
 page 1

HPCC Optimizations and Results for the Cray X1
Nathan Wichmann Cray Inc.

May 14, 2004

ABSTRACT: A new benchmark call HPCC has recently been
proposed to evaluate High Performance systems. This paper
discusses the porting of this new benchmark, what optimizations
have been made so far and plans for future optimizations. Results
are shown for both Cray and other machines. Finally, the
presentation concludes by comparing the CrayX1 to the
competition using HPCC.

Introduction:

HPCC is a recently introduced benchmark sponsored by DARPA and the Department of
Energy consisting of six tests that are meant to characterizes the performance of HPC
architectures using kernels with more challenging memory access patterns than
LINPACK with the results posted to a web site. HPCC is a single program written in C
which can easily be downloaded and ran on virtually any platform. Anyone submitting
results must first submit a “base” or AS IS run and then a run that includes optimizations.
It is intended that this benchmark will become part of numerous HPC proposals in the
future.

The six main tests are as follows:
HPL – A LINPACK solver
PTRANS - Performs a global transpose of a matrix then adds it to another matrix
STREAM - Pure stride-1 memory bandwidth test
RandomAccess - The DARPA GUPs benchmark. Does a large, random table update.
They have both a single cpu version and an MPI version.
MPI latency tests
MPI bandwidth test
Additional details can be found at: http://icl.cs.utk.edu/hpcc/ .

HPCC is really more than just the six tests, since some of these tests are run in up to eight
different ways, such as with the STREAM case, and the results being reported for these
tests also vary. At the moment, some of the statistics gathered by these benchmarks are
quoted as single CPU numbers, some are “per” CPU numbers, while others are total
system numbers. As a result the interpretation of these results may initially be confusing
to some people. This paper will first review each test in greater detail and then present
results and comparison with other platforms.

 page 2

HPL:

The HPL test is basically another version of the LINPACK solver. However, it differs
from the LINPACK used for TOP500 numbers in several key ways. This version is
already a complete package that is built using MPI as its method of communication while
the numbers that Cray submits for the TOP500 list were created using special purpose
software which uses SHMEM and contains other optimization. While these
optimizations were legal under the TOP500 rules, it does not seem possible with HPL
and HPCC. This means that we cannot (easily) match the performance as reported in the
TOP500 list. For example, in HPCC runs I have observed per MSP performance in the
range of ~9.5 Gflops/MSP while in the TOP500 list we report numbers in excess of 11
Gflops/MSP. There have been no optimizations made to HPL so far except for choosing
the best tuning parameters. Nonetheless, HPL scales well because there is little
communication relative to the amount of computation.

Results for HPL for selected machines are shown below:

PTRANS:

The PTRANS test is a relatively complex set of routines that creates two matrices, A and
C, distributed over all the processors in a block-block layout, and then performs the
computation: C=C+beta* transpose(A). It is the communication associated with the
transpose of A that is suppose to stress the system, although there are other parts of the
test that do local copies that take some time as well.

The transpose of A is done by copying blocks of A to a temp array, communicate that
temp space using a routine called Cblacs_dSendrecv, and then copys it back into a usable
format.

The performance of PTRANS is very chaotic and varies depending on problem size,
blocking factor, the number of CPUs, the layout of the grid of CPUs in PTRANS, and
perhaps even the order in which the tests are run! Performance can easily vary by 50% or
more, and sometimes performance "falls off a cliff" by a factor of 10. To date I have no
explanations why this is happening but it seems clear this is NOT a random effect, as the

0.90 IBM Power4- 504

0.62 HP DEC Alpha- 484

0.05 Cray T3E- 1024

1.03 Linux Networx- 256

1.18 Cray X1- 124

2.36 Cray X1- 252

HPL- Tflops Machine Name- # CPUS

 page 3

results are repeatable from one run to the next, nor does it seem to be hardware related.
At this time members of our libraries group are examining performance to see what can
be done.

