
Quantum-ESPRESSO Performance on Cray Systems

Roberto Ansaloni, Cray Italy, Carlo Cavazzoni and
Giovanni Erbacci, (CINECA)

ABSTRACT: Quantum-ESPRESSO (opEn-Source Package for Research in Electronic
Structure, Simulation, and Optimization) is a Total Energy and Molecular Dynamics
simulation package based on Density-Functional Theory, using a Plane-Wave basis set
and Pseudopotentials. The Quantum-ESPRESSO package is composed by three main
simulation engines: PWscf for Total Energy and Ground State properties, FPMD for
Car-Parrinello molecular dynamics with norm-conserving pesudopotentials, and CP for
Car-Parrinello molecular dynamics with ultra-soft pseudopotentials.Quantum-
ESPRESSO suite has been ported and optimized on Cray vector and MPP systems. This
talk will discuss some porting and optimization issues and will report on the performance
achieved.

KEYWORDS: DFT, Quantum-ESPRESSO, modeling, molecular dynamics, FFT

Introduction

The Quantum-ESPRESSO package is an open-source
collection of state-of-the-art codes for density-functional
theory (DFT1) calculations of electronic structure, based
on plane waves and pseudopotentials. It is used by a large
community of material science researchers for computer
simulations. Quantum-ESPRESSO includes the
following codes:

• PWscf, a code for electronic structure, structural

optimization, molecular dynamics, vibrational and
dielectric properties2;

• FPMD, a Car-Parrinello variable-cell molecular
dynamics code for norm-conserving
pseudopotentials3;

• CP, a Car-Parrinello variable-cell molecular
dynamics code for ultrasoft pseudopotentials4. (The

1 P.C. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864.
2 Developed by S. Baroni, S. de Gironcoli, A. Dal Corso
(SISSA, Trieste), P. Giannozzi (Scuola Normale, Pisa) and
others.
3 Developed by C. Cavazzoni (CINECA, Bologna), S. Scandolo
(ICTP, Trieste), G. Chiarotti (SISSA, Trieste), P. Focher, G.
Ballabio and others.
4 Developed by A. Pasquarello (IRRMA, Lausanne), K.
Laasonen (Oulu), A. Trave (UCBerkeley), R. Car (Princeton), P.
Giannozzi, N. Marzari (MIT) and others

two Car-Parrinello codes are based on the original
code written by R. Car and M. Parrinello5.)

Quantum-ESPRESSO also includes these auxiliary codes:

• Pwgui, a graphical interface for producing input data

files for PWscf6;

• atomic, a program for atomic calculations and
generation of pseudopotentials.

Quantum-ESPRESSO codes share a common installation
method, input format, data output format, and
pseudopotentials format, as well as parts of the basic
code. The codes have been the subject of papers in a
number of scientific journals.

These codes are also well-suited for parallel
supercomputers. This is because DFT allows you to
perform simulations with quantum mechanical accuracy,
since the full electronic problem is solved for the
simulation box. So, the computational cost of DFT is in
the determination of inter-atomic potential.

5 R. Car, M. Parrinello, Phys. Rev. Lett. 55 (1985) 2471.
6 written by Anton Kokalj (IJS, Ljubljana).

Quantum-Espresso Performance on Cray Systems
1 of 8

Car-Parrinello Algorithm and Code Parallelization

Car-Parrinello molecular dynamics simulations are
among the most diffused material science applications run
on supercomputers, so it is important to evaluate their
performance on Cray systems. To that end, we have
performed a set of FPMD benchmarks on Cray systems.

In the Car–Parrinello method, forces that act on atoms are
calculated from the full quantum mechanical solution of
the electronic problem, based on DFT. Here, a
hypothetical dynamic system that represents the physical
system is introduced. Its potential energy surface E ,
derived from the Car-Parrinello lagrangian, is an
appropriate function of both ionic and electronic degrees
of freedom, with electronic wave functions treated as
classical fields. This system is devised so that the ionic
trajectories generated by its dynamics closely reproduce
those of the physical system in the Born–Oppenheimer
(BO) approximation. The CP algorithm scheme is
illustrated in Figure 1.

Figure 1. Scheme of the CP loop – a turn is completed
each time step. The light yellow operations (computation
of charge density, and computation of electronic forces)
are the heaviest operations. They involve three series of

FFT transformations (two forward, one backward), one
FFT for each couple of electrons (one electronic state in
LDA approximation).

