
WHITE PAPER

Production and Operational Use of the Cray X1 System

Technical Description

April 2004

ii

© Copyright 2004 Cray Inc. All Rights Reserved

TABLE OF CONTENTS
INTRODUCTION... 4

OVERVIEW.. 5

PRIMARY FEATURES AND CONCEPTS... 6

PSCHED, THE CRAY X1 PLACEMENT SCHEDULER ... 9

PLACEMENT SCHEDULING... 9
PSCHED OVERVIEW... 9

Rules for Domains ... 11
Application Placement... 12

PSCHED DAEMON ELEMENTS... 12
PSCHED SCHEDULING HIERARCHY... 12
SCHEDULING ELEMENTS... 13

Load Balancer... 13
Gang Scheduler... 14

Gang Scheduling within Domains.. 15
Gate / Limit Manager .. 16
Global Dispatcher ... 16

PSCHED CONFIGURATION FILE .. 16

PBS PRO WORKLOAD MANAGEMENT SYSTEM.. 17

PBS PRO MAIN COMPONENTS .. 18
Job Server ... 18
Job Executor ... 18
Job Scheduler.. 18
Job Priority and Dependency .. 18

PEER SCHEDULING ... 19
REMOTE PBS PRO ADMINISTRATION .. 19
SUPPORTED FRONT END PLATFORMS .. 19
FAIR SHARE SCHEDULING... 20
PSCHED / PBS PRO INTEROPERABILITY.. 21

Job Script Considerations.. 22
Job Submission.. 22
Resource Limits Enforced at Launch ... 22
Configuring Psched for PBS Pro .. 23

CHECKPOINT / RESTART (CPR)... 24

CPR AND UNICOS/MP .. 24
CPR AND PBS PRO .. 25

PARTITIONING .. 26

RESOURCE ACCOUNTING .. 27

COMMON ACCOUNTING DATA .. 27
SYSTEM USAGE ACCOUNTING... 28

iii

© Copyright 2004 Cray Inc. All Rights Reserved

PROCESS ACCOUNTING... 28
APPLICATION ACCOUNTING.. 29
ACCOUNTING REPORTS... 29
PBS PRO ACCOUNTING .. 29

The PBS Pro Event Log ... 30
The PBS Pro Accounting Log .. 30

Information at Resource Reservation ... 30
Information at Job Execution ... 31
Information at Job Termination.. 31

4

© Copyright 2004 Cray Inc. All Rights Reserved

Introduction
A supercomputer requires a significant customer investment over the life
of the system. It is critical to customers that system utilization is planned
and managed so that they may get their best possible value. System
utilization is measured not only on the percentage of time that a system is
idle, but also on the extent to which a customer’s internal organizational
and financial goals are met. As a result, most customers manage a
complex set of requirements to ensure that their systems are effectively
used. Cray Inc. provides a number of features for managing Cray X1
system resources. This paper provides an overview of those features.

While most Cray customers have resource management requirements,
operational numerical weather prediction (NWP) customers face a
particularly demanding resource management challenge. These customers
need systems that meet stringent requirements to maintain an operational
schedule for the generation of NWP products, while also supporting a
secondary research load. The combination results in the need for an
environment that delivers high system functionality and reliability. Cray
systems are designed to meet these sorts of requirements.

This document assumes the reader is familiar with Cray X1 hardware and
software at a fairly high level. The Cray X1 System Overview (S-2346), a
standard Cray publication that can be found through the Cray corporate
web site (www.cray.com), provides a thorough overview of the Cray X1
system.

5

© Copyright 2004 Cray Inc. All Rights Reserved

Overview
Resource management covers a wide range of issues and features. This
document covers the following major topics:

• Primary features and concepts

• Psched, the Cray X1 placement scheduler

• PBS Pro, workload management system

• Checkpoint/restart (CPR)

• Partitioning

• Resource accounting

These features are delivered with UNICOS/mp, the Cray X1 operating
system, and PBS Pro, a workload management system from Altair Grid
Technologies. Cray Inc. has worked closely with the PBS Pro developers
to integrate PBS Pro with UNICOS/mp, and in turn to meet the resource
management requirements of Cray X1 customers. In addition, Cray
provides first-line technical support for PBS Pro for Cray X1 systems,
allowing for effective and rapid response to customer problems.

6

© Copyright 2004 Cray Inc. All Rights Reserved

Primary Features and Concepts
The following are major definitions and concepts used in this document:

Term Definition

accelerated mode The preferred mode for production runs where performance variation
between runs is small. Accelerated mode applications are assigned a
GASID and use the Remote Translation Table (RTT) for remote
memory access. Accelerated applications must be allocated on logically
contiguous processors. This mode of execution provides maximum
performance for the application. (See “flexible mode”).

application overflow
node

A node with least one other flavor assigned to it. psched may be
configured to use the multiple-flavored nodes as Application nodes only
if an application is too wide to fit into the domain's Application-only
nodes. In most cases, nodes of this type would also be declared as
Support nodes so they would not remain idle except for wide application
use.

application team
(apteam)

The collection of all the processes that constitute an application; the
collective identity of an application.

batch job A batch job is a shell script that contains the set of commands you want
run on your system resources. It also contains directives that specify the
characteristics (attributes) of the job, and resource requirements (for
example memory or CPU time) that your job needs. Once you create
your batch job, you can reuse it or modify it for subsequent runs.

