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ABSTRACT Accurate modeling of pulse propagation and scattering in a dispersive
medium requires the inclusion of attenuation and its causal companion, dispersion. In
this work a fourth order in time and space 2-D Finite Difference Time Domain (FDTD)
scheme is used to solve the modified linear wave equation with a convolutional
propagation operator to incorporate attenuation and dispersion. The MTA-2 with its
multithreaded architecture and large shared memory provides an ideal platform for
solving the equation, especially in the case when only a very small part of the medium is
dispersive.
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1. Introduction

The presence of bubble plumes underneath
the sea surface as the result of breaking waves
changes the medium from weakly dispersive to
highly dispersive. Accurate modeling of pulse
propagation and scattering in such a medium
therefore requires the inclusion of attenuation
and its causal companion, dispersion. The
plumes are also a source of additional scattering,
usually only amenable to approximate solutions
upon invoking strong approximations and
neglecting attenuation and dispersion. The
ability to incorporate attenuation and dispersion
directly in the time domain has until recently
received little attention.

For acoustic propagation in a linear medium,
Szabo[1] introduced the concept of a
convolutional propagation operator that plays
the role of a causal propagation factor in the
time domain. Waters et al. [2] showed that

Szabo's operator could be used for a broader
class of media, provided the attenuation
possesses a Fourier transform in a distribution
sense. Norton and Novarini [3] clarified the use
of the operator and demonstrated its validity by
solving the inhomogeneous wave equation
including the causal convolutional propagation
operator via a finite-difference time-domain
(FDTD) scheme. It was shown that the inclusion
of the operator in modelling propagation in a
homogeneous medium correctly carries the
information on attenuation and dispersion into
the time domain. As a measure of the
effectiveness of using the local operators to
model a spatially varying medium[4], the
convolutional propagation operator was then
used to model 2-D pulse propagation in the
presence of an interface between two dispersive
media via FDTD. The inclusion of the local
convolutional propagation operator correctly
carries information on attenuation and
dispersion into the time domain for both the
backscattered and transmitted fields.
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In this work a fourth order (in time and
space) 2-D Time Domain Finite Difference
scheme, which includes attenuation and
dispersion via the convolution operator, is used
to model backscattering of broadband signals
from a composite sub-surface bubble cloud
composed of two different plumes beneath a
random rough sea-surface. This is a complex
problem for which exact analytical solutions are
not available.

2 The Convolutional Propagation Operator

Assuming that propagation occurs through an
isotropic lossy linear medium, the propagation
is governed by a modified wave equation of the
form

    
∇2 p r, t( ) −

1

c0
2

∂2 p r ,t( )
∂t2 −

1

c0

Lγ t( ) ∗ p r, t( ) = δ r − rs( )s t( )

where c0 is a reference velocity (usually the
thermodynamic sound speed in the medium is
assumed lossless), s(t) is the source signature at
location rs, and   Lγ t( )  is the causal convolutional
operator, which controls the attenuation and
dispersion and  plays the role of a generalised
dissipative term in the time domain. In the
framework of generalised functions, assuming
the pressure field is a distribution, this operator
is defined as     Lγ t( ) = Γ t( ) ∗δ 1( ) t( ) .

The function   Γ t( )  is the kernel of the
operator, and represents a causal time-domain
propagation factor that accounts for causal
attenuation. That is, it also governs the
dispersion in the system in order to insure
causality. The wave equation can be rewritten as
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Szabo [1] defined the causal time-domain
propagation factor Γ τ( )  as the Fourier
transform of the dispersive component of the
complex propagation factor and showed it is
given by

    Γ τ( ) = −2 1+ τ( )FT−1 α ω( ){ }

where α ω( )  is the attenuation as a function of
frequency for the medium and   1+ τ( )  represents
the step function.

3. NUMERICAL MODELLING

3.1 Finite-Difference Scheme

The solution of the wave equation was
originally expressed in terms of finite-
differences by using the classical explicit
second-order scheme in time and fourth-order in
space. However, to make the algorithm
uniformly fourth-order accurate, the second
partial of the field with respect to time had to be
extended to fourth-order. The usual fourth-order
finite-difference representation of the second
partial derivative can lead to unconditionally
unstable schemes. A technique presented by
Cohen [5] that is based on the "modified
equation approach" was used to obtain fourth-
order accuracy in time. This technique while
improving the accuracy in time preserves the
simplicity of the second-order accurate time-
step scheme. Absorbing Boundary Conditions
(ABCs) were imposed at the end of the
numerical grid and at the corners. A technique
named the Complementary Operators Method
(COM) was employed [6]. The COM method is
a differential equation-based ABCs. This differs
from the other common approach of terminating
the grid with the use of an absorbing material.
An example of this type of boundary condition
is the Perfectly Matched Layer (PML) method
originally proposed by Berenger [7].

