
CUG 2005 Proceedings 1 of 8

Vector vs. Scalar Processors: A Performance Comparison Using
a Set of Computational Science Benchmarks

Mike Ashworth, Ian J. Bush and Martyn F. Guest,
Computational Science & Engineering Department,
CCLRC Daresbury Laboratory

ABSTRACT: Despite a significant decline in their popularity in the last decade vector
processors are still with us, and manufacturers such as Cray and NEC are bringing new
products to market. We have carried out a performance comparison of three full-scale
applications, the first, SBLI, a Direct Numerical Simulation code from Computational
Fluid Dynamics, the second, DL_POLY, a molecular dynamics code and the third,
POLCOMS, a coastal-ocean model. Comparing the performance of the Cray X1 vector
system with two massively parallel (MPP) micro-processor-based systems we find three
rather different results. The SBLI PCHAN benchmark performs excellently on the Cray
X1 with no code modification, showing 100% vectorisation and significantly
outperforming the MPP systems. The performance of DL_POLY was initially poor, but
we were able to make significant improvements through a few simple optimisations. The
POLCOMS code has been substantially restructured for cache-based MPP systems and
now does not vectorise at all well on the Cray X1 leading to poor performance. We
conclude that both vector and MPP systems can deliver high performance levels but that,
depending on the algorithm, careful software design may be necessary if the same code
is to achieve high performance on different architectures.

KEYWORDS: vector processor, scalar processor, benchmarking, parallel computing,
CFD, molecular dynamics, coastal ocean modelling

1. Introduction

Vector computers entered the scene at a very early
stage in the history of high-performance computers. The
first systems to earn the epithet supercomputers were the
Cray-1 vector computers (although the term has with
hindsight been applied to earlier scalar systems). The
concept of vectorisation increases the computational
performance by efficiently pipelining identical
calculations on large streams of data. Pipelined arithmetic
and load/store units generate a peak or asymptotic
calculation rate of one operation per clock cycle. This
may be increased further by the provision of multiple,
parallel units. The provision of vector instructions avoids
the performance being limited by the instruction issue rate
and distinguishes the genuine vector processor from
pipelined scalar architectures. One of the major
advantages of the vector processor architecture is the
ability to keep a large number of memory operations in
flight at any one time. Optimisation of programs for such
computers generally requires restructuring of loop nests
to generate long unit-strides inner loops.

All of the key computational science groups in the
UK made use of vector supercomputers during their
halcyon days of the 1970s, 1980s and into the early 1990s
[1]-[3]. Their codes were optimised for these systems,
notably the Cray 1, Cyber 205, Amdahl VP, Cray X-MP,
Cray Y-MP, Fujitsu VPP and Cray J90. In the past decade
there has been a decline in the popularity of vector
processor based systems in favour of massively-parallel
distributed-memory systems (MPP) built from cache-
based microprocessors. This decline is shown
dramatically in Figure 1. Here we have plotted the
fraction of the aggregate rmax performance in the top 500
high-end systems [4] delivered by different processor
architectures. This has been primarily a matter of cost, the
driver being the financial benefit of utilising commodity
chips in high-end systems. The high-end market has been,
and will continue to be, a small fraction of the total server
market, and there are considerable economies to be
gained from a common architecture which will scale from
the desk-side server, through departmental-scale
machines and beyond to the high-end.

CUG 2005 Proceedings 2 of 8

Figure 1. The fraction of the total rmax performance in the
top 500 high-end systems delivered by different processor
architectures.

This effect has been no less dramatic in the UK

where the flagship computing provision in the last ten
years has been dominated by MPP systems. The Cray
T3D, introduced in 1994 was followed by a Cray T3E, an
SGI Origin 3000, SGI Altix and, most recently, an IBM
p690 cluster.

Some of the former vendors of vector hardware,
notably Fujitsu and Hitachi, have ceased production of
vector machines in favour of commodity microprocessor
systems. Others, notably Cray and NEC, are still bringing
vector computers to market. Many workers have noted
the decline in the percentage of peak performance
attainable by real application codes (e.g. [5]). On vector
systems many codes were capable of achieving around
50% of peak, whereas on current microprocessor systems
only 10% or less is commonly experienced. This goes a
long way to negating the cost advantage of the
commodity-based systems.