PBS Pro also provides a special kind of batch job called interactive
batch. An interactive batch job is treated just like a regular batch job (in
that it is queued up, and has to wait for resources to become available
before it can run). Once it is started, terminal input and output are
connected to the job in what appears to be an rlogin session.
Resources requested by the job are reserved for its duration. Many
users find this useful for debugging or for computational steering.

Consumer Threads consume CPU cycles. The CPU is the hardware that delivers
CPU cycles, which are the resource.

Domain See “scheduling domain”.

domain attributes Attributes that manage the behavior of the collection of regions assigned
to the domain.

7

© Copyright 2004 Cray Inc. All Rights Reserved

Flavor One of three, flavor specifies how a node is to be used::

Application
node

Runs user applications. The user declares an
executable object to be an application by launching
it with aprun or mpirun, placing it under the
control of psched

Support node Run single-SSP commands such as daemons,
shells, editors, and other user-level commands

OS node Provides kernel level services to application and
support nodes

In the default configuration, one node is assigned to serve as both an OS
and support node, and the remaining nodes are assigned to serve as
application nodes.

flexible mode Execution mode that may improve system utilization. No GASID is
assigned because the RTT is not used for remote memory access in this
mode. Because flexible mode applications do not require a contiguous
range of processors, it is possible that flexible applications will be
launched ahead of accelerated applications if the current layout of
running applications has left “holes” in the domain. This is the preferred
mode for test runs and background runs. (See “accelerated mode”).

gang A set of processes making up an application that will be synchronously
scheduled.

Global Address
Space ID (GASID)

Used by applications executed in accelerated mode. Translates remote
virtual addresses to physical addresses at the destination node. When
accelerated mode is requested by an application, psched places the
application in a span of logically contiguous processing elements where
one common GASID is available. There are four GASIDs per module.

global attributes Attributes that manage the behavior of characteristics that span
domains.

multiple program,
multiple data

A software feature under development for the Cray X1 system which
will allow multiple, coupled applications to be launched together in a
way that allows them to communicate using MPI, shmem, or Co-Array
Fortran.

8

© Copyright 2004 Cray Inc. All Rights Reserved

node On the Cray X1 system, a node is a set of 4 MSPs that share memory on
a single module, one node per module. On the Cray X1E, a node is a set
of 4 MSPs that share memory on a single module, two nodes per
module.

With PBS Pro, a node is a set of resources managed by a single
pbs_mom daemon (that is, a single system image).

Partition A partition is, virtually, a separate system. Partitions are separately
bootable, they can run different versions of the operating system, and
they cannot communicate with each other.

Party A set of gangs that allow for concurrent execution due to their non-
overlapping allocation.

processing element
(PE)

A software concept pertaining to a process within an application.

provider A physical node that makes resources available.

region A collection of one or more nodes administered identically. The nodes
that constitute a region need not be contiguous nor they need to be
physically identical. A node may be assigned to only one region; a
region may be assigned to only one domain. Limits and gates are
described at the region level but are enforced on a per-node basis.

region attributes Attributes that describe the list of nodes assigned to the region plus
region gates, limits and labels. Each node within a region has its own set
of physical attributes that psched reads from the kernel. The physical
attributes consist of flavor, memory size, number of SSPs, number of
MSPs, and other characteristics known to the kernel.

resource A resource is made up of memory and physical CPUs.

scheduling domain A set of one or more regions collected into a named group for
scheduling purposes. Each scheduling domain is controlled by an
instantiation of placement, load balancing, and gang scheduling
components. Nodes of application flavor must be included in a region
assigned to one of the scheduling domains if they are to be utilized by
psched. A region may not be included in more than one domain.

service provider An identification of the portal through which the application was
introduced into UNICOS/mp. Batch and interactive service providers
are defined.

9

© Copyright 2004 Cray Inc. All Rights Reserved

Psched, the Cray X1 Placement Scheduler
Applications require three things before they can run on the Cray X1
system: the application startup code, the kernel, and system placement by
psched, the placement scheduler daemon. psched determines on which
nodes an application should run and returns this placement information to
the kernel. When the application is then initiated with an exec() system
call, the placement information guides the startup process to organize the
components of the application into an optimized configuration on the
system.

This section describes placement scheduling of Cray X1 system resources
using the psched daemon. This daemon assigns system CPU and
memory resources to applications, according to hardware and
administrative rules, as they are posted for execution.

Placement Scheduling
Cray has ported the psched placement scheduler from the UNICOS/mk
operating system to the UNICOS/mp operating system. The psched
daemon controls the placement of applications on application nodes. It
enforces the requirements of the hardware and operating system, manages
the use of Global Address Space IDs (GASIDs), processors and memory
on the nodes, and implements the oversubscription policy established by
the administrator.