It is beyond the scope of this paper to present
the derivation of either the fourth-order accurate
time derivative algorithm or the implementation
of the COM operators. The interested reader
should refer to the given references. However
we do present the equations that result from the
application of the FDTD method to the solution
of the linear wave equation.  The calculation is
divided in two parts, the first from the initial
two terms of the equation that is calculated at
every point of the grid, and another part from
the third term that is present only for grid points
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that are dispersive.  From the first two terms we
have

pi,j(t+1)=2.0*pi,j(t)-pi,j(t-1)
   +(ci,j*dt*dt/(12*dx*dz)) *
      (60*pi,j(t)+
       16*(pi+1,j(t)+pi,j+1(t)+pi-1,j(t)+pi,j-1(t))
        -(pi+2,j(t)+pi,j+2(t)+pi-2,j(t)+pi,j-2(t)))
    +(cij,*dt*dt*ci,j*dt*dt/(12*dx*dx*dz*dz)*
      (20*pi,j(t)
       -8*(pi+1,j(t)+pi-1,j(t)+pi,j+1(t)+pi,j-1(t))
       +2*(pi+1,j+1(t)+pi-1,j+1(t)+pi+1,j-1(t)+pi-1,j+1(t))
           +(pi+2,j(t) +pi-2,j(t)+pi,j+2(t)+pi,j-2(t)))

     Discretizing the third term leads to

cpi,j (t+1)=dt*sum(cpo0 (k)* ui,j (t+1-k))

pi,j(t+1)=pi,j(t+1)+2.0*ci,j*dt*dt*(25.0*cpi,j(t+1)-
48.0*cpi,j(t)+36.0*cpi,j(t-1)-16.0*cpi,j(t-2)+3.0*
cpi,j(t-3))

3.2 The Environment and Experimental Configuration

     The scattering from bubble plumes under the
sea surface, with due regard to the irregular
shapes involved and the presence of attenuation
and sound speed dispersion, is a problem for
which no analytical solutions are available.
Accurate controlled laboratory experiments are
virtually impossible due to the difficulties in
scaling the process. Therefore, numerical
modelling arises as the best candidate to
approach the problem. In this work
backscattering from a bubble cloud in the ocean,
composed of two different bubble plumes is
considered.  The broadband source signal is a
doublet, whose spectrum peaks at 3.5kHz. (The
signal is 20dB down at 40Hz and 12.5kHz).
Figure 1 sketches the basic geometry of the
simulated experiment. The upper medium is
assumed to be air (sound speed is 330m/s and
density 1x10-3 kg/m3). The sound speed in the
water is taken to be 1500m/s. Modeling is
carried out in 2-D. The source and receiver are
co-located.
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Figure 1: Geometry for the numerical experiments.

   The environment contains a composite bubble
cloud attached to a pressure release rough
surface. Bubble plumes can be classified by
their stage of development. The classification
proposed by Monahan [8] as parameterised by
Novarini et al. [9] is adopted. In this work both
the so-called beta and gamma plumes are
included (void fraction between 10-4 and 10-3 for
the beta plume and 10-7 to 10-6  for the gamma
plume). The bubble density within the plume as
well as the horizontal area of the plume, (in this
case, the equivalent horizontal length) is
assumed to decay exponentially with depth. The
beta plume subtends a length of 3.4m at the top
and 0.2m at the bottom (1.2m below the
air/water interface). The gamma plume spans
13.75m at the top and 1m at 4.4m below the
air/water interface. The source and receiver are
located at x = 5m, z = 15m. Each plume is
discretized in layers of thickness dz = 0.2m.
Random fluctuations in the bubble density,
equivalent length vs. depth and e-folding depth
are imposed. Assuming an 11m/s wind speed
the attenuation vs. frequency is calculated
within each layer. The concept of an effective
medium is utilised, including thermal and
viscous effects [9,10]. The attenuation (and the
associated causal phase velocity) are calculated
over 8192 points, at df = 40Hz. From the
attenuation, the corresponding causal time-
domain propagation factor is then generated at
time steps dt = 3.05x10-6 sec. The attenuation in
all layers is strongly frequency dependent. At
0.2m below the surface, for the beta plume it is
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0.04 dB/l at 40Hz; 26.6 dB/l at 3.5kHz and 24.8
dB/l at 12.5kHz). The dispersion within the
bandwidth of the source is also strong, for the
beta plume, at 0.2m below the surface, the
sound speed drops to 581m/s at 40Hz, 391m/s at
3.5kHz and 934m/s at 12.5kHz.