Ab-initio total energy (Ε), interaction potential (V), and
ionic and electronic forces (,) are

functions of the ionic positions () and of the charge
density (

IRE ∂∂ / */ iE δψδ−

IR
)(rρ) of the system, which is defined as:

∑=

i
i rr 2)()(ψρ

where iψ are single particle electronic wave functions.
Periodic boundary conditions allow the expansion of the
electronic wave functions in plane waves. As a
consequence, the wave function for the electronic state is
expressed as:

∑=
G

ii iGrGCr)exp()()(ψ

where G represents vectors in reciprocal space. The basis
set for this expansion is reduced to a finite set by
truncating the sum over G to include only those plane
waves with a kinetic energy K=1/2|G|2, less than a given
energy cutoff Ec. It is clear that the choice of Ec
determines the accuracy of the calculation of the DFT
energy. With the atomic positions (R), the fourier
coefficients (C) are propagated in the main dynamic loop
as classical degrees of freedom. They are then
transformed to real space in order to compute the charge
density (see Figure 2).

Figure 2. Computation of the charge density. Starting
from the wave-functions in reciprocal space (top-left
panel) a series of FFT is performed to transform them
into real space (bottom-left panel). In real space, the
single state wave functions are summed up to give the
charge density in real space (bottom-right panel).

Quantum-Espresso Performance on Cray Systems
2 of 8

Finally, the real space charge density is transformed back
to reciprocal space, using a single FFT (top-right panel).

To compute the energy, potentials, and forces, we need to
represent physical quantities (charge density and wave
functions) in both spaces. This is because some terms of
the energy are diagonal (local) in reciprocal space, and
other terms are diagonal in real space. This determines
the presence of two types of arrays in the code:

• 3D arrays that store quantities represented in real

space, and;

• 1D arrays that store quantities represented in
reciprocal space (where G vectors are ordered
according to their module).

A fast Fourier algorithm (FFT) is used to transform
quantities from real space to reciprocal space. In real
space, a unique 3D mesh is used to represent both charge
density and potentials; and in reciprocal space, a smaller
mesh is used to represent wave functions (G vectors up to
|G|2/2<Ec) and a larger mesh represents potentials (G
vectors up to |G|2/2<4Ec). Potentials span a larger space
since they are functions of the charge density, which in
reciprocal space is a convolution of wave functions.

The presence of quantities that span both reciprocal
meshes requires a careful data distribution to balance the
workload.

In Figure 3, we show an example with 4 PEs (Np = 4) to
illustrate how reciprocal vectors are distributed in our
code. Ng and Ngw are the number of vectors whose
kinetic energies are smaller than 4Ec and Ec, respectively.
Vectors up to Ec are divided among PEs according to the
FFT scheme (see Figure 5), under the criterion that each
processor should have Ngw/Np G vectors; the remaining
(Ng - Ngw) vectors up to 4Ec are then distributed with the
same algorithm, but this time the number of G vectors on
each processor is as close as possible to (Ng – Ngw)/Np.

Figure 3. Vectors of the reciprocal space stored in a
single processor memory (left) and mapped to processors
(right).

Real space 3D arrays are subdivided into blocks across
the PEs (see Fig. 4). In particular we have distributed the
z-dimension of the 3D real space mesh, while the y- and
x-dimensions are not distributed (see Fig. 4). This
guarantees good load balance for a wide range of numbers
of processors and mesh sizes, yet it still allows the 3D-
FFT algorithm (see below) to be based on 1D/2D FFT
scalar routines.

Figure 4. Vectors of the real space stored in a single
processor memory (left) and mapped to processors
(right).

Given this data distribution, in practice only two
algorithms need to be parallelized, 3D FFT, and wave
function orthogonalizations. All communication and
synchronization are then confined to these two points in
the CP algorithm.

Quantum-Espresso Performance on Cray Systems
3 of 8

The FFT Routine

The FFT routine is called repeatedly to transform
wave functions, charge density, and potentials back and
forth between reciprocal and real space. (Typical
applications spend nearly two-thirds of processing time
on this task.) The size of the real space mesh is fixed by
the charge density, and corresponds, in reciprocal space,
to the mesh that contains the sphere of G vectors with a
kinetic energy smaller than 4Ec. Wave functions, whose
Fourier components have a kinetic energy smaller than
Ec, must be transformed on the same real mesh as the
charge density. Since standard FFT algorithms operate
between meshes of the same size, the wave functions in
our case should be copied into a bigger mesh, and then
transformed. It is clear that in this way a large amount of
time is wasted in transforming elements with zero value.
To optimize this operation, we implement an ad hoc FFT
algorithm for wave functions, shown here:

Figure 5. 3D FFT ad-hoc algorithm (see text).