When vector systems were dominant, many scientists
became skilled in adapting and writing codes for efficient
execution on vector processors and some important codes
in use today still carry the legacy of this. The code is
typically organised with long, unit-stride inner loops to
allow the compiler to generate long vectors. Such is the
benefit of long vectors that conditional execution is often
implemented by computing everywhere and masking out
unnecessary data with a vector mask. Intermediate results
are often promoted from scalars to vectors increasing the
amount of memory required. The priority is to generate
unit-stride, vectorisable loops.

Different techniques are required for programming
the cache-based microprocessors that are to be found in

most of today’s high performance PCs, workstations and
massively parallel processors (MPP). Processor speeds
have out-paced memory access speeds to such an extent
that the major factor limiting performance is now the
memory access pattern. Unit-stride access is still
important but for a different reason; that is, to ensure
optimum use of cache, rather than to optimise processor
performance. Inner loops should be small, so that their
data fits within cache; intermediate results should be
scalars so that they remain in cache or in registers; and
vector masking should be discarded in favour of
computing only where necessary. Blocking loop nests to
increase data locality often helps performance, whereas
on vector systems it is totally inappropriate.

Which is superior out of vector and scalar high-end
systems remains an open question in many quarters. This
report is aimed at addressing this question by comparing
the performance of full application codes on both types of
architecture using systems currently available and in
service. Section 2 describes the main features of the
systems we have used, and section 3 describes each code
and reports the performance results. Section 4 discusses
some detailed performance analysis for two of the codes
and we present conclusions in section 5.

2. Description of systems

Cray X1

Oak Ridge National Laboratory took delivery of a
Cray X1 system in 2003 and have carried out an
extensive evaluation of the system [6]. The Cray X1 is a
scalable parallel computer with symmetric multiprocessor
(SMP) nodes where the processors are very good vector
processors with weak scalar performance. The basic
building block of a Cray X1 system is the SSP. An SSP
consists of a vector processor that has 32 vector registers
of 64 elements each, implemented in two vector pipelines
and operating at 800 MHz. An SSP also has a 400-MHz
scalar processor. The peak performance of an SSP is 3.2
gigaflops. The two vector units in an SSP have an 800-
MHz clock and can move a column (vector) of numbers
from memory into high-speed registers or initiate an
operation with a string of resultants obtained two per
clock cycle after initial vector setup. These operations are
accomplished much more efficiently than typical
microprocessor operations and generate many more
resultants per second and higher sustained computation
rates.

The Cray X1’s compiler supports two strategies for
exploiting the hierarchical architecture. In MSP or
multistreaming mode a single long vectorised loop or an
unvectorised outer loop is divided and spread across the
eight vector units of a single MSP. The compiler is also
able to vectorise a long outer loop and multistream a
shorter inner loop if the dependency analysis allows this.

CUG 2005 Proceedings 3 of 8

The compiler also supports SSP mode in which each SSP
is treated as a separate processor.

IBM p690+

HPCx is the UK’s leading and most recent National
High Performance Computing Service. It is a large IBM
p690+ cluster consisting of 1600 1.7 GHz POWER4+
processors with 1.60 TB of memory and IBM’s High
performance Switch (HPS), formerly known as
“Federation”. Note that all reported timings for the
p690+ system were carried out after the upgrade of the
HPS microcode contained in Service Pack 7 (SP7) which
yielded a significant improvement in the performance of
the switch.

The IBM p690 frame is a 32-way shared-memory
system with a complex cache architecture. There are two
POWER4+ processors per chip each with its own Level 1
data and instruction caches and with a shared on-chip
Level2 cache. Eight processors (four chips) are integrated
into a Multi-Chip Module (MCM) together with 128 MB
of Level 3 cache and 8GB of main memory. Four MCMs
make up the p690 frame. The total Level 3 cache of 512
MB per frame and the total main memory of 32 GB per
frame is shared between the 32 processors of the frame.