 Results for PTRANS for selected machines are shown below:

As you can see, even with chaotic performance the Cray X1 is far superior to anything
else on the list. A 252 MSP Cray X1 is between 20 and 30 times faster than the cluster
based machines listed here. While observed performance will vary on different clusters
and configurations, it will not change the conclusion that the Cray X1 has more than 1
order of magnitude more network bandwidth than most other machines on the market.

STREAM:

There are a total of 8 STREAM runs, four of them are the "normal" single CPU
STREAM runs of Copy, Add, Scale, and Triad. For the single CPU runs the program
picks a processor at random, but not processor 0, and runs the STREAM benchmark
while every other processor is sitting on a wait statement. The other four tests are equally
interesting, they are what they call "* " or "Star" runs. For these runs, the processors are
synchronized once at a very high level, and then all processors run the STREAM
benchmarks "simultaneously". The numbers are still reported as a per CPU number. A
comparison between the single CPU number and the * number is a good indication of
what happens when you load up the system.

While the single verses Star comparison is very enlightening, an aggregate STREAM
number is probably better for compare platforms. While this is basically embarrassingly
parallel and uses ZERO interconnect bandwidth, it still will show off systems with high
local memory bandwidth. The likes of IBM, XEON clusters, and anyone that packs in
the CPUs compared to memory bandwidth will still be at a disadvantage.

5.00 IBM Power4- 504

3.74 HP DEC Alpha- 484

10.3 Cray T3E- 1024

3.11 Linux Networx- 256

39.4 Cray X1- 124

96.1 Cray X1- 252

GB/s Machine Name- # CPUS

 page 4

Results for STREAM for selected machines are shown below:

There are a few observations that can be made from this chart. First is that the Cray X1
has more than an order of magnitude more bandwidth per cpu than the competition, a
feature which is critical in the performance of many applications. Second is that the
Linux Network XEON cluster take a massive hit in per cpu performance when the
machine is loaded up, a good indication that observed sustained performance in a
production environment will be much lower than implied by something like HPL.
Finally, we see that the Aggregate Bandwidth of the Cray X1 is far superior to anything
else, where 252 MSPs is more than 6 times as powerful as 504 POWER4s and more than
25 times as powerful a the Linux Cluster. This is in stark contrast to the HPL number
which shown only a factor of 2 between the Cray and those machines.

There were two optimizations done to improve performance. The first optimization was
to align the arrays to cache line boundaries so that the edges of vector loads and stores
would not see bank conflicts as they shared a cache line. The other optimization was to
add a no_cache_alloc directive so that the data for A, B and C would not be cached and
the memory transfers would happen more efficiently. The result was a 50% improvement
in performance.

RandomAccess:

There are three tests in RandomAccess. The first version is a single CPU table update,
the second runs the single cpu version simultaneously on all processors while the third
version solves a much larger single problem using all processors.

The basic kernel is relatively simple, even if its performance characteristics are not.
Basically the kernel uses a random number generator to generate an index into a large
Table and much smaller substitution table, or STable. The values in those two tables are
loaded and then XOR’d together and the result is store back into Table. The kernel itself
is a double nested loop where the inner loop has had it random number sequence
initialized for STRIPSIZE different starting points. Performance is measured in GUPs, or
“Giga UPdates per second”, a unit which is relatively unique to this benchmark.

0.77

1.71

1.38

0.51

21.7

21.7

Star CPU
GB/s

1.64

1.99

1.66

0.51

24.0

24.0

Single CPU
GB/s

864 IBM Power4- 504

672 HP DEC Alpha- 484

529 Cray T3E- 1024

198 Linux Networx- 256

2697 Cray X1- 124

5478 Cray X1- 252

Aggregate GB/s Machine Name- # CPUS

 page 5

One unusual characteristic is that the kernel allows one to run the inner loop in parallel,
even though there are potential conflicts and one can get some of the answers wrong. As
long as the error rate is less than 1% of the total table the run is considered to be valid. It
turns out that since the size of the Table is so large this is very easy to achieve even for
highly parallel implementations.