This algorithm is for four PEs (Np = 4), and
transformation from reciprocal to real space. It takes
advantage of the fact that a 3D FFT is a linear
superposition of three subsequent series of 1D FFTs,
along the Cartesian coordinates. For each series, only
those 1D FFTs containing non-zero elements are
evaluated. In the left panel is a top view of the FFT grid
(Nx;Ny;Nz) together with the cut-off radius. This
example illustrates what happens when the first FFT
transformation is performed along the z-direction. Sticks
(that is, columns along the z-direction) are allocated by
the PEs only if they contain at least one G vector of the
inner sphere. Allocated sticks are assigned to the PEs
(see color code) in such a way that the number of FFTs
per PE differs, at maximum, by one, and only in the case
that the number of columns is not a multiple of the
number of PEs. The total number of 1D FFTs performed
in this step is approximately 1 / 5 the number of a

standard 3D FFT algorithm (NxNy). The transformed
columns are then transposed to distribute the z-direction
across PEs.

The transposition, like the whole FFT, has been
implemented with the particular distribution of non-zero
elements in mind: it involves local data collection and an
all-to-all communication. On the Cray X1 system, thanks
to co-array, the transposition has been implemented using
just one communication step, without data collection and
buffering (see below).

As is the case for z-sticks, only those columns that
contain at least one non-zero element are likewise
transformed along the y-direction (Figure 5, middle
panel). Here the number of 1D FFTs is reduced by 1/2
(NxNz/2) with respect to standard routines.

Finally, the last series of FFT transformations are
performed along the x-direction.

Orthogonalization

The orthogonal constraints for the wave functions are
satisfied by solving a matrix equation of size Nb2, where
Nb is the number of electronic states. Terms entering this
equation are calculated through scalar products between
wave functions, giving a complexity of Ngw Nb2. The
solution of the matrix equation instead has a complexity
Nb3 and involves both matrix multiplications and a matrix
diagonalization. In the present implementation of the
code, depending on the number of bands and processors,
the subroutine solving this equation can use scalar or
parallel algorithm. Usually if the relation Nb/Np > 32
holds, it is convenient to use the parallel algorithm.

Porting to Cray Systems

The Quantum-ESPRESSO suite has been ported to
several Cray systems ranging from MPP vector systems
like the Cray X1, to Opteron based systems like the Cray
XD1 and the Cray XT3 systems.

Some optimizations have been carried out on the Cray X1
version to exploit specific vectorized FFT routines and
co-array based communication routines (CAF) in the
matrix transposition section of the 3D FFT algorithm.

The 3D FFT algorithm is implemented using local 1D and
2D multiple FFT routines, and by isolating the
communication part into a specific FFT_transpose
routine.

Quantum-Espresso Performance on Cray Systems
4 of 8

Local FFTW routines have been replaced by the
optimized and vectorized LibSci FFT routines. The main
FFT algorithm is implemented by using 2D (X and Y
directions cft2_xy) and 1D (Z direction cft_1z) multiple
FFT routines.

LibSci routines CCFFTM (stride=1) and MCFFT
(variable stride) are used.

Furthermore, 2D array sections have been packed to
increase the number of multiple FFT performed, thus
increasing the vector length and improving the
performance.

Original FFT_transpose MPI implementation uses a send
and a receive buffer to hold array data:

 DO ipz = 1, npz
 itag = mype + 1 + npz * (ipz - 1)
 call mpi_irecv (
 rcvbuf(1,ipz), nbuf, MPI_DOUBLE_COMPLEX,
 END DO

 DO ipz = 1, npz
 k_start = (ipz - 1) * nz_l + 1
 k_end = k_start + nz_l - 1
 offset = - k_start + 1
 DO is = 1, ns_l
 DO k = k_start , k_end
 sndbuf(k + offset, ipz) =
 zstick(k + (is-1)*ldz)
 END DO
 offset = offset + nz_l
 END DO
 itag = ipz + npz * mype
 CALL mpi_isend(
 sndbuf(1,ipz), nbuf, MPI_DOUBLE_COMPLEX,
 END DO