Configuration Cray X1 IBM

p690+
SGI Altix

3700
Processor POWER4

+
Itanium2

Processor clock
(GHz)

0.8 1.7 1.3

Processor peak
(Gflop/s)

3.2 6.8 5.2

Processors/node 32 32 256
Memory/node
(GB)

16 32 512

Memory/
processor (GB)

0.5 1 2

L1 0.5 MB 64/32 kB
per CPU

16/16 kB
per CPU

L2 - 1.5 MB
per 2-CPU

chip

256 kB
per CPU

Caches

L3 - 128 MB
per 8-way

MCM

3MB
(1.3GHz)

6MB
(1.5GHz)

OS Unicos/mp
3.0

AIX 5.2 SGI Linux

FORTRAN
compiler

Cray
Fortran 5.3

xlf 8.1 Intel 7.1

Table 1. Hardware and software characteristics of the
systems under comparison in the paper. The Cray X1
“processor” is an SSP as all codes in this paper were run in
SSP mode.

SGI Altix 3700

CSAR at the University of Manchester operate a
flagship 512 Itanium2 processor SGI Altix 3700 system
known as newton. Of the 512 processors, 384 have a
clock speed of 1.3 GHz and 128 are 1.5 GHz. By
selecting different batch queues one can select which
processors are used. The system has 1.5 GB of memory
per processor and uses the NUMAflex interconnect. The
node size (the size of a single system image) is 256
processors and, although MPI jobs can span nodes, the
system is currently configured with a maximum job size
of 250 processors.

The primary characteristics of the three systems are
summarised in Table 1.

3. Performance of Applications

DL_POLY

DL_POLY [7] is a general-purpose molecular
dynamics simulation package designed to cater for a wide
range of possible scientific applications and computer
platforms, especially parallel hardware. DL_POLY
supports a wide range of application areas, including [8]
ionic solids, solutions, metals, zeolites, surfaces and
interfaces, complex systems (e.g. liquid crystals),
minerals, bio-systems, and those in spectroscopy.
Significant enhancements to the code’s capabilities have
arisen from the recent release of the distributed data (or
domain decomposition) version (DL_POLY 3) [9].

The port to the Cray X1 at ORNL was very
straightforward. The only problems encountered were
some very minor C pre-processing issues, but once these
were solved the code compiled using more or less the
standard options in the makefile for Cray machines. Once
compiled the tests all run successfully.

To optimise the code initially a simulation of Sodium
Chloride was used. This was chosen partially because it is
a very well understood case, being part of the acceptance
tests for the HPCx machine at Daresbury, and partially
because it is a fairly simple example. The actual
simulation is of 216,000 ions run for 200 timesteps.

The performance was initially measured on 8 multi-
streaming processors (MSP), and was found to be poor
taking 916 seconds. This compares with 146 seconds on
32 processors of the HPCx machine. However running on
32 single streaming processors (SSP), which should be
equivalent to 8 MSPs, the time roughly halved to 454
seconds, indicating that the code does not multi-stream
well, at least as currently written. However this is still
somewhat worse than HPCx.

The code was then profiled with the Cray
Performance Analysis Tool (PAT). This indicated that

CUG 2005 Proceedings 4 of 8

two routines were dominating, PARLINK and
EWALD_SPME. These routines were known not to
consume much time on HPCx, and so they were
investigated further. Examining a compiler generated
listing of PARLINK indicated that the routine was not
being vectorised. This was not surprising; the algorithm
generates link lists to hold which atoms a given atom
interacts with and this is known to vectorise poorly.
Rewriting the routine to avoid do-while loops and
backward jumps allowed the compiler to vectorise the
code, and the elapsed time on 32 SSPs dropped to 292
seconds.

For EWALD_SPME a compiler listing indicated that,
although the compiler was vectorising the inner loop, the
loop length was very short, typically of length 6 to 10.
The use of loop jamming techniques, that is rewriting a
number of nested loops as a single loop, increased the
length of the loop body that could be vectorised, and this
further reduced the time on 32 SSPs to 171 seconds, a
factor of 2.7 faster than the original SSP time.

Though still slower than HPCx the code can still
further be improved, though the gains are becoming
harder to achieve since at this stage no particular routine
in the code was standing out as being expensive.

Number of
Processors

Cray X1 IBM p690+

16 337
32 171 146
64 91 78

Table 2. Times in seconds for the DL_POLY NaCl 216,000
ion benchmark case on the Cray X1 and the IBM p690+
cluster.

An initial examination of the scaling of the optimised
code shows that, as on HPCx, it scales quite well. Table 2
shows the timing results for the optimised code, the
number of processors being the number of SSPs on the
Cray.

