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ABSTRACT: Quantum-ESPRESSO (opEn-Source Package for Research in Electronic 
Structure, Simulation, and Optimization) is a Total Energy and Molecular Dynamics 
simulation package based on Density-Functional Theory, using a Plane-Wave basis set 
and Pseudopotentials. The Quantum-ESPRESSO package is composed by three main 
simulation engines: PWscf for Total Energy and Ground State properties, FPMD for 
Car-Parrinello molecular dynamics with norm-conserving pesudopotentials, and CP for 
Car-Parrinello molecular dynamics with ultra-soft pseudopotentials.Quantum-
ESPRESSO suite has been ported and optimized on Cray vector and MPP systems.  This 
talk will discuss some porting and optimization issues and will report on the performance 
achieved. 
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Introduction 

The Quantum-ESPRESSO package is an open-source 
collection of state-of-the-art codes for density-functional 
theory (DFT1) calculations of electronic structure, based 
on plane waves and pseudopotentials.  It is used by a large 
community of material science researchers for computer 
simulations.  Quantum-ESPRESSO includes the 
following codes:  

 
• PWscf, a code for electronic structure, structural 

optimization, molecular dynamics, vibrational and 
dielectric properties2;  

• FPMD, a Car-Parrinello variable-cell molecular 
dynamics code for norm-conserving 
pseudopotentials3; 

• CP, a Car-Parrinello variable-cell molecular 
dynamics code for ultrasoft pseudopotentials4. (The 

                                                 

                                                

1 P.C. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864. 
2 Developed by S. Baroni, S. de Gironcoli, A. Dal Corso 
(SISSA, Trieste), P. Giannozzi (Scuola Normale, Pisa) and 
others. 
3 Developed by C. Cavazzoni (CINECA, Bologna), S. Scandolo 
(ICTP, Trieste), G. Chiarotti (SISSA, Trieste), P. Focher, G. 
Ballabio and others. 
4 Developed by A. Pasquarello (IRRMA, Lausanne), K. 
Laasonen (Oulu), A. Trave (UCBerkeley), R. Car (Princeton), P. 
Giannozzi, N. Marzari (MIT) and others 

two Car-Parrinello codes are based on the original 
code written by R. Car and M. Parrinello5.)  

Quantum-ESPRESSO also includes these auxiliary codes:  
 
• Pwgui, a graphical interface for producing input data 

files for PWscf6;  

• atomic, a program for atomic calculations and 
generation of pseudopotentials.  

Quantum-ESPRESSO codes share a common installation 
method, input format, data output format, and 
pseudopotentials format, as well as parts of the basic 
code. The codes have been the subject of papers in a 
number of scientific journals. 
 
These codes are also well-suited for parallel 
supercomputers.  This is because DFT allows you to 
perform simulations with quantum mechanical accuracy, 
since the full electronic problem is solved for the 
simulation box.  So, the computational cost of DFT is in 
the determination of inter-atomic potential. 

 

 
5 R. Car, M. Parrinello, Phys. Rev. Lett. 55 (1985) 2471. 
6 written by Anton Kokalj (IJS, Ljubljana). 
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Car-Parrinello Algorithm and Code Parallelization 

Car-Parrinello molecular dynamics simulations are 
among the most diffused material science applications run 
on supercomputers, so it is important to evaluate their 
performance on Cray systems.  To that end, we have 
performed a set of FPMD benchmarks on Cray systems. 

 
In the Car–Parrinello method, forces that act on atoms are 
calculated from the full quantum mechanical solution of 
the electronic problem, based on DFT.  Here, a 
hypothetical dynamic system that represents the physical 
system is introduced.  Its potential energy surface E  , 
derived from the Car-Parrinello lagrangian, is an 
appropriate function of  both ionic and electronic degrees 
of freedom, with electronic wave functions treated as 
classical fields.  This system is devised so that the ionic 
trajectories generated by its dynamics closely reproduce 
those of the physical system in the Born–Oppenheimer 
(BO) approximation. The CP algorithm scheme is 
illustrated in Figure 1.  

 

 
Figure 1. Scheme of the CP loop – a turn is completed 
each time step. The light yellow operations (computation 
of charge density, and computation of electronic forces ) 
are the heaviest operations.  They involve three series of 

FFT transformations (two forward, one backward), one 
FFT for each couple of electrons (one electronic state in 
LDA approximation). 