The base version performs poorly only because the authors commented out the “pragma
ivdep” that was on the inner loop, inhibiting clean vectorization and streaming.
Increasing the STRIPSIZE to 1024 and adding a “pragma concurrent” directive on the
inner loop easily optimized the kernel. This allows the compiler to vectorize and stream
the loop and sustain about 0.2 GUPS/MSP.

For the Global RandomAccess test case the problem being solved remains the same, but
the size and algorithm used to solve it differs substantially. The base version uses an
algorithm that first sorts the updates into different buckets for different CPUs, sends those
buckets around the machine through a huge mpi_alltoall, and then uses the information in
the buckets to do a final, local update of Table. Furthermore, since this problem is only
defined to work on a power of 2 Tablesize but we want to run on non-power of 2 CPUs,
an if test, integer divide, and an integer mod are required to calculate the “Whichpe” and
the “LocalOffset” , all done in scalar mode on the Cray X1. All together this makes for a
very slow implementation indeed.

Two different avenues were taken to optimize Global RandomAccess: First is to
optimized the operations but still use the MPI based algorithm, second is the change the
code to use Unified Parallel C.

To optimize the MPI version, three basic changes were implemented. First Table was
redistributed in a manner which allow the critical if statement to be removed, leaving
only loop invariant if’s inside the loop, which the compiler could easily optimize away.
Second, it was realized that both the numerator and the denominator of the integer divide
were less than 52 bits in size, this means that they could both be cast to floating point
values and the operation could be done using the much faster floating point divide.
Furthermore, since the denominator is a constant, the compiler was able to take this new
code and turn it into a multiple by reciprocal, further increasing performance. The third
optimization made was to implement multiple buckets for every cpu and vectorizing
across these “extra buckets” . The optimization is very similar to vectorization in the
single cpu version and the performance improvement is substantial. All of the optimized
numbers submitted to the HPCC website contain this optimized kernel.

 page 6

Results for STREAM for selected machines are shown below:

As you can see, while the Cray X1 numbers are better than anyone else, performance in
terms of GUPs. Large machine allows one to solve large problems, but GUPs rate does
not improve as quickly. Indeed, a 32 MSP system already achieves 1 GUP. The poor
scaling is no doubt a result of the algorithm used to solve the problem, that is a bin sort
followed by a AlltoAll, followed by the actually updates. This does not overlap
communication and computation and requires many synchronizations and as a result is
likely suffering from load imbalance problems.

The second avenue of optimization was to replace the MPI algorithm with one based on
UPC. While the MPI version works, it has a number of disadvantages. First is that it
breaks the code into three separate sections, in a way tripling the amount of work that
needs to be done. Second it does a very large alltoall, which is very network intensive
and does not overlap with any operations. Third is that the alltoall must be done any time
that one of the buckets is full, this makes for many, many synchronizations even though
the problem does not call for any. Couple this last point with different CPUs filling up
different buckets at different rates and you have the makings of a load balance problem.
All of these issues beg for a different solution.

The UPC implementation is very simple. Allocate a shared array Table which is
cyclically distributed across all CPUs and then use the single cpu algorithm on each cpu
to do its share of the updates. The result is a double nested loop while is vectorizable,
overlaps computation and communication, and does not do any synchronization for tens
of seconds. The only additional modification was to split the one dimensional Table into
two dimensions so that I could do the WhichPE and LocalOffset calculations myself, the
same way as described above for the MPI version. The end result is that the UPC version
runs much, much faster while being fewer lines of code and easier to understand. A UPC
run performed on 252 MSPs showed it sustaining approximately 3.5 GUPs, more than 3
times faster than the MPI version, with the possibility of further optimizations.

0.31

0.18

0.45

1.06

1.31

0.25

1.52

1.10

GUPs

IBM Power4- 504

HP DEC Alpha- 484

Cray X1- 32

Cray T3E- 1024

Cray X1- 60

Linux Networx- 256

Cray X1- 124

Cray X1- 252

Machine Name- # CPUS

 page 7

LATENCY TEST:

The HPCC latency test consists of two runs. The first is a ”not so simple” version of the
"ping-pong" test where the test does a significant number of sends and receives between a
number of different processor pairs, reporting the maximum latency found from of all the
results. The second run performs a "random ring" test where it passes 8 byte messages
between processors in a ring, once using MPI_Sendrecv, and once using non-blocking
MPI routines, they take the minimum of the two methods and report the "per CPU"
latency, which I take to mean as an average latency.