111 CONTINUE
 DO IPZ = 1, NPZ
 call mpi_test(
 irhand(ipz),rtest(ipz),istatus(1,ipz),
 IF(rtest(ipz).AND..NOT.rdone(ipz)) THEN
 offset = 0
 is_offset = dfft%iss(ipz)
 DO is = 1, ns_lp - 1
 mc1 = stmask(is + is_offset)
 DO k = 1 , nz_l
 r(+ (k-1)*ldx*ldy) =
 rcvbuf(k + offset, ipz)
 END DO
 offset = offset + nz_l
 END DO
 rdone(ipz) = .TRUE.
 END IF
 END DO
 IF(.NOT. ALL(rtest)) GO TO 111

r (stmask(is+is_offset), 1:nz_l)

zstick (1:nz_l, is)

PE0 PE1 PE2 PE3

MPI
sndbufrcvbuf

r (stmask(is+is_offset), 1:nz_l)

zstick (1:nz_l, is)

PE0 PE1 PE2 PE3

MPI
sndbufrcvbuf

Figure 6. Transposition using buffers and MPI.

By using CAF it is possible to avoid buffering operation
and transfer data directly from/to user arrays.

r (stmask(is+is_offset), 1:nz_l)

zstick (1:nz_l, is)

PE0 PE1 PE2 PE3
r (stmask(is+is_offset), 1:nz_l)

zstick (1:nz_l, is)

PE0 PE1 PE2 PE3

Figure 7. Transposition using CAF.

This can be implemented with a pretty simple coding,
once proper pointers are defined:

 TARGET zstick
 TYPE CAFP
 COMPLEX, DIMENSION(:), POINTER :: p
 END TYPE CAFP
 TYPE (CAFP) pzstick[*]
 …
 pzstick%p => zstick(1:n)
 call sync_all()
 …
 DO ipz = 1, npz
 k_start = (me - 1) * dfft%npp(ipz)
 is_offset = dfft%iss(ipz)
 DO is = 1, ns_lp
 mc1 = stmask(is + is_offset)
 DO k = 1 , nz_l
 r(mc1 + (k-1)*ldx*ldy) =
 pzstick[ipz]%p(k_start+k+(is-1)*ldz)
 END DO
 END DO
 END DO

No modifications or optimizations have been performed
so far on the Cray XD1 and XT3 systems. Standard code
is supported by the PGI compiler and FFTW routines.

Quantum-Espresso Performance on Cray Systems
5 of 8

Benchmarks

The physical system considered for our benchmarks
is a super-cell (37.33 atomic units) that contains 256
water molecules. The plane waves basis set for wave
functions has been truncated with an energy cut-off of
70Rydberg. The effects of the inner shell, are described
by the ab initio pseudopotentials of Troullier-Martins7
that produce valence orbitals smooth within the core
regions. Exchange and correlation energy contributions
have been evaluated using the Becke-Lee-Yang-Parr
(BLYP) functional8.

For this benchmark system relevant array sizes are
reported in Table 1, with these values the overall allocated
memory is 32Gbyte.

FFT Grid Nx, Ny, Nz 220, 220, 220
Electronic states Nb 1024
Plane waves (wave functions) Ngw 513171
Plane waves (charge density) Ng 4105867
Number of atoms Nat 768

Table 1. Main dimensions of the 256 H2O molecules
system used for the benchmark.

Benchmark Results

The H2O – 256 molecules test has been executed on
several systems described in Table 2.

System Processor Peak

cpu
Gflop/s

Inter
connect

Ncpus

Cray
X1

Cray MSP
800 MHz

12.8 Custom
Cray

16 – 64

Cray
XD1

Opteron
2.4 GHz

4.8 Cray
RapidArray

16 – 64

Cray
XT3

Opteron
2.4 GHz

4.8 Cray
SeaStar

64 -96

IBM
p690

IBM
Power4
1.3 GHz

5.2 IBM HPS
Federation

32 –
128

IBM
Blade
Center
HS20

Intel Xeon
3.06 GHz

6.1 Myrinet
LAM C-D

32 –
128

Table 2. Computer systems used for the benchmark.

7 N. Troullier and J.L. Martins, Phys. Rev. B 43,
1993 (1991).
8 A.D. Becke, Phys. Rev. A 38, 3098 (1988). C.
Lee, W. Yang, and R.G. Parr, Phys. Rev. B 37, 785
(1988).

In Table 3, the performance results obtained on the Cray
system (and on other systems available at Cineca) are
displayed.

CPUs Cray

X1
Cray
XD1

Cray
XT3

IBM
p690

IBM
HS20

16 74 254
32 45 142 233 293
64 27 68 62 110 153
128 61 93

Table 3. Benchmark results. Values are in seconds, and
they are obtained averaging over 10 Car-Parrinello
molecular dynamics steps.