Psched Overview
The placement scheduling daemon, psched, is the software mechanism
that schedules and places all applications launched with the
aprun/mpirun command. (The aprun/mpirun command is the only
way for an unprivileged user to launch an application on UNICOS/mp.)

Some important features of psched are:

• It accepts requests for application placement from aprun and
mpirun; and it locates sets of nodes that satisfy the requirements of
the application, the hardware, and operating system.

• It evaluates machine and node usage to best manage resources in
consideration of site environment and resource management policy.

• Time slice, load balancing, and a number of other controls and limits
may be changed during operation without restarting psched.

• It schedules processors as a group (that is, “gang scheduling”) to
maximize application performance and minimize interference among
applications.

10

© Copyright 2004 Cray Inc. All Rights Reserved

• It maintains sufficient information to recover all work should psched
fail or be terminated. Typically psched needs only to be restarted to
recover all running applications.

• It assists checkpoint/restart in placing and starting an application.

• It generates current process information and displays it via psview.

• It provides support for user limits such as application size and time
limit. There is also an extensive set of node access controls that may
be used for special needs. Support of overflow nodes is included in
these access controls.

• It provides load and configuration information to PBS Pro, and
enforces the PBS Pro queue limits for applications.

An administrative interface using the psmgr command (that is, placement
scheduler manager) is used to configure psched functions. A set of
displays is provided for both administrators and users by using the
psview(1) command.

Each node runs a copy the UNICOS/mp kernel. This in turn allocates
node processors and memory. The psched daemon provides information
to the kernel through the apteamctl(2) interface. Using this
information, the kernel allocates the required resources to serve the
applications.

Scheduling Components

11

© Copyright 2004 Cray Inc. All Rights Reserved

This figure shows the major application scheduling components.
Components inside the dashed-line rectangle comprise the daemon.
Requests are posted by the aprun/mpirun command to the queue. This is
a FIFO ranked list of requests to allocate applications. The global initiator
accepts placement requests, creates internal representations, and presents
them to the domain placement process for placement and launching.
Entities in this list are scanned by the dispatcher and offered to each
domain placement function. When a domain accepts an application, the
request is moved to a list of placed applications. The application waiting
to start is signaled to continue. Startup code in the application, along with
placement information provided to the kernel by the daemon, brings the
application into execution.

Rules for Domains

The following rules apply to domains running under psched:

• A domain is made up of one or more application nodes.

• A node can belong to only one domain.

• More than one domain may be configured in psched, each with its
own set of configuration options, if desired.

• Domain qualification gates may be established to direct applications to
specific domains, based on their attributes.

• An application is restricted to a single domain. It cannot span
domains.

• The node assignment to domains may not be reconfigured while
psched is running.

Note that although multiple domains may be useful under some
circumstances, machine utilization can suffer if not enough work is
supplied to fully occupy each domain. For this and other reasons, a single
domain divided into regions is more flexible than multiple domains, if
properly configured. (See Psched Scheduling Hierarchy, next page, for
more information.)

12

© Copyright 2004 Cray Inc. All Rights Reserved

Application Placement

The following steps initiate placement of the application using the aprun
or mpirun command:

1) The aprun / mpirun command is started with the necessary options
and the name of the application file (a.out).

2) The application id (apid) becomes the process id (pid) of the aprun
/ mpirun command used to launch the application. A set of directives
is composed that creates a /Queue/apid entry in the list of posted
applications, binds it for placement, and sends it to psched using
remote procedure call (RPC). The aprun / mpirun command
specifies a signal object in the directive set (SIGUSR1). This signal is
sent to aprun / mpirun to indicate that the application has been
placed.

3) Errors detected by psched during posting are reported to aprun /

mpirun which writes error messages to stderr and then exits.

4) The aprun / mpirun command receives a launch signal. (This signal
indicates that the application has been given a place to run and the
apteam kernel structure has been set up properly.) aprun / mpirun
then exec()’s the a.out – this initiates startup for PE 0 of the
application. Thus, the aprun / mpirun from a command on a support
node becomes the PE 0 of the application.

Psched Daemon Elements
The psched daemon includes the following components:

• an rpc (remote procedure call) interface used by the psmgr and
psview commands (and PBS Pro) to view/manipulate data

• an object manager provides an information repository for
configuration data objects … here is where communication between
psched and the rest of the system takes place

• a feature manager implements the internal execution control functions
of the daemon, such as bind, verify, action, and exception.

Psched Scheduling Hierarchy
A region is a collection of one or more identically administered nodes,
nodes that have identical psched scheduling attributes. The nodes making
up a region need not be contiguous nor do they need to be physically
identical. Any application node may be assigned to any region, but only
one region. The hierarchy of resource elements managed by psched is as
follows:

13

© Copyright 2004 Cray Inc. All Rights Reserved

1) Domain: scheduling by psched is at the level of the domain.

2) Region: a domain is a set of one or more regions, grouped for
scheduling purposes.

3) Node: a region, assigned to a single domain, is made up of one or more
hardware nodes and managed by a common set of scheduling rules.