While it tests the latency of a large number of processor pairs, the end result is their “ping
pong” results are very similar to a simple MPI “ping pong” test on the CrayX1. This is
probably due to the fact that the X1 has a global address with a low latency network and
most of the latency is in the MPI library itself. Their ring test is more complex but our
results seem to be just two times the “ping pong” latency. This actually makes sense
when you count the number of MPI routines each processor must go through.

The story is very different when looking at some of our competitors. For example, they
report a “ping pong” latency of 70 microseconds on the IBM. The ring test is a little
more "stable", but they still report a latency of 70 microseconds on the IBM and 30
microseconds on two HP machines. This is MUCH longer than the normally quoted
latencies of the low single digits. This might be because the times normally quoted are
between processors that are "close" together on an otherwise quiet network. Real life is
different. But this is only speculation. Only SGI with the SGI supplied MPI is faster
then the CrayX1, again probably because they have a global address space.

Regardless of why our competitors are the speed they are, the CrayX1 actually turns out
looking pretty good. Only SGI is faster and we appear substantially faster than IBM.

By far the latency is the most difficult measurement to interpret when trying to compare
machines. The range of values on the web site varies by a factor of 50! One problem
with the latency test is: How much better is 3 µsec latency vs. 10 µsec vs. 100 µsec?
After all, one could argue that low latency never really helps you, instead high latency
hurts you, and what is considered high latency is problem dependent. Also latency does
not improve as the machine gets bigger, instead, it almost always gets worse, in some
way making it look like larger machines are “ less powerful” than small machines.

Results for the Latency test for selected machines are shown below:

92.0

11.0

97.0

677

47.6

89.0

SM Band MB/s

22.3

367

39.9

12.1

20.8

22.6

per CPU µµµµsec

IBM Power4- 504

HP DEC Alpha- 484

Cray T3E- 1024

Linux Networx- 256

Cray X1- 124

Cray X1- 252

Machine Name- # CPUS

 page 8

From this chart you can see that there are 2 outliers. The first outlier is the latency of the
IBM machine, at 367 µsec is 10 times worse than anything else listed and 15 times worse
than the Cray X1. The second outlier is the Small Message bandwidth of the Cray T3E,
at 677 MB/s is it almost 7 times larger than anything listed. This is a function of the low
latency network of the T3E even at a relatively high processor count of 1024.

No optimization results for this test have been submitted because none were allowed
under the current rules. However, I did optimize the code using UPC with the results
presented in a section below. Ideally, I would like to see a test that focus on testing how,
and how fast communications can be done, instead of simply testing the speed of some
MPI routines. This would allow us to submit the UPC results. Both UPC and Co-Array
Fortran extensions are becoming more widely available, and CAF has even been
proposed to go into the next Fortran standard. Either of these communication methods is
much faster and easier to write.

Network Bandwidth Test:

The network bandwidth test appears to use exactly the same software and algorithms at
the Latency test, the only difference being that the bandwidth test uses message sizes of
2,000,000 bytes.

Results for the Natural Ring Bandwidth test for selected machines are shown below:

The results make the CrayX1 look very good. For the “ping pong” test we are
approximately an order of magnitude faster than HP and SGI in most of the cases and 30
times faster than the IBM. For the ring test they use both a random and natural
arrangement. The natural ring test is normally faster, and this is especially true for our
competition. To help compare between machines and processor counts, I computed a
Cumulative Natural Ring Bandwidth. Even using this number the CrayX1 looks very

13.7

79.3

44.1

149.2

510.7

654.3

LM Aggr Band GB/s

0.054

0.16

0.091

0.15

4.12

2.60

per CPU GB/s

IBM Power4- 504

HP DEC Alpha- 484

Cray T3E- 1024

Linux Networx- 256

Cray X1- 124

Cray X1- 252

Machine Name- # CPUS

 page 9

good. Our 252 MSP number is more than 8 times faster than a 504 processors IBM
system and 50 times faster than the Linux Network cluster.

