dynamics calculation;

• GAMESS – General Atomic and Molecular Electronic Structure System, ab-initio package;

• SIESTA – Spanish Initiative for Electronic Simulations with Thousands of Atoms, ab-initio package.

ICM, in addition to porting and optimizing existing code, performs in-house development of new bioin-
formatic codes. The software created form a scratch at ICM is Smith-Waterman algorithm implementation
with appropriate filters, for protein sequences.

Due to different priorities and complication level of the codes we have worked on, we may assign the
following statuses to the applications:

1

Package Status Description
DFTB Production,

some development
Good MSP performance.
Multistreaming optimizations and SSP version in development.

VASP Production,
some development

Very good SSP performance.
Multistreaming and parallel optimizations in development.

GROMOS Ported,
partially optimized

Reasonable SSP performance.
SSP, MSP and parallel optimizations in development.

GAMESS Ported,
partially optimized

Poor performance.
Vectorization partially completed.

SIESTA Ported,
partially optimized

Poor performance.
Vectorization partially completed.

CHARMM Ported,
not optimized

Very poor performance.
Profound code modifications required for vectorization.

2 DFTB

The very first code ported and optimized for Cray X1 by ICM development team is DFTB, Density Functional
– Tight Binding Method code. The DFTB code is written in Fortran, by prof Th. Frauenchaim on University
of Paderborn. It serves for the approximate quantum calculations. This is the very fast quantum potential
generator which do not calculate the Hamilton and Overlap matrix elements at each step of the SCF cycle,
but the convergence is reached on the level of Mullikan Charges.

The model system for test calculations was an active site of PKA kinase, consisted of about 400 atoms.
The single point energy calculations were performed, and the convergence was reached after 20 SCF cycles.

The performance results of the DFTB code on Cray X1 were compared to the single-CPU results of PC
with Intel Pentium IV 2.66 GHz. The shortest user time achieved was 619s.

The straightforward recompilation (MSP mode) lead to very poor performance on Cray X1. The user ex-
ecution time (97% of elapsed time), 471s, was not competitive to the standard PC computers, though floating
point performance, 336Mflops, suggested wide area for improvements (the theoretical peak of 12.8Gflops).

The profiling of the straightforwardly compiled DFTB show, that atomenerg procedure utilizes 82% of
computation time.

The vectorization and multistreaming of the code allowed to reduce the user execution time to 48s, with
total one MSP performance of 3213Mflops. In comparison to the unoptimized code, the execution time was
reduced ten times and gave results 15 times better than on reference PC. The improvement was obtained by
the redesign of the loop in the atomenerg procedure. All loops were redesigned to longer vector length and
to provide better data alignment for memory access.

After further profiling it turned out, that all procedures that utilize more than 4% of the calculation time
are Linear Algebra procedures, already optimized for Cray.

We are planning to release SSP version of the code, and further work to improve multistreaming, as we
are achieving 25% of the peak performance.

3 VASP

VASP, Vienna Ab-Initio Simulation Package, provides ab-initio quantum-mechanical molecular dynamics
simulation tools. It is developed at Vienna University in Fortran 77 with MPI parallel extensions.

The standard VASP package is ported to Cray C90/J90 vector supercomputers and initially did not
compile on Cray X1. After porting the code to Cray X1 and obtaining working executables, it turned out
that performance is significantly lower than on reference PC (Intel Pentium IV 2.66GHz).

2

The optimization of the code involved loops’ redesign to allow vectorization (removing data dependencies
though profound changes of loops’ structure), to allow longer vector length and to provide better data
alignment for memory access. VASP does not have well defined computational kernel: depending on the
kind of test and options used, the computation time is scattered through many procedures.

After vectorization, we have obtained performance on one SSP processor from 800Mflops to 1582Mflops
on real life tests, that is from 25% to 50% of the SSP peak performance. The MSP speedup, in comparison
to SSP performance, ranges from 20% to 150%, depending on the parts of the code used by the test, as
we have not completed multistreaming of some parts of the code. The predicted speedup after completing
multistreaming is 3 times the SSP performance.

The parallel scalability with MPI communication library is quite poor. On 2 SSP processors average
speedup is 1.71x (ranging from 1.66x to 1.98x), on 4 SSP processors – 2.60x (ranging from 1.60x to 3.38x),
and breaking down on more than 4 SSP processors.

We are going to rewrite communication to Co-Array Fortran to reduce communication overhead to
improve, as the result, scalability, and to enable scaling above 4 SSP processors.

4 GROMOS

The GROMOS is well know molecular dynamics package for biomolecular systems. The code is written in
FORTRAN 77.

The most time consuming part of the ode is evaluation of the nonbonded interactions between atom pairs.
In order to reduce computational effort, the GROMOS uses pair-list technique, eg. the list of interacting
pairs is evaluated and than used for evaluation of the forces instead of looping over all atom pairs in each
time step.

The pair-list is evaluated less frequent than forces (usually every 10th time-step). We have performed
500 time steps for 55000 atoms system.

Vector Code

The vector version of the nonbonder routines exists and have been used on Cray Y-MP. This version has
been compiled and evaluated. Since the code is relatively old, the ISRCHEQ was used from the GROMOS
library.

The SSP code, after vectorization, achieved performance of 531Mflops (99.21% of the vector operations)
and average vector length of 46. The MSP executable achieved performance of 636Mflops (99.11% of the
vector operations) and average vector length of 31, as the development already done do not include multi-
streaming optimization.

Parallel Code

We have used parallel version of the code, parallelized by the distribution of the calculation of the non-
bonded forces and pair list generation. The parallel version has been developed by P. Bala and T. W. Clark
using PFortran and Co-Array Fortran languages. In particular, Co-Array Fortran version has been used on
X1.