Scheduling Elements
Depending on the number of applications domains that you configure into
your system, from 1 to n of the following scheduling elements are likewise
configured into your psched environment to schedule domains:

load balancer assesses the load on each node in the domain.
Moves applications as needed to preserve balance
(based on your configuration rules).

gang scheduler synchronizes the scheduling of all member
processes (gang) of an application. This guarantees
that all are used by all processors simultaneously.

gate/limit manager enforces access policies. Access to a domain is
managed through gates and limits set up when
domain is configured.

global dispatcher handles application launch/termination on demand
in light of your load balance policy.

These are each described in more detail in the following sections.

Load Balancer

The load balancer maximizes resources within a scheduling domain under
a number of configurable rules that accomplish the following:

• filter applications into groups that are eligible or ineligible for
migration.

• evaluate alternative positioning scenarios.

• migrate applications from one set of nodes to another to consolidate
free space into contiguous areas.

The following load balancing rules can be defined:

prime minimizes the number of prime applications that
overlap with other prime applications.

swap minimizes the amount of swapping needed to do a
gang scheduling context switch.

parties minimizes the number of parties in the domain.

14

© Copyright 2004 Cray Inc. All Rights Reserved

fragmentation minimizes fragmentation to maximize contiguous
free space.

utilization maximizes node utilization by comparing the
number of nodes, idle SSPs, and parties within the
domain.

idle maximizes the number of idle SSPs in the domain.
This rule is not typically configured but might be
needed in some cases.

Gang Scheduler

The gang scheduler enables you to schedule all members of an application
(the gang) so they are synchronized across all processors allocated to the
application. This feature also allows the allocation of more than one
application per processor.

Distributed memory applications typically have some degree of inter-PE
synchronization to maintain orderly progress among the parallel portions
of the solution. Implicit in synchronization design is that parallel
execution will proceed at the same time. The system guarantees parallel
execution by scheduling at once (that is, in a gang) all of the processors
and memory that belong to an application, without exception. psched
will gang schedule an application when there is competition for that
application’s resources. If many applications are present, one or more
may run at the same time, provided that they do not compete with each
other. All of the gangs eligible to run at once are named a party. The set of
gangs that constitute a party execute at the same time. An application may
be promoted from one party to another and so get more processor cycles if
it is located such that it does not compete with the other gangs in the time
slice.

psched time slices typically range from a few seconds to many minutes.
The overhead cost of a context switch between parties primarily involves
loading memory for applications about to execute. Distributed memory
applications that span more than one node run with their memory locked
in place. This is required to satisfy off-node memory references that
cannot tolerate page faults.

Context switches are accomplished in two phases:

1) Sequentially disconnect all gangs of the running party to stop
execution and unlock memory pages.

2) Connect each gang of the next party in parallel. This makes it possible
for each node to participate in parallel with the work of loading
memory and preparing the gangs to execute.

Unlocked memory pages are only written to disk to make space for an
application beginning to execute. Context switching among applications

15

© Copyright 2004 Cray Inc. All Rights Reserved

whose memory usage does not exceed the physical capacity of the node
does not require any memory loading. The duration of a time slice is partly
determined by the time needed to swap memory for a new application. If
much memory loading is needed, the time to do this should be factored
into the time slice duration to amortize the overhead for the context
switch. Durations can be changed at any time to accommodate changes in
system load or to experiment with different scheduling behavior. Gang
scheduling also allows the allocation of more than one application per
processor, using the oversubscription configuration variables for
processors and memory.

A domain’s gang scheduler time-slices processes based on configuration
settings.

Note: psched does not assign processors to an application. Instead, the
kernel chooses which processors will be used when the context switch is
made. The memory scheduler then assures that enough memory and
processors are present on a given node to satisfy the resource needs that
will be demanded of it.

The placement information that psched places in the apteam structure
tells the processor and memory scheduler on each node which resources
an application requires. Psched makes sure not to ask for more resources
than can be delivered.

Gang Scheduling within Domains

Processes are gang scheduled at the level of the domain under the
following rules:

1) A domain is made up of one or more application nodes.

2) A domain may be divided into one or more regions.

3) A node can be a member of only one domain.

4) More than one domain may be configured in psched, each with its
own set of configuration options.

5) Domain qualification gates may be established to direct applications to
specific domains, based on their attributes. Although multiple domains
may be useful within a given system, machine utilization can suffer if
not enough work is supplied to fully occupy each domain.

6) A node cannot switch domains while psched is running.

Note: Without exception, all processes within an application are gang
scheduled. Gang scheduling is independent in each domain.

16

© Copyright 2004 Cray Inc. All Rights Reserved

Gate / Limit Manager

The gate/limit manager enforces the access policies configured for your
site. Access to a domain or portions of a domain may be managed by
creating gate and limit controls at the time the domain is configured.

• A gate is a boolean predicate that tests an attribute and returns a pass
or fail.

• A limit is a cumulative function which answers the question "If nnn
units of resource R is added to the amount in use, is the sum still less
than the limit?" If Yes, the limit is passed.