SBLI/PCHAN

The direct solution of the equations of motion for a
fluid remains a formidable task and simulations are only
possible for flows with small to modest Reynolds
numbers. Within the UK the Turbulence Consortium
(UKTC) has been at the forefront of simulating turbulent
flows by direct numerical simulation (DNS). UKTC has
developed a parallel version of a code to solve problems
associated with shock/boundary-layer interaction [10].

The code (SBLI) was originally developed for the
Cray T3E and is a sophisticated DNS code that
incorporates a number of advanced features: namely high-
order central differencing; a shock-preserving advection
scheme from the total variation diminishing (TVD)

family; entropy splitting of the Euler terms and the stable
boundary scheme. The code has been written using
standard Fortran 90 code together with MPI in order to be
efficient, scalable and portable across a wide range of
high-performance platforms. The PCHAN benchmark is a
simple turbulent channel flow benchmark using the SBLI
code.

Figure 2 Performance of the PCHAN T3 benchmark on the
Cray X1, the IBM p690+ cluster and the SGI Altix 3700
(1.3GHz and 1.5GHz processors).

The most important communications structure within
PCHAN is a halo-exchange between adjacent sub-
domains. Providing the problem size is large enough to
give a small surface area to volume ratio for each sub-
domain, the communications costs are small relative to
computation and do not constitute a bottleneck.

Figure 2 shows performance results for the T3 data
case, a grid of 360x360x360, from the Cray X1, the IBM
cluster and the SGI Altix and shows ideal scaling on all
systems. Hardware profiling studies of this code have
shown that its performance is highly dependent on the
cache utilisation and bandwidth to main memory [11].

 It is clear that memory management for this code is
taking place more efficiently on the Altix than on the
p690+. The match to the streaming architecture of the
Cray X1 is excellent. Timings for the Cray X1 and the
IBM p690+ are shown in Table 3 together with the
performance ratio. At 128 processors the ratio is 4.3,
dropping to 2.5 at 1280 processors, possibly as the sub-

CUG 2005 Proceedings 5 of 8

domain size reduces and the vector length of the inner
loops becomes smaller.

PCHAN Number
of

processor
s

IBM
p690+

Cray X1 Ratio
Cray/IBM

128 1245 290 4.3
192 812 189 4.3
256 576 147 3.9
512 230 75 3.1
768 146 52 2.8

1024 112 39 2.9
1280 81 32 2.5

Table 3. Execution times in seconds for the PCHAN T3
benchmark on the Cray X1 and IBM p690+ including the
performance ratio between the Cray and the IBM.

POLCOMS

The Proudman Oceanographic Laboratory Coastal
Ocean Modelling System (POLCOMS) has been
developed to tackle multi-disciplinary studies in
coastal/shelf environments [11]. The central core is a
sophisticated 3-dimensional hydrodynamic model that
provides realistic physical forcing to interact with, and
transport, environmental parameters. The hydrodynamic
model is a 4-dimensional finite difference model based on
a latitude-longitude Arakawa B-grid in the horizontal and
S-coordinates in the vertical. Conservative monotonic
PPM advection routines are used to ensure strong frontal
gradients. Vertical mixing is through turbulence closure
(Mellor-Yamada level 2.5).

In order to study the coastal marine ecosystem, the
POLCOMS model has been coupled with the European
Seas Regional Ecosystem Model (ERSEM) [12]. Studies
have been carried out, with and without the ecosystem
sub-model, using a shelf-wide grid at 12km resolution.
This results in a grid size of approx. 200 x 200 x 34. In
order to improve simulation of marine processes, we need
accurate representation of eddies, fronts and other regions
of steep gradients. The next generation of models will
need to cover the shelf region at approximately 1km
resolution.

In order to assess the suitability of the POLCOMS
hydrodynamic code for scaling to these ultra-high
resolutions we have designed a simulated 2km shelf-wide
benchmark which runs (without the ecosystem model) at
a grid size of 1200x1200x34. In order to keep benchmark
run times manageable, the runs were kept short (100
timesteps) and the initialisation and finishing times were
subtracted from the total run time. The performance is

reported in Figure 3 as the amount of work (gridpoints ×
timesteps) divided by the time.

Figure 3. Performance of the POLCOMS 2km benchmark
on the Cray X1, the IBM p690+ cluster and the SGI Altix
3700 (1.3GHz and 1.5GHz processors).