UPC versions of the Network Latency and Bandwidth Test:

As mentioned above, the network bandwidth and latency test were implemented using
MPI, specifically either MPI_Sendrecv or Isends and Irevcs. While this is a common
method of communication it is not the faster form of communication available nor the
most productive syntax to write.

I wanted to see what would happen if I replaced those calls to MPI with the equivalent
UPC code. First I had to make a modification to the test from communicating bytes to
communicating longs. This change not only seemed reasonable since the same amount of
data was being transferred, but it seemed more realistic since the vast majority of time
people transfer whole words, either longs or doubles, rather than bytes. After that the
modifications were very simple, indeed most of the time was spent trying to understand
what the sendrecv was doing rather than coding up the upc code. To demonstrate the
difference the MPI and UPC codes segments are copied below.

MPI version of the ring test:
MPI_Sendrecv(sndbuf_right, msglenw, MPI_LONG, right_rank, TO_RIGHT,
 rcvbuf_left, msglenw, MPI_LONG, left_rank, TO_RIGHT,
 MPI_COMM_WORLD, &(statuses[0]));
MPI_Sendrecv(sndbuf_left, msglenw, MPI_LONG, left_rank, TO_LEFT,
 rcvbuf_right, msglenw, MPI_LONG, right_rank, TO_LEFT,
 MPI_COMM_WORLD, &(statuses[1]));

UPC version of ring test:
upc_barrier;
for(i = 0; i < msglenw; i++){
 upc_recvbuf_left[i][right_rank] = sndbuf_right[i];
 upc_recvbuf_right[i][left_rank] = sndbuf_left[i];
 }
upc_barrier;

The results were rather dramatic. Below is a comparison of results on 252 MSPs:

MPI version:
RandomlyOrderedRingLatency_usec = 21
NaturallyOrderedRingBandwidth_Gbytes = 2.6
RandomlyOrderedRingBandwidth_Gbytes = 0.44

UPC version:
RandomlyOrderedRingLatency_usec = 8.67
NaturallyOrderedRingBandwidth_Gbytes = 6.06474
RandomlyOrderedRingBandwidth_Gbytes = 0.837

 page 10

Basically all the performance for all of the test improved by a factor of 2-2.5X, with the
latency being the best of any machine that uses more than 32 CPUs. Furthermore we
expect the performance could be even better. Right now the algorithm does a upc_barrier
to synchronize with all CPUs, a much larger hammer than what is required. Instead, if
we had a mechanism that would synchronize only with its neighbors, effective latency
could go down further.

Methods to Compare Machines using HPCC:

While trying to answer the question “How well do we do on HPCC compared to the
competition?” I realized that the volume of numbers being produced was overwhelming.
The web site has a total of 25 entries, each with 6 columns of data. To really try to
understand how one machine was performing versus another is was necessary to combine
all of these numbers into a single score.

Several steps were taken to compare machines. First, the list provided on the web site
was exported to a spreadsheet and “similar” entries were removed. That means that if
there was ever a particular architecture with ~N CPUs additional copies were removed.
If there was ever a base and an optimized version in the list, the optimized version was
use. A Cray X1 using 32 was also added to the list for comparison purposes. This
resulted in a list of 17 machines total. It is important to note that this list includes only
those machines listed on the HPCC web site. Currently no results have been submitted
for any machines in the top 10 positions of the TOP 500 list.