Region gates and limits are configured at the region level but are enforced
at the node level. In effect, a region administers multiple nodes at once.

Domain gates and limits are configured and enforced at the domain level.
These control aggregate domain resources, so per-node processor and
memory usage controls do not work at this level.

Global Dispatcher

The global dispatcher is a separate execution thread handling application
launch and termination requests. Although application placement and load
balancing are performed by the same feature, load balancing cycles may
be quite lengthy while application initiation and termination need to be
done on demand. The global dispatcher makes this possible without
disrupting the load balancing policy.

Psched Configuration File
The default psched configuration file, /etc/psched.conf, is installed
with psched if a file by that name does not already exist. You can create
alternative psched configuration files if you choose, depending on your
needs. Then specify the file you want to use in the psched command
line, or make a symbolic link (named /etc/psched.conf) that points to
the desired configuration file.

17

© Copyright 2004 Cray Inc. All Rights Reserved

PBS Pro Workload Management System
UNICOS/mp supports the execution of batch jobs. Cray Inc. has selected
PBS Pro, a leading high-performance computing workload manager from
Altair Grid Technologies, to provide batch queuing services for the Cray
X1 system. PBS Pro provides a number of tools for monitoring operation
of the batch subsystem. Scriptable command line interfaces are also
available for customized system monitoring functions.

The following are high-level benefits of PBS Pro:

• solid migration path from NQE/NQS, provided with legacy Cray
platforms

• first level technical support from Cray Inc.

• integrated machine utilization

• PBS Pro interfaces to the Cray psched placement scheduler, taking
advantage of its resource management and job placement capabilities.

• PBS Pro maintains queues of jobs by resource type and priority, and
supports checkpointing and/or killing jobs based on priority, job
preëmption, and job dependencies. Both routing and execution queues
are supported, however queue complexes are not supported.

• an extensible scheduler tool that allows sites to configure and
customize scheduling policies. Basic features include fair share
scheduling and job preëmption.

• accounting records for all jobs and sessions PBS Pro manages,
including resource utilization outside of psched. PBS Pro also tracks
accounting information for interactive batch sessions when users log in
via an interactive PBS Pro job (otherwise, interactive sessions are
recorded/maintained by UNICOS/mp). This data can be used to
prepare summary accounting information as required.

• users can change certain job resource characteristics while jobs are
queued (for example, CPU time limit or job priority).

• Administrators and users may intervene in job execution including:
start/stop queue scheduling, suspend jobs, kill jobs, modify queue
priorities, modify scheduling priorities, checkpoint/restart, and so on,
with or without root level login.

Dedicated or shared resource allocation can be accomplished through the
administration of queues providing dedicated access. Through direct or
scripted administrator intervention, the appropriate queues can then be
enabled or disabled during the switch between shared and dedicated
system time.

18

© Copyright 2004 Cray Inc. All Rights Reserved

PBS Pro Main Components
The primary components of PBS Pro are described in the following
sections:

Job Server

The Job Server daemon, pbs_server , is the central element of PBS. All
commands and daemons communicate with the server via an Internet
Protocol (IP) network. It provides the basic batch services such as
receiving/creating a batch job, modifying the job, protecting the job
against system crashes, and managing queues. The server utilizes a
common API and protocol for communication with client commands and
other daemons.

Job Executor

The Job Executor is the daemon that actually places the job into execution.
This daemon, pbs_mom, is informally called MOM (Machine Oriented
Miniserver). MOM places a job into execution when it receives a copy of
the job from pbs_server. MOM creates a new session as identical to a
user login session as is possible. For example, if a user login shell is csh,
then MOM creates a session in which .login is run as well as .cshrc.
MOM also returns job output to the user (when directed to do so by the
job request).

Job Scheduler

The Job Scheduler daemon, pbs_sched, implements site policy to control
when each job is run and on which resources. The scheduler
communicates with the pbs_server and select MOMs to query the state
of system resources. It communicates with the server to learn about the
availability of jobs to execute.

Job Priority and Dependency

Job Priority allows users to specify the priority of their jobs, defaults for
which can be provided at both the queue and system level. Note however
that user priority is specific to jobs owned by a single user – the scheduler
may override priorities in conformance to local scheduling policy.

PBS Pro allows you to specify job dependencies between two or more
jobs. Dependencies are useful for a variety of tasks, such as:

1) Specifying the order in which a set of jobs should execute

2) Requesting a job run only if an error occurs in another job

3) Holding jobs until a particular job starts or completes execution

19

© Copyright 2004 Cray Inc. All Rights Reserved

Peer Scheduling
PBS Pro allows you to have different PBS installations automatically run
jobs from each other’s queues. This provides the ability to dynamically
load-balance across multiple peer systems. When this feature is enabled,
PBS can map a remote peer queue to a local queue and then move the
remote jobs to run locally when resources become available. No job is
moved until it can run immediately.

Currently the only restriction on peer scheduling is that it requires a flat
user namespace – that is, user joe on the remote system(s) is the same as
user joe on the local system.