As with the SBLI code communications are limited
almost entirely to nearest neighbour boundary exchange
operations and we see almost perfect linear scaling on the
p690+ HPS. However, the scaling on the Altix 3700/1300
is starting to run out above 128 processors. The absolute
performance is highly dependent on cache and memory
issues [11]. However the Cray X1 is not competitive.
Timings for the Cray X1 and the IBM p690+ are shown
in Table 4 together with the performance ratio, but note
that in contrast with Table 3 this is the IBM/Cray ratio not
the Cray/IBM ratio!

POLCOMS Number
of

processor
s

IBM
p690+

Cray X1 Ratio
IBM/Cray

128 542 6613 12.2
192 352 4381 12.5
256 260 3096 11.9
512 125 1617 13.0
768 86 1040 12.2

Table 4. Execution times in seconds for the POLCOMS 2km
benchmark on the Cray X1 and IBM p690+ including the
performance ratio between the IBM and the Cray.

CUG 2005 Proceedings 6 of 8

4. Performance Analysis

We used Cray’s Performance Analysis Tool (PAT) to
investigate further the performance of the SBLI and
POLCOMS codes. PAT can be run in a number of
different ways to measure performance of an application
as a whole, based on resource usage, accounting, and
hardware performance, (pat_hwpc) or to measure
performance at the granularity of individual functions,
source code line number, etc. (pat_build and pat_report).
We ran 64 processor (SSP) jobs of the benchmarks using
pat_hwpc. Some key hardware counter numbers from the
output are shown in Figure 4.

The values are represented as percentages e.g. the
vector operations as a percentage of all operations, the
vector memory references as a percentage of all memory
references etc. For the average vector length this is given
as a percentage of 64, the maximum vector length of the
SSP.

It is clear that the PCHAN benchmark vectorises very
well, as we suspected from the performance figures.
Vector floating point operations and vector memory
references are at 100%. On 64 processors the grid of
360x360x360 is partitioned into 90x90x90 sub-domains
leading to an inner loop length of 90. The average vector
length is very close to 45.

The POLCOMS code was originally a vector code
with long inner loops. The data arrays were organised
with the two horizontal dimensions first (contiguous in
memory) and in some cases the horizontal dimensions
were collapsed into a single index in order to increase the
length of the inner loops. However the code has been
significantly restructured to suit cache-based systems
[13]. The major three-dimensional arrays now have the
vertical dimension first. This helps cache re-use by
allowing whole water columns to remain in cache e.g. for
one-dimensional processes such as convection and
vertical diffusion, or for use by a subsequent outer-loop
iteration in the advection code.

The effect of this code structure on the Cray X1 is
clear from Figure 4. Not all important loops have
vectorised so that the proportion of vector floating point
operations is down at 90% and vector memory references
at 67%. Given the rather slow speed of the scalar
processor on this system, this is quite enough
dramatically to restrict the performance. Furthermore the
average vector length is low at about 11.

5. Conclusions

Our experience is that the porting of codes from
MPPs to the Cray X1 presents no great difficulty. The
performance of the scalar unit is quite poor. To achieve

satisfactory performance it is essential that the code
should vectorise fully, if necessary by investing effort to
resolve vectorisation problems. To this end the use of
PAT and compiler listings was very useful. We found that
SSP mode gave better performance than MSP mode,
though we made no effort to improve the multi-streaming
performance of the code.

Figure 4. Comparison of the percentage of total operations,
memory references, etc. from hardware performance
counters for the PCHAN T3 and POLCOMS 2km
benchmarks.

We have compared the performance of three different
codes, one an explicit finite-difference CFD code, one a
molecular dynamics code and one a coastal-ocean code,
between the Cray X1 vector system and two massively
parallel (MPP) micro-processor-based systems. We find
three rather different results.

The SBLI PCHAN benchmark performs excellently
on the Cray X1 with no code modification, showing

CUG 2005 Proceedings 7 of 8

100% vectorisation and significantly outperforming the
MPP systems. The performance of DL_POLY was
initially poor, but we were able to achieve a performance
improvement of 2.7 through a few simple optimisations.
The POLCOMS code has been substantially restructured
for cache-based MPP systems and now does not vectorise
at all well on the Cray X1, leading to poor performance.

The UK Meteorological Office, who operate an NEC
SX-6 vector system, use a modified version of the
POLCOMS code as a part of the UK’s coastal flood
warning system. Their modifications make