For the gamma plume the effect is weaker,
but still noticeable. The attenuation at 0.2m
below the surface is 4x10-3 dB/l at 40Hz;
4.7x10-2 dB/l at 3.5kHz and 0.1dB/l at 12.5kHz.
Within each plume the sound speed increases
with depth. At 3.5kHz, within the beta plume,
the sound speed goes from 390m/s at the surface
to 584m/s at the bottom of the plume. For the
gamma plume it goes from 1488.8m/s at the
surface to 1499.5m/s at the bottom. These
values should be compared with those
corresponding to a bubble-free medium, where
the sound speed is frequency-independent
(1500m/s) and the attenuation due to viscosity
and molecular relaxation ranges from 1.510-5

dB/l at 40Hz; 6.4x10-5 dB/l at 3.5kHz and
1.2x10-4 dB/l at 12.5kHz. Also, in the bubble
free case, the sound speed stays essentially
constant within the thickness of the cloud.

The computational domain is 2000 horizontal
grid points and 2000 vertical grid points. The dx
equals the dz, which is 0.01m. The total number
of solution grid points is 4x106 and the number
of grid points that the composite bubble cloud
occupies is 188567. Each solution point within
the composite plume will have an operator
assigned to it (23 different operators in all) and
the number of convolution points is taken to be
1000.

4. Code Optimization

    The program to perform the calculation of the
propagation of a signal was a parallel OpenMP
Fortran 77 program. The original goal was to
produce correct results with very little
consideration in optimising the code with
respect to performance. After an initialisation
phase, the program enters a loop that updates on
each pass the propagated values of the signal for
the next time step.  Most of the calculation time
inside this loop is spent in a doubly nested do
loop that updates the values at each of the grid
points of the computational domain.  The code
was compiled to run in parallel by adding MTA

specific derivatives to run the passes through the
double nested do loops in parallel.  These
directives included one to indicate that updates
to any grid point in the computational domain
depended only on the values at the grid points
calculated at earlier time steps.

    The original optimisations included a test that
was performed at each grid point to determine if
the source had time to propagate to this point
(and perform the update calculations only if it
had) and code to ensure that the summation in
the calculation of the causal effect is performed
only over non-zero terms. Table 1 illustrates
how these tests reduce the processing times of
the earlier time steps when running on 40
processors of the MTA.

Steps times (secs)
1-200 2.06

201-400 6.75
401-600 38.52
601-800 88.08

801-1000 138.13
1001-1200 187.60
1201-1400 236.04
1401-1600 257.76
1601-1800 256.67
1801-2000 256.35

Table 1. Time for every 200 time steps for
original code on 40 processors.

  Much of the running time of the “original”
code was spent in the evaluation of the causal
integral.  An examination of the code revealed
that this calculation contained a call to the
Fortran mod function for each point in the sum.

cp(i,j,k)=0.
do n=1,ntau
  kount=mod(nloc+n-1,ncpo1)
  indx=nloc+kount+multi-1
  if(indx.gt.ncpo1)indx=indxncpo1
  cp(i,j,k)=cp(i,j,k)+
     cpo0(i,j,n)*p(i,j,indx+n-1)
end do
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The mod function is needed because for each i
and j the p array is stored in a circular buffer
and the program needs to determine if the sum
is taken over a set that crosses the end of the
buffer.  By breaking the sum into two separate
parts when the sum crosses the buffer boundary
(one to the end of the buffer and the second
starting at the beginning of the circular buffer)
the mod function can be moved outside the do
loop.