 
 

Ab-initio total energy (Ε), interaction potential (V), and 
ionic and electronic forces ( , ) are 

functions of the ionic positions ( ) and of the charge 
density (

IRE ∂∂ / */ iE δψδ−

IR
)(rρ ) of the system, which is defined as: 

 
∑=

i
i rr 2)()( ψρ  

 
where iψ are single particle electronic wave functions. 
Periodic boundary conditions allow the expansion of the 
electronic wave functions in plane waves. As a 
consequence, the wave function for the electronic state is 
expressed as: 

∑=
G

ii iGrGCr )exp()()(ψ  

where G represents vectors in reciprocal space.  The basis 
set for this expansion is reduced to a finite set by 
truncating the sum over G to include only those plane 
waves with a kinetic energy K=1/2|G|2, less than a given 
energy cutoff Ec. It is clear that the choice of Ec 
determines the accuracy of the calculation of the DFT 
energy. With the atomic positions (R), the fourier 
coefficients (C) are propagated in the main dynamic loop 
as classical degrees of freedom.  They are then 
transformed to real space in order to compute the charge 
density (see Figure 2). 

 

 
Figure 2. Computation of the charge density. Starting 
from the wave-functions in reciprocal space (top-left 
panel) a series of FFT is performed to transform them 
into real space (bottom-left panel).  In real space, the 
single state wave functions are summed up to give the 
charge density in real space (bottom-right panel).  
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Finally, the real space charge density is transformed back 
to reciprocal space, using a single FFT (top-right panel). 

 
To compute the energy, potentials, and forces, we need to 
represent physical quantities (charge density and wave 
functions) in both spaces.  This is because some terms of 
the energy are diagonal (local) in reciprocal space, and 
other terms are diagonal in real space.  This determines 
the presence of two types of arrays in the code: 
  
• 3D arrays that store quantities represented in real 

space, and;  

• 1D arrays that store quantities represented in 
reciprocal space (where G vectors are ordered 
according to their module).  

A fast Fourier algorithm (FFT) is used to transform 
quantities from real space to reciprocal space.  In real 
space, a unique 3D mesh is used to represent both charge 
density and potentials; and in reciprocal space, a smaller 
mesh is used to represent wave functions (G vectors up to 
|G|2/2<Ec) and a larger mesh represents potentials (G 
vectors up to |G|2/2<4Ec).  Potentials span a larger space 
since they are functions of the charge density, which in 
reciprocal space is a convolution of wave functions. 
 
The presence of quantities that span both reciprocal 
meshes requires a careful data distribution to balance the 
workload. 
 
In Figure 3, we show an example with 4 PEs (Np = 4) to 
illustrate how reciprocal vectors are distributed in our 
code. Ng and Ngw are the number of vectors whose 
kinetic energies are smaller than 4Ec and Ec, respectively. 
Vectors up to Ec are divided among PEs according to the 
FFT scheme (see Figure 5), under the criterion that each 
processor should have Ngw/Np G vectors; the remaining 
(Ng - Ngw) vectors up to 4Ec are then distributed with the 
same algorithm, but this time the number of G vectors on 
each processor is as close as possible to (Ng – Ngw)/Np.  

 

 
 

Figure 3. Vectors of the reciprocal space stored in a 
single processor memory (left) and mapped to processors 
(right). 

 
Real space 3D arrays are subdivided into blocks across 
the PEs (see Fig. 4). In particular we have distributed the 
z-dimension of the 3D real space mesh, while the y- and 
x-dimensions are not distributed (see Fig. 4). This 
guarantees good load balance for a wide range of numbers 
of processors and mesh sizes, yet it still allows the 3D-
FFT algorithm (see below) to be based on 1D/2D FFT 
scalar routines. 

 

 
Figure 4. Vectors of the real space stored in a single 
processor memory (left) and mapped to processors 
(right). 

 
Given this data distribution, in practice only two 
algorithms need to be parallelized, 3D FFT, and wave 
function orthogonalizations. All communication and 
synchronization are then confined to these two points in 
the CP algorithm. 
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The FFT Routine 

The FFT routine is called repeatedly to transform 
wave functions, charge density, and potentials back and 
forth between reciprocal and real space.  (Typical 
applications spend nearly two-thirds of processing time 
on this task.)  The size of the real space mesh is fixed by 
the charge density, and corresponds, in reciprocal space, 
to the mesh that contains the sphere of G vectors with a 
kinetic energy smaller than 4Ec. Wave functions, whose 
Fourier components have a kinetic energy smaller than 
Ec, must be transformed on the same real mesh as the 
charge density.  Since standard FFT algorithms operate 
between meshes of the same size, the wave functions in 
our case should be copied into a bigger mesh, and then 
transformed.  It is clear that in this way a large amount of 
time is wasted in transforming elements with zero value.  
To optimize this operation, we implement an ad hoc FFT 
algorithm for wave functions, shown here: 

 

 
Figure 5. 3D FFT ad-hoc algorithm (see text). 