Remote PBS Pro Administration
PBS Pro may be administered from any machine configured into a Cray
X1 network, however root access to the Cray X1 system is required to
install/upgrade PBS Pro, and PBS Pro manager privilege is required
thereafter.

For installs and upgrades, PBS Pro uses the Cray Common Installation
Tool (CIT), and requires that a GUI be used. Users can ftp the CD image
to an on-site workstation, but X11 is required to display the GUI back to
their local machine.

Note that in choosing between the command-line interface (CLI) and the
graphical user interface (GUI), the majority of PBS Pro users and
administrators choose to work with the CLI.

Supported Front End Platforms
The following platforms can be used as a front end to PBS Pro:

• Windows operating system

• UNIX platforms including AIX, BSD, HPUX, IRIX, Linux, SCYLD,
Solaris, Mac OSX, and UNICOS/mp.

20

© Copyright 2004 Cray Inc. All Rights Reserved

Fair Share Scheduling
PBS Pro includes a fair share capability that schedules submitted jobs
mindful of users’ entitlement to an equal share of system resources. While
a user’s job may consume more than its assigned share of CPU usage at a
given time, that user’s subsequent job(s) will not be scheduled until other
users’ jobs have been provided their assigned shares.

This implementation is similar to the UNICOS implementation of fair
share found on Cray T3E systems, where users are put into a fair share
group file. The file is read in and a tree is created. The tree consists of
groups (nodes) and entities (leaves). Groups can contain groups. Every
node and leaf has a number of shares associated with it. Priorities can be
derived from these shares by taking a ratio of them to all the rest of the
shares.

Because the PBS Pro fair share configuration is managed as a tree
structure, users may only have one parent, be it the root group or a sub-
group. However, users can have multiple IDs, one for each project (for
example, jdoe_physics, jdoe_math, jdoe_bio). In this case, each
user ID is associated with the appropriate resource group.

The fairshare capability allows a system administrator to set which PBS
resource is collected for fairshare usage. The resource to use is specified in
a file (sched_config) in which any PBS job attribute can be specified
(for example, user, group, account name, and so on). Administrators may
view current share usage using the pbsfs command.

The PBS Pro hierarchical fairshare tree enforces usage priorities across
both individuals and groups of people, based on usage percentages for
sorting and running jobs.

Example 1

Consider that user1 and user2 are in group A, user3 is in group B, and
user1 uses 100% of the machine for a month. Since group A has all of
user1’s usage, group B has much higher fairshare priority. Thus,
user3’s jobs would run before user2’s jobs.

Example 2

Consider that there are three nodes/leaves at a given level with shares of
10, 20, and 10. The first entity/group has a priority of 25% or 10/40, the
second has 50% or 20/40, and so on. A node with children can establish
priorities among them via shares. So, if the second group (50%) is
actually a group with 4 users and all the users have equal shares, then each
user has 1/4 of 50% or 12.5% of the machine.

21

© Copyright 2004 Cray Inc. All Rights Reserved

Psched / PBS Pro Interoperability
Psched and PBS Pro work closely together. This figure illustrates the
relationship between the two, and is followed by a detailed description
(Note here that qsub –l mppe 4 is a sample command.):

PBS Pro / Psched Interoperability

22

© Copyright 2004 Cray Inc. All Rights Reserved

PBS Pro performs two primary functions in its interactions with Psched:

• It collects information from Psched that is used to govern scheduling
decisions.

• It provides job limit information to Psched so that it may set
appropriate per-process application domain limits.

PBS Pro Psched interaction is via the pbs_mom daemon. The
information that pbs_mom collects is proxied to the pbs_server and
pbs_sched daemons.

Upon PBS Pro startup, pbs_mom informs the pbs_server of the number
of application MSPs available on the system. This information is used to
establish a counter within the pbs_server that limits number of MSPs
and SSPs that may be used concurrently.

Job Script Considerations

When users construct job scripts, they determine the peak amount of
application domain processor (MSP or SSP) resources the job will require.
This requirement is expressed to PBS Pro through the mppe and mppssp
resource limits, which may be included in either the job script as #PBS
directives, or provided as arguments to the qsub command, as shown in
the illustration.

Job Submission

When a user submits a job, the pbs_server notifies pbs_sched that a
new job has arrived. Then, either of the following takes place:

• If psched_fit is enabled (in the scheduler configuration file),
Psched-related information is requested from pbs_mom, including
node placement data and lists of the launched and posted applications.

• If psched_fit is disabled, the scheduler relies on the available and
assigned resource counts maintained by pbs_server.

Once pbs_sched determines that sufficient resources are available for the
job, it tells the pbs_server to run the job. The pbs_server then assigns
the job to pbs_mom for execution.

Resource Limits Enforced at Launch

When pbs_mom initiates a job, the job script is evaluated within the
command domain. When a job makes a call to aprun/mpirun, Psched
contacts pbs_mom to collect application domain limits (if the Psched
/Global/UseQueueLimits parameter is enabled). Psched then uses
the information provided by pbs_mom, together with information from the

23

© Copyright 2004 Cray Inc. All Rights Reserved

user limit database (ULDB), to establish the kernel-enforced limits for
each user process it invokes.