The scalability of the parallel code is summarized in the table below. The test consisted of 500 steps.

of SSP Elapsed time [s] Ratio
1 799.299 1.0
2 498.299 1.6
4 320.413 2.5
8 235.492 3.4

3

Performed parallelization can be improved by significant changes of the code, like implementation of
domain decomposition instead of force decomposition.

The second issue is single node performance. The MD codes do not fit well to the vector architecture
because most of the work is performed in short loops. 74% of the time is spent for calculation of nonbonded
forces, and 12% for SHAKE subroutine.

The scalar/vector code performance requires further improvements. The code is reasonably well vector-
ized (95% of vector operations), though the overall performance is low due to short loops and low vector
load (26). The performance achieved is 147Mflops.

Unfortunately there is no single computational kernel, the computations time is distributed over large
number of code lines located in the different loops. Further improvement of the performance requires
significant changes in the code. The short loops cannot be removed by the simple code rearrangements,
the changes in the algorithm used for evaluation of nonbonded forces must be applied.

Much better performance of the vector code suggests attempt to use it also in parallel version, but this
requires some work.

5 GAMESS

GAMESS, General Atomic and Molecular Electronic Structure System, is an ab-initio quantum chemistry
package developed by Gordon Research Group at Iowa State University.

The code is written in Fortran 77. After porting and some optimizations, we have achieved performance
of 3-10% of peak SSP processor performance (the results for MSP processors were worse). As the code is
very large, it was not yet fully vectorized. The current performance results of some real-life tests on single
SSP processor are presented in the following table:

Test name Performance Description
[Mflops]

exam22 240.547 UHF + UMP2 gradient
exam12 76.705 Closed shell DFT geometry optimization
exam32 366.249 Coupled cluster test
exam31 160.004 PCM test case

The performance of some artificial tests, utilizing best-vectorized parts of code, achieve over 1500Mflops
on single SSP processor. It should be possible to optimize the code to achieve approximately 25% of peak
performance, though it requires substantial amount of work.

The MSP version of the executable will be developed after completing vectorization.

6 SIESTA

SIESTA, Spanish Initiative for Electronic Simulations with Thousands of Atoms, ab-initio quantum chemistry
package, is written in Fortran 90 with parallel version using MPI library.

After porting and removing bugs that caused numerical errors, we have obtained single SSP processor
performance of 7-15% of peak. We are focusing now on improving vectorization of the code. After completing
it, we will work on MSP version of the executables. We are going to investigate, if the parallel communication
should be rewritten in Co-Array Fortran to improve scalability.

4

7 CHARMM

CHARMM, Chemistry at Harvard Macromolecular Mechanics, a program for macromolecular simulations,
including energy minimization, molecular dynamics and Monte Carlo simulations, is a huge Fortran 77 code
with parallel communication provided by the MPI library.

The version we have ported to X1 is CHARMM c29b1. We have created SSP binaries that works with
some sample tests, though with poor performance (less than 100Mflops) and with some numerical errors on
some tests.

The main problem with vectorizing CHARMM is that it includes multiple hardly vectorizable loop
elements, like function calls and conditional expressions. The CHARMM code includes some vector elements,
though they are outdated and sometimes intruded by some scalar additions.

We are focusing now on checking, what CHARMM functionality is not used by most of the users. We
will remove corresponding parts of the code to simplify the whole code logical structure, and then we will
vectorize the remaining part.

8 Smith-Waterman Algorithm Implementation

One of the scientific projects at ICM requires clustering of whole known sequence database (over 2 million
sequences) to speed up searching the database and to find biologically significant similarities.

To achieve it, we have to create code that would be able to search through whole database in less than
1 hour on 1 SSP processor for average reference sequence.

Due to some biological reasons, we have decided to use Smith-Waterman algorithm. We are able to
process 25M cells per second on 1 SSP (on the fastest PCs we can obtain performance of up to 7M cells per
second).

As such processing speed does not allow us to reach our goal, we have developed filter that decreases
the number of sequences that are analyzed by Smith-Waterman algorithm by the factor of 10. The filter,
depending on the parameters, processes 80M to 160M cells per second on 1 SSP (on PC, up to 20M cells
per second). We are able to achieve such processing speed thanks to Bit Matrix Multiply unit usage.

9 Summary

After working on multiple scientific codes on Cray X1, we may draw some final conclusions.

64 bits are still a problem

Most of the codes causes some problems when compiling in 64-bit mode. 32-bit mode on Cray X1 is great
advantage to enable fast application porting. The fact of application’s existence on any 64-bit platform does
not imply, that it does not cause problems – differences in variable types’ length between 64-bit architectures
may allow some deeply hidden bugs to be emerging on Cray X1.

Cray to IEEE floating point transition is a problem

Changing of the numeric format for floating point numbers from Cray proprietary to the IEEE standard
may cause problems. Many codes include special vectorized code variants, that are written for Cray PVP
supercomputers. Such code may take advantage of Cray numeric format, leading to numeric errors after
porting to Cray X1. Modifying such code may be difficult, as it usually is extremely optimized using some
tricks and not documented or commented. Switching to scalar code variant is not acceptable solution, as
causes significant performance decrease.

3 levels of parallelism are complicated

5

The three parallelism levels (inside MSP, inter-MSP, inter-node) require bigger programmer’s knowledge,
caution and experience, though enable creating cutting-edge optimal applications for Cray X1.

High sustained performance

As we have shown on examples in this article, it is possible to optimize existing scientific codes on Cray
X1 to achieve 25-50% of peak performance on real-life jobs, with opportunities to achieve more than 50%
after more optimization efforts.

6

	Introduction
	DFTB
	VASP
	GROMOS
	GAMESS
	SIESTA
	CHARMM
	Smith-Waterman Algorithm Implementation
	Summary