multi=mod(k,ncpo1)
if(multi.eq.0)multi=ncpo1
nlocm1=ncpo1-multi
if(nlocm1.eq.0)nlocm1=ncpo1
kount=mod(nloc,ncpo1)
indx=nloc+kount+multi-1
if(indx.gt.ncpo1)indx=indx-ncpo1
cp(i,j,k)=0.
do n=1, ncpo1-indx+2
 m= indx-ncpo0+n-1
 cp(i,j,k)=cp(i,j,k)+
     cpo0(i,j,n)*p(i,j,m)
end do
do n= ncpo1-indx+2, ntau
 m= indx-ncpo0+n-1
 cp(i,j,k)=cp(i,j,k)+
     cpo0(i,j,n)*p(i,j,m)
end do

Incorporating this change into the program (the
“improved” version) reduced the time for
running 2000 time steps from 1468 seconds to
391 seconds a factor of 3.75 times
improvement.

    The MTA spreads the work of the nested  do
loops across processors by assigning sets of i,j
values to individual threads.  This would be
very efficient if each block had the same amount
of work.  However for this application, the
amount of work performed at a dispersive grid
point is over fifty times more than at a regular
grid point.  Once the signal has propagated into
a sufficient portion of the grid a load imbalance
of the assignment of work to processor occurs.
In order to better balance the load on the MTA
the $MTA LOOP FUTURE directive is inserted
before the do loops over the x and z dimensions
of the grid.  The MTA then treats the nested do
as a single do loop of size 4 million and starts
assigning a single pass through the loop to a
single thread until all threads have work.  When
a thread completes, then the next pass through
the loop is immediately assigned to that thread.

This continues until all passes through the loop
are completed.  The use of the F U T U R E
directives (in the “future” version of the
program) reduced the processing time for the
two thousand time steps from 391 seconds to
122 seconds or 3.3 times faster.

   An alternate way to balance the load is to split
the nested do loops over the x and z dimensions
of the grid into two separate loops the first loop
a double nested do that performs the non-
dispersive part of the calculation over all of the
points and the second a loop only over the
dispersive grid points to calculate the
contribution from dispersion.  In each case, the
body of the loop contain the same amount of
work per pass and the extra work required by
the FUTURES approach.  This method (“split”
program) of load balancing reduced the running
time from the 131 seconds of the future method
to 95 seconds an improvement of 1.3.

     The final program “new kernel” was
developed by using the CRAY canal utility to
analyze the non-dispersive FDTD update.  After
trying several different ways of rewriting the
doubly nested do loop that performs the non-
dispersive update a better representation was
found namely.

pi,j(t+1)=e1i,j*pj,j(t)
    +e2i,j*(pi+1,j(t)+pi,j+1(t)+pi-1,j(t)+pi,j-1(t))
    +e3i,j*(pi+2,j(t)+pi-2,j(t)+pi,j+2(t)+pi,j-2(t))
    +e4i,j*(pi+1,j+1(t)+pi-1,j+1(t))+pi+1,j-1(t)+pi-1,j-1(t))

where e1, e2, e3, and e4 are independent of the
time step and need be computed only once. This
reduced the cost of evaluating the update on a
single grid point from 44 instructions requiring
33 memory accesses and 40 floating point
operations to 21 instructions requiring 19
memory accesses and 19 floating point
operations.  This cut the time to perform the
non-dispersive update by over 50% and the
overall time from 95 seconds to 83 seconds.

     The table below gives a summary of running
the codes for 2000 steps for 4 and 40 processors
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Code 4 proc 40 proc Speedup
original 7042 1468 4.7
improved 2047 391 5.2
future 889 131 6.7
split 892 95 9.3
new kernel 784 83 9.4

Table 2. Time for 2000 time steps for 4 and 40
processors.

     Further analysis of the running of the code
on 40 processors was made by using mtatop
(Cray’s version of the UNIX top command) to
measure the CPU utilization (in %), memory
transfer rate, (in 64-bt words) and floating point
(adds and multiplies) operation rate for each of
the codes.

Code Util % GMops GFlops
original 43 0.4 0.2
improved 46 0.6 0.4
future 90 0.9 0.7
split 96 0.9 0.7
new kernel 89 0.9 0.7

Table 3. CPU utilization, memory access rate,
and floating point  rates on 4 processors

Code Util % GMops GFlops
original 25 0.7 0.5
improved 28 1.9 1.9
future 84 6.6 5.3
split 95 6.8 8.3
new kernel 89 7.5 7.1

Table 4. CPU utilization, memory access rate,
and floating point rates on 40 processors.