Configuring Psched for PBS Pro

The process that PBS Pro uses to control the amount of work it will allow
in execution at one time differs from that used by psched. But, PBS Pro
and psched configurations must be compatible for proper functioning of
the scheduling system. A simple recommendation is to configure psched
without limits or gates and leave control of the workload to PBS Pro. This
works well when there is not a significant amount of interactive work that
bypasses PBS Pro, or if interactive use is restricted to interactive PBS Pro
jobs.

24

© Copyright 2004 Cray Inc. All Rights Reserved

Checkpoint / Restart (CPR)
Checkpoint/restart on the Cray X1 system is provided both with
UNICOS/mp and with PBS Pro. When a job is checkpointed, it is written
to disk until such time as it is restarted. Note, however, that application
placement at restart is not necessarily on the same resources from which it
is checkpointed. Placement is instead determined by psched, depending
on system status and available resources in light of scheduling policy at
the time of restart.

CPR and UNICOS/mp
UNICOS/mp provides a full kernel-supported checkpoint/restart
capability. A checkpoint of a process or set of processes can be initiated
by a program, user command (cpr), or direct operator intervention by
system administrators, operators, or process owners.

Through the cpr command, the system sends a checkpoint signal to each
process at checkpoint, and a restart signal to each process upon process
restart. MPI jobs can also be checkpointed/restarted for integrated
preëmptive scheduling.

Restrictions that can prevent a successful checkpoint include open sockets
or special hardware file descriptors.

The following types of processes/jobs can be checkpointed:

• UNIX process and POSIX pthread ID (default)

• UNIX process group ID

• UNIX process session ID

• Process hierarchy (tree) rooted at the PID

• Apteams (application teams)

It is important to note that an application accepted into a domain will
remain within that domain throughout its lifetime. That said, an
application restarted from a checkpoint is considered a new application so
it may be placed in a domain different from one it had been placed in
earlier.

25

© Copyright 2004 Cray Inc. All Rights Reserved

CPR and PBS Pro
Checkpoint/Restart (CPR) functionality is supported in PBS Pro running
under UNICOS/mp. There are three kinds of checkpoint available:

manual Manual checkpoint of PBS Pro jobs is via the
qhold(1) (that is, queue hold) command. These
jobs are then released via the qrls(1) (that is,
queue release) command.

periodic Periodic (automatic) checkpoint may be specified at
job submission time through the use of the -c
qsub(1) argument.

preëmptive The scheduler can configure jobs for
checkpoint/restart under preëmptive scheduling
when jobs with higher privilege and/or priority are
awaiting execution.

26

© Copyright 2004 Cray Inc. All Rights Reserved

Partitioning
Cray X1 system partitioning allows system administrators to group two or
more sets of node modules into separately-bootable systems, each with a
completely independent operating system image. These partitions can be
separately booted, dumped, halted, and so on with commands issued from
the CWS without impacting other running partitions; and halted partitions
can be combined into larger or split into smaller partitions. Cray also
supports the addition or removal or inactive node modules from running
partitions, however two running partitions cannot be combined without
halting one of them.

The following is a list of operating conditions under for partitioning on the
Cray X1 system:

• The smallest system image allowed runs on two node modules.

• Individual node modules cannot be split between partitions.

• No single job can span partitions.

• Partitions will be separate for normal operations, but there can’t be a
complete security wall between them.

• A single operator workstation will have access to all partitions –
partitioning is facilitated through the System API on the CWS.

• Each partition requires its own network and disk connections. Cray
supports a shared file system implemented for a Storage Area Network
(SAN) environment that allows each partition to access shared data
directly.

• Dynamic partitioning is not allowed. Partitions must be halted before
they can be split into smaller partitions.

• There can be no inter-partition communication between Cray X1
system partitions. They are entirely separate system images.

27

© Copyright 2004 Cray Inc. All Rights Reserved

Resource Accounting
UNICOS/mp provides standard UNIX SVR4 accounting evaluation tools
such as acctcom, acctcms, and acctmerg. These tools enable the
collection of per-process accounting data, with Cray-added functionality
that consolidates accounting according to “account ID”. In addition to
these tools, a per-application record is written upon application
termination. This record includes information about resource use,
including “requested” versus “consumed” resources.

Note: UNICOS/mp does not use a Cray proprietary udb user database to
store user characteristics. Instead, it uses two independent databases: one
defines membership for account IDs, the other controls per-UID resource
limits. The source file for both databases is in ASCII and can be
maintained by any standard text editor. The ASCII files are converted into
binary using either the limit_mkdb or proj_mkdb commands. Session
initiators then access the binary versions of the databases for lookup use.