 
 

This algorithm is for four PEs (Np = 4), and 
transformation from reciprocal to real space. It takes 
advantage of the fact that a 3D FFT is a linear 
superposition of three subsequent series of 1D FFTs, 
along the Cartesian coordinates. For each series, only 
those 1D FFTs containing non-zero elements are 
evaluated.  In the left panel is a top view of the FFT grid 
(Nx;Ny;Nz) together with the cut-off radius. This 
example illustrates what happens when the first FFT 
transformation is performed along the z-direction.  Sticks 
(that is, columns along the z-direction) are allocated by 
the PEs only if they contain at least one G vector of the 
inner sphere.  Allocated sticks are assigned to the PEs 
(see color code) in such a way that the number of FFTs 
per PE differs, at maximum, by one, and only in the case 
that the number of columns is not a multiple of the 
number of PEs.  The total number of 1D FFTs performed 
in this step is approximately 1 / 5 the number of a 

standard 3D FFT algorithm (NxNy).  The transformed 
columns are then transposed to distribute the z-direction 
across PEs. 
 
The transposition, like the whole FFT, has been 
implemented with the particular distribution of non-zero 
elements in mind: it involves local data collection and an 
all-to-all communication. On the Cray X1 system, thanks 
to co-array, the transposition has been implemented using 
just one communication step, without data collection and 
buffering (see below). 
 
As is the case for z-sticks, only those columns that 
contain at least one non-zero element are likewise 
transformed along the y-direction (Figure 5, middle 
panel).  Here the number of 1D FFTs is reduced by 1/2 
(NxNz/2) with respect to standard routines.   
 
Finally, the last series of FFT transformations are 
performed along the x-direction. 

Orthogonalization 

The orthogonal constraints for the wave functions are 
satisfied by solving a matrix equation of size Nb2, where 
Nb is the number of electronic states.  Terms entering this 
equation are calculated through scalar products between 
wave functions, giving a complexity of Ngw Nb2. The 
solution of the matrix equation instead has a complexity 
Nb3 and involves both matrix multiplications and a matrix 
diagonalization. In the present implementation of the 
code, depending on the number of bands and processors, 
the subroutine solving this equation can use scalar or 
parallel algorithm.  Usually if the relation Nb/Np > 32 
holds, it is convenient to use the parallel algorithm.  

 

Porting to Cray Systems 

The Quantum-ESPRESSO suite has been ported to 
several Cray systems ranging from MPP vector systems 
like the Cray X1, to Opteron based systems like the Cray 
XD1 and the Cray XT3 systems. 

 
Some optimizations have been carried out on the Cray X1 
version to exploit specific vectorized FFT routines and 
co-array based communication routines (CAF) in the 
matrix transposition section of the 3D FFT algorithm. 

 
The 3D FFT algorithm is implemented using local 1D and 
2D multiple FFT routines, and by isolating the 
communication part into a specific FFT_transpose 
routine. 
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Local FFTW routines have been replaced by the 
optimized and vectorized LibSci FFT routines.  The main 
FFT algorithm is implemented by using 2D (X and Y 
directions cft2_xy) and 1D (Z direction cft_1z) multiple 
FFT routines. 
 
LibSci routines CCFFTM (stride=1) and MCFFT 
(variable stride) are used. 
 
Furthermore, 2D array sections have been packed to 
increase the number of multiple FFT performed, thus 
increasing the vector length and improving the 
performance. 

 
Original FFT_transpose MPI implementation uses a send 
and a receive buffer to hold array data: 
 
    DO ipz = 1, npz 
      itag = mype + 1 + npz * ( ipz - 1 ) 
      call mpi_irecv ( 
       rcvbuf(1,ipz), nbuf, MPI_DOUBLE_COMPLEX, 
    END DO 

 
    DO ipz = 1, npz 
      k_start = ( ipz - 1 )  * nz_l + 1 
      k_end   = k_start  + nz_l - 1 
      offset  = - k_start + 1 
      DO is = 1, ns_l 
        DO k = k_start , k_end 
          sndbuf(k + offset, ipz) =  
            zstick( k + (is-1)*ldz ) 
        END DO 
        offset = offset + nz_l 
      END DO 
      itag = ipz + npz * mype 
      CALL mpi_isend( 
       sndbuf(1,ipz), nbuf, MPI_DOUBLE_COMPLEX,  
    END DO 
 