The next step was to normalize the results from each category to create a unitless number.
This was necessary because each category had different units with drastically different
orders of magnitude, the only way to combine them would be to turn them into
normalized unitless numbers. Several normalization methods were evaluated include
dividing by the most powerful result in that column or dividing by the range of values.
The first method was reject because it made the scoring too sensitive to the speed of the
largest machine while the second took what was potential small insignificant difference
and made them large. The final method chosen was to divide by the combined power of
all the machines in the column. This is in fact equal to the percentage of total power
contained in machine M. This is not sensitive to any one machine as the combined
“ inertia” of the list is large for large list and is does not turn small difference into large
ones. An interesting side effect was that this normalization already made the results
easier to interpret. Since all of the numbers were unitless and of the same order of
magnitude, one could easily tell when a machine did particularly well or particularly
poorly on a test.

The next step was to combine the results into a single score. For this I decided to
examine 3 different weightings. The first was to just use 100% HPL, very similar to the
TOP 500 list. The second was to use 50% HPL – 50% for the other 5 test, 10% per test.
This was a halfway point to the third weighting. The final weighting was to simply

 page 11

weight every test equally. The philosophy behind this was that is what not a matter of
how to weight each test but which tests were included. It the authors of HPCC
determined one feature was not well represented, all they had to do was to add a test
exercising that feature.

Most powerful machines using 100% HPL:

Using only HPL we see that while the Cray X1 using 252 MSPs is at top and 124 MSP is
second, a Xeon Linux Networx cluster using third just barely less than half the power of
the top machine. The rest of the list include 2 IBMs, an HP based on the Alpha chip,
another Cray X1 using 60 MSPs and an SGI Altix.

Things already start to look very different if we have a 50% HPL, 50% other weighting.
Machines that moved up in the list are colored blue while those that moved down are
colored in red. The position using only HPL is included for comparison purposes.

 Most powerful machines using 50% HPL – 50% other:

One can see that not only did the 60 MSP X1 move ahead of the Linux Network cluster,
the score for that cluster says it is about 1/4 the power of the top machine rather than 1/2.

0.58 Cray X1- 60

1.18 Cray X1- 124

0.52 SGI Altix- 128

0.618 HP DEC Alpha- 484

0.654 IBM Power4- 256

0.903 IBM Power4- 504

1.03 Linux Networx- 256

2.35 Cray X1- 252

Tflops Machine Name- #CPUS

16 6.32 Cray T3E- 1024

10 5.00 Cray X1- 32

6 5.27 HP DEC Alpha- 484

7 8.23 Cray X1- 60

3 6.63 Linux Networx- 256

2 14.7 Cray X1- 124

4

1

HPL Order

6.21 IBM Power4- 504

25.6 Cray X1- 252

HPCC Score Machine Name- # CPUS

 page 12

Also a T3E and a 32 MSP Cray X1 has moved into the top 8 displacing an IBM and the
Altix.

Finally, we see what the list looks like with equal weighting.

Most powerful machines using equal weighting:

Clearly the Cray machines dominate the list when all tests are considered equal. Of
particular interest is the position and score of the Linux cluster. Is has dropped from 3rd
to 8th and the score now shows that it is less than 1/6 the power of the top machine.

Conclusions:

While LINPACK is the most popular way to compare machines across architectures and
sites, it is apparent that it emphasizes machine characteristics that work well on any
platform and it is not representative of today’s HPC workload. HPCC is a new
benchmark that examines those other features that matter to HPC today, but it results in
too many numbers to be used directly. Instead, it is highly desirable to combine those
numbers into a single score so one can answer the question, “How well did you do one
HPCC”. One that score is calculated and a list generated, one can go back to further
examine the results of machines with similar scores.

In the end, the HPC Challenge is a powerful new tool which is easy to use but yet
extremely useful for comparing the machines built to solve the worlds most difficult
problems.

About the Authors:

Nathan Wichmann has been a benchmark and applications engineer with Cray for six
years. He has experience with a variety of codes and is frequently involved with defining
feature requirements for compilers and hardware.

4 4.15 IBM Power4- 504

6 4.54 HP DEC Alpha- 484

10 6.43 Cray X1- 32

16 10.2 Cray T3E- 1024

7 9.75 Cray X1- 60

3 3.99 Linux Networx- 256

2 16.4 Cray X1- 124

1

HPL Order

26.5 Cray X1- 252

HPCC Score Machine Name- # CPUS