   From a previous study[11] for a case where
the dispersive region made up only an extremely
small part of the region ( less than 1%) we had
expected that all of the codes would show a high
percentage of utilization.  This was not the case
for the original and improved versions of the
codes for this case (where 5% of the region was
dispersive).  The poor cpu utilization was due to
poor load balancing by the default assignment

of the nested do’s to threads.  In the cases where
we had finer grain assignment of loops to
processors, each pass through the loops required
nearly the same amount of work utilization as
above 95%

5. Results

    Results will be shown of the backscattered
field collected at the source location as a
function of time. In order to evaluate the impact
that the composite plume has on the backscatter
field, the backscattered field was generated for
various combinations of plume composition.
The first solution is when no plume is present
with only the rough surface and serves as a
benchmark. Next, the beta plume is added to the
rough surface and the backscatter field is
determined for this case. Then the beta plume is
replaced with the gamma plume attached to the
rough surface and its backscattered field
determined. Finally the backscattered field for
the composite bubble cloud, which consists of
both the beta, and gamma plume attached to the
rough surface is determined.

  Figure 2 compares the backscattered field from
the rough surface without any plume attached
(solid line) to the case where the gamma plume
is attached to the rough surface (dotted line).
Note that the two results are nearly identical,
indicating that the gamma plume even though
spatially large has very little effect on the
backscatter field. This is because the dispersive
effects of this plume are very weak as the
frequency dependent sound speed is very close
to the non-dispersive sound speed of 1500 m/s.
and the frequency dependent attenuation is very
weak.

The backscattered field from the beta plume
attached to the rough surface was compared to
the backscattered field from the composite
bubble cloud attached to the rough surface.
However since no difference was observed, the
comparison is not shown. This result though
does support the results observed in Fig. 2 in
that the gamma plume has very little effect of
the backscattered field.
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Figure 2: Comparison of the backscattered
field from the rough surface without any plumes
(solid line) with the backscattered field from the
gamma plume attached to the rough surface
(dotted line).

Figure 3 compares the backscattered field
from the composite bubble cloud attached to the
rough surface (dotted line) and the rough
surface alone (solid line). There are observable
differences for these two cases. This indicates
that the beta plume is responsible for the
differences observed. Even though the spatial
extent of this plume is small, its dispersive
nature is such that it has a major impact upon
the backscattered field. It should be pointed out
however that, although scattering by the beta
plume is dominant, if calculations are repeated
over an ensemble of surface realisations, as
should be the case for a more complete analysis,
the surface contribution to the total field would
increase. And the backscatter will also be
enhanced by the upper refractive effect inside
the gamma plume.

Due to the fact that these fields are produced
via numerical modeling, one can easily subtract
out the effects of the rough surface leaving the
effects solely due to the dispersive
characteristics of the individual plumes. Thus
Fig. 3 compares the backscatter results after the
rough surface effects have been subtracted out
of the time series leaving only the effects of the
plume. First note the difference in amplitude of
the backscattered field. It is approximately one
third as strong as when the rough surface is
present. Additionally note that the backscattered

field from the beta plume (solid line) and the
composite bubble cloud (dashed line) are nearly
identical. This tracks our previous finding that
the beta plume is the major contributor to the
backscattered field. In addition note that the
peak values associated with the beta plume
(solid line) and composite bubble cloud (dashed
line) is smaller than for the gamma plume
(dotted plume). This is in accordance with the
dispersive character of the plumes. The beta
plume has a larger frequency dependent
attenuation associated with it than does the
gamma plume.
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Figure 3: Comparison of the backscattered
field with the rough surface effects removed for
the beta plume (solid line), gamma plume
(dotted line); and the composite bubble cloud
(dashed line).

6 Conclusions

Due to the architecture of the MTA
implementing the standard FDTD method of
solving the propagation equation and including
the effects of dispersion was very
straightforward.  In particular we did not have to
worry about laying out the data to be either
cache friendly or to be spread out across a set of
distributed processors.  The fastest imple-
mentation of the code (i. e. the one with the
smallest wall clock time) operated at 90%
utilization of the cpu and used 85% of he
available bandwidth of the machine.
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