Common Accounting Data
The following data is reported by all accounting tools:

• user ID

• login name

• cumulative CPU time

• cumulative kcore-minutes

• cumulative connect time

• cumulative disk usage count of processes

• count of login sessions

• count of disk samples

• fee for special services

28

© Copyright 2004 Cray Inc. All Rights Reserved

System Usage Accounting
UNICOS/mp provides an accounting tool to track the use of the following
main system resources on a per-project and per-user basis:

• CPU time

• number and type of processors

• RSS memory

• I/O to secondary storage and over network connections

• amount of secondary storage

Process Accounting
UNICOS/mp supports standard SVR4 process accounting where
accounting data is recorded at process (application) termination time.
Process accounting data includes the following information:

• exit status

• user ID

• group ID

• process ID

• application ID (command name)

• control typewriter

• beginning time

• user time in clock ticks (a tick in UNICOS/mp is 10ms)

• system CPU time in clock ticks

• elapsed time in clock ticks

• memory usage in clicks

• characters transferred by read/write (I/O transfer counts)

• number of block reads/writes

• start time and elapsed time (wall clock)

• virtual memory integral (over user time) and a high water mark for
memory bytes / blocks transferred

UNICOS/mp allows the system administrator to dynamically assign
process resource limits on a per-UID basis. Group list modifications for
active users do not take effect until the next login, but the modifications
may be made at any time.

29

© Copyright 2004 Cray Inc. All Rights Reserved

Note: Process accounting does not allow system administrators to
determine the physical location (node/cpu) of where processes are run.
The physical location changes over the lifetime of a process.

Application Accounting
The following application information is collected on a per-application
basis:

• application flags (such as MSP, SSP, FLX, ACX and application id)

• user ID

• start time (that is, when the application is submitted by the developer)

• launch time (that is, when the application was started by psched)

• elapsed time

• connect time (different from elapsed time if gang scheduled)

• application name

• application width / depth

The application accounting record can be viewed through the acctcom
command only.

Accounting Reports
The SVR4 accounting package generates daily accounting reports.
Processes accounted are consolidated into a single report line.
Consolidation is done either by UID or by account ID through the
acctmerg utility. The raw output by acctmerg is available for post-
processing through awk scripts that can be tailored to meet site-specific
needs.

In addition to a per-UID / account ID report, a second report is generated
by acctcms. This report is consolidated by command names. It provides
an overview of the commands and applications used on the system.

PBS Pro Accounting
The PBS Pro system tends to produce lots of logfile entries. There are two
types of logfiles: the event logs which record events from each PBS Pro
daemon (pbs_server, pbs_mom, and pbs_sched) and the PBS Pro
accounting log.

30

© Copyright 2004 Cray Inc. All Rights Reserved

The PBS Pro Event Log

The amount of output in the PBS Pro event log files depends on the
specified log filters for each daemon. All three PBS Pro daemons can be
directed to record only information pertaining to certain event types. The
specified events are logically “or-ed” to produce a mask representing the
events the local site wishes to have logged.

The PBS Pro Accounting Log

The PBS Pro accounting log collects information upon job submission,
execution, and completion.

Information at Resource Reservation

• The PBS Pro accounting log collects the following information about
specified advance resource reservations:

• name of the party who submitted the resources reservation request

• name_string for resource reservation (if supplied)

• account under which reservation was made

• name of the reservation queue

• time at which the resources reservation got created (seconds since the
epoch)

• time at which the reservation period is to start (seconds since the
epoch)

• time at which the reservation period is to end (seconds since the
epoch)

• the duration specified or computed for the resources reservation, in
seconds

• allocated set of nodes with specified properties, if so required

• list of acl_users on a queue that is instantiated to service a resource
reservation

• the list of acl_groups on a queue that is instantiated to service a
resource reservation

• the list of acl_hosts on the queue that is instantiated to service a
resource reservation

• list of resources requested by a reservation. Resources are listed
individually as, for example: resource_list.ncpus=16;
resource_list.mem=1048676.

31

© Copyright 2004 Cray Inc. All Rights Reserved

Information at Job Execution

The following information is provided at the time a job is executed:

• the user name under which the job executed

• the group name under which the job executed

• the name of the job

• the name of the queue from which the job is executed

• time in seconds when job was created (first submitted)

• time in seconds when job was queued into current queue

• time in seconds when job became eligible to run (that is, with no
holds, etc.)

• time in seconds when job execution started

• name of host on which the job is being executed

• list of the specified resource limits

• session number of job

Information at Job Termination

The PBS Pro accounting log includes the following information at job
termination:

• the user name under which the job executed

• the group name under which the job executed

• if job has an "account name" string

• the name of the job

• the name of the queue from which the job is executed

• name if job draws its resources from a resources reservation and that
reservation has a name

• if job is as a "reservation-job" (advance reservation of resources)

• time in seconds when job was created (first submitted)

• time in seconds when job was queued into current queue

• time in seconds when job became eligible to run; no holds, and so on

• time in seconds when job execution started

• session number of job

• the exit status of the job

• list of the specified resource limits

Cray Inc.
411 First Avenue South
Suite 600
Seattle, WA

Telephone: 206-701-2000

Fax: 206-701-2500

www.cray.com

Cray is a registered trademark, and Cray X1 and Cray SV1 are trademarks
of Cray Inc. All other trademarks mentioned herein are the property of
their respective owners.

WP-0030404