111 CONTINUE 
    DO IPZ = 1, NPZ 
      call mpi_test( 
        irhand(ipz),rtest(ipz),istatus(1,ipz), 
      IF(rtest(ipz).AND..NOT.rdone(ipz)) THEN 
        offset = 0 
        is_offset = dfft%iss( ipz ) 
        DO is = 1, ns_lp - 1 
          mc1 = stmask( is   + is_offset ) 
          DO k = 1 , nz_l 
            r(+ (k-1)*ldx*ldy) =  
              rcvbuf(k + offset, ipz) 
          END DO 
          offset = offset + nz_l 
        END DO 
        rdone( ipz ) = .TRUE. 
      END IF 
    END DO 
    IF( .NOT. ALL( rtest ) ) GO TO 111 

 
 

r ( stmask(is+is_offset), 1:nz_l ) 

zstick ( 1:nz_l, is ) 

PE0 PE1 PE2 PE3 

MPI 
sndbufrcvbuf

r ( stmask(is+is_offset), 1:nz_l ) 

zstick ( 1:nz_l, is ) 

PE0 PE1 PE2 PE3 

MPI 
sndbufrcvbuf

 
Figure 6. Transposition using buffers and MPI. 

 
By using CAF it is possible to avoid buffering operation 
and transfer data directly from/to user arrays. 

 
 

r ( stmask(is+is_offset), 1:nz_l ) 

zstick ( 1:nz_l, is ) 

PE0 PE1 PE2 PE3 
r ( stmask(is+is_offset), 1:nz_l ) 

zstick ( 1:nz_l, is ) 

PE0 PE1 PE2 PE3 

 
Figure 7. Transposition using CAF. 

 
This can be implemented with a pretty simple coding, 
once proper pointers are defined: 

 
   TARGET zstick 
   TYPE CAFP 
     COMPLEX, DIMENSION(:), POINTER :: p 
   END TYPE CAFP 
   TYPE (CAFP) pzstick[*] 
    … 
   pzstick%p => zstick(1:n) 
   call sync_all() 
    … 
   DO ipz = 1, npz 
     k_start = ( me - 1 )  * dfft%npp( ipz ) 
     is_offset = dfft%iss( ipz ) 
     DO is = 1, ns_lp 
       mc1 = stmask( is   + is_offset ) 
       DO k = 1 , nz_l 
         r( mc1 + (k-1)*ldx*ldy ) =  
           pzstick[ipz]%p(k_start+k+(is-1)*ldz) 
       END DO 
     END DO 
   END DO 
 
No modifications or optimizations have been performed 
so far on the Cray XD1 and XT3 systems.  Standard code 
is supported by the PGI compiler and FFTW routines. 
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Benchmarks 

The physical system considered for our benchmarks 
is a super-cell (37.33 atomic units) that contains 256 
water molecules.  The plane waves basis set for wave 
functions has been truncated with an energy cut-off of 
70Rydberg.  The effects of the inner shell, are described 
by the ab initio pseudopotentials of Troullier-Martins7 
that produce valence orbitals smooth within the core 
regions.  Exchange and correlation energy contributions 
have been evaluated using the Becke-Lee-Yang-Parr 
(BLYP) functional8. 
 
For this benchmark system relevant array sizes are 
reported in Table 1, with these values the overall allocated 
memory is 32Gbyte. 

  
FFT Grid Nx, Ny, Nz 220, 220, 220
Electronic states Nb 1024 
Plane waves (wave functions) Ngw 513171 
Plane waves (charge density) Ng 4105867 
Number of atoms Nat 768 

Table 1. Main dimensions of the 256 H2O molecules 
system used for the benchmark. 

Benchmark Results 

The H2O – 256 molecules test has been executed on 
several systems described in Table 2. 

 
System Processor Peak 

cpu 
Gflop/s 

Inter 
connect 

Ncpus 

Cray 
X1 

Cray MSP 
800 MHz 

12.8 Custom 
Cray  

16 – 64 

Cray 
XD1 

Opteron  
2.4 GHz 

4.8 Cray 
RapidArray 

16 – 64 

Cray 
XT3 

Opteron  
2.4 GHz 

4.8 Cray 
SeaStar 

64 -96 

IBM 
p690 

IBM 
Power4  
1.3 GHz  

5.2 IBM HPS 
Federation 

32 – 
128 

IBM 
Blade 
Center 
HS20 

Intel Xeon 
3.06 GHz 

6.1 Myrinet 
LAM C-D 

32 – 
128 

Table 2. Computer systems used for the benchmark. 