Note that the Cray XT3 system is running pre-release
software. As soon as an improved Portals communication
layer becomes available, system performance is expected
to improve significantly.

Figures 8 and 9 show the timings and the performance of
the code on the systems considered.

Quantum-Espresso Performance on Cray Systems
6 of 8

10 30 100
10

100

1000

CPUs

se
co

nd
s

/ t
im

e
st

ep

FPMD - 256 Water Molecules

Cray X1
Cray XD1
Cray XT3
IBM p690

 IBM HS20

Figure 8. FPMD timings (seconds) on H2O 256 molecules benchmark.

FPMD - H2O-256 - Performance

0

20.000

40.000

60.000

80.000

100.000

120.000

140.000

160.000

180.000

0 32 64 96 128

ncpus

M
flo

p/
s

Cray X1
Cray XD1
Cray XT3
IBM p690
IBM HS20

Figure 9. FPMD performance (Mflop/s) on H2O 256 molecules benchmark.

Quantum-Espresso Performance on Cray Systems
7 of 8

In Table 4, the timings for the FFT section of the
algorithms obtained on 64 processors, are displayed.

System FFT
comp

FFT
transpose

FFT
total

Cray X1 7.90 3.19 11,10
Cray XD1 14.90 12.00 26,90
Cray XT3 15.32 10.57 25,89
IBM p690 19.37 20.13 39,50
IBM HS20 24.05 22.94 46,98

Table 4. FFT timings on 64 processors. Values are in
seconds, and they are obtained averaging over 10 Car-
Parrinello molecular dynamics steps.

Figure 10. FPMD FFT timings (seconds) on H2O 256
molecules benchmark.

Performance Considerations

We can observe that, in spite of the nominal peak
performance (see Table 2), Cray XD1 and Cray XT3 are
faster than the IBM p690 and IBM HS20 clusters.
An explanation for that can be found in the different
memory architecture and interconnect performance.

While Opteron-based systems can exploit Direct Connect
Hypertransport memory connections running at 6.4
Gbyte/s peak, the other systems connect multi-cpu nodes
to memory through a memory bus.

In particular, on IBM HS20 Xeon node, the memory and
the 512 KB level 2 cache are accessed through a memory
bus shared between two processors. This limits the

performance, especially for floating point and memory
intensive application.

On IBM p690 the Power4 processor hosts a larger 1.44
MBytes level2 cache shared between two processors, but
the high processor peak performance is only reachable if
both the floating point units are used; since this is not
always true for a user application, only when IBM
proprietary ESSL library is used it is possible to sustain a
number of floating point operations per clock close to 4.

Furthermore, interconnect performance plays an
important role in global performance, especially for large
processor counts. This is particularly evident in the case
of the 3D FFT transform: as shown in Figure 9 the time
spent in data movement across the distributed memory is
about twice on IBM p690 and HS20 clusters than that on
Cray Opteron-based systems. This is due to the superior
performance of Cray custom RapidArray and SeaStar
interconnects. FFT timings at 64 processors

0

5

10

15

20

25

30

35

40

45

50

Cray X1 Cray XD1 Cray XT3 IBM SP4 Intel cluster

tim
e

(s
ec

s)

comp
trans

Completely different considerations should be drawn
about the Cray X1 vector system.

In some cases computation can exploit the vector
processors by using highly tuned library routines (for
example, LibSci FFT): this implementation has generally
required significant code modifications.

On other computational kernels, the Cray X1 is unable to
achieve significant fractions of peak performance due to
the scalar nature of the algorithms involved (for example,
orthogonalization).

Usage of CAF syntax allows the Cray X1 to achieve very
good performance on the FFT transpose algorithm. Of
course this optimization has required significant code
modifications, but this can often be seen as an algorithm
simplification producing a more readable code.

Conclusion and future work

FPMD code has been shown to be extremely portable
to Cray systems: apart from the Cray X1 vector system,
no porting modification has been required to get the code
to run efficiently on the systems considered.

In general, FPMD shows good scalability features, in
some cases emphasized by high performance network
interconnects.

We plan to extend the work performed so far to the other
components of the Quantum Espresso suite; and we
expect to get a confirmation to its portability and
scalability features.

Quantum-Espresso Performance on Cray Systems
8 of 8

	Introduction
	Car-Parrinello Algorithm and Code Parallelization
	Inter