                                                 
7 N. Troullier and J.L. Martins, Phys. Rev. B 43, 
1993 (1991). 
8 A.D. Becke, Phys. Rev. A 38, 3098 (1988).  C. 
Lee, W. Yang, and R.G. Parr, Phys. Rev. B 37, 785 
(1988). 

In Table 3, the performance results obtained on the Cray 
system (and on other systems available at Cineca) are 
displayed. 
 
CPUs Cray 

X1 
Cray 
XD1 

Cray 
XT3 

IBM 
p690 

IBM 
HS20 

16 74 254    
32 45 142  233 293 
64 27 68 62 110 153 
128    61 93 

Table 3. Benchmark results. Values are in seconds, and 
they are obtained averaging over 10 Car-Parrinello 
molecular dynamics steps. 

 
Note that the Cray XT3 system is running pre-release 
software.  As soon as an improved Portals communication 
layer becomes available, system performance is expected 
to improve significantly. 
 
Figures 8 and 9 show the timings and the performance of 
the code on the systems considered. 
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Figure 8. FPMD timings (seconds) on H2O 256 molecules benchmark. 

 

FPMD - H2O-256 - Performance

0

20.000

40.000

60.000

80.000

100.000

120.000

140.000

160.000

180.000

0 32 64 96 128

ncpus

M
flo

p/
s

Cray X1
Cray XD1
Cray XT3
IBM p690
IBM HS20

 
Figure 9. FPMD performance (Mflop/s) on H2O 256 molecules benchmark. 
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In Table 4, the timings for the FFT section of the 
algorithms obtained on 64 processors, are displayed. 
 
 

System FFT 
comp 

FFT 
transpose 

FFT 
total 

Cray X1 7.90 3.19 11,10 
Cray XD1 14.90 12.00 26,90 
Cray XT3 15.32 10.57 25,89 
IBM p690 19.37 20.13 39,50 
IBM HS20 24.05 22.94 46,98 

 

Table 4. FFT timings on 64 processors. Values are in 
seconds, and they are obtained averaging over 10 Car-
Parrinello molecular dynamics steps. 

 

Figure 10. FPMD FFT timings (seconds) on H2O 256 
molecules benchmark. 

 
 

 

Performance Considerations 

We can observe that, in spite of the nominal peak 
performance (see Table 2), Cray XD1 and Cray XT3 are 
faster than the IBM p690 and IBM HS20 clusters. 
An explanation for that can be found in the different 
memory architecture and interconnect performance. 

While Opteron-based systems can exploit Direct Connect 
Hypertransport memory connections running at 6.4 
Gbyte/s peak, the other systems connect multi-cpu nodes 
to memory through a memory bus.  

In particular, on IBM HS20 Xeon node, the memory and 
the 512 KB level 2 cache are accessed through a memory 
bus shared between two processors.  This limits the 

performance, especially for floating point and memory 
intensive application. 
 
On IBM p690 the Power4 processor hosts a larger 1.44 
MBytes level2 cache shared between two processors, but 
the high processor peak performance is only reachable if 
both the floating point units are used; since this is not 
always true for a user application, only when IBM 
proprietary ESSL library is used it is possible to sustain a 
number of floating point operations per clock close to 4. 
 
Furthermore, interconnect performance plays an 
important role in global performance, especially for large 
processor counts.  This is particularly evident in the case 
of the 3D FFT transform: as shown in Figure 9 the time 
spent in data movement across the distributed memory is 
about twice on IBM p690 and HS20 clusters than that on 
Cray Opteron-based systems.  This is due to the superior 
performance of Cray custom RapidArray and SeaStar 
interconnects. FFT timings at 64 processors
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Completely different considerations should be drawn 
about the Cray X1 vector system.  
 
In some cases computation can exploit the vector 
processors by using highly tuned library routines (for 
example, LibSci FFT): this implementation has generally 
required significant code modifications.  
 
On other computational kernels, the Cray X1 is unable to 
achieve significant fractions of peak performance due to 
the scalar nature of the algorithms involved (for example, 
orthogonalization). 
 
Usage of CAF syntax allows the Cray X1 to achieve very 
good performance on the FFT transpose algorithm.  Of 
course this optimization has required significant code 
modifications, but this can often be seen as an algorithm 
simplification producing a more readable code. 

Conclusion and future work 

FPMD code has been shown to be extremely portable 
to Cray systems: apart from the Cray X1 vector system, 
no porting modification has been required to get the code 
to run efficiently on the systems considered. 

 
In general, FPMD shows good scalability features, in 
some cases emphasized by high performance network 
interconnects.  
 
We plan to extend the work performed so far to the other 
components of the Quantum Espresso suite; and we 
expect to get a confirmation to its portability and 
scalability features. 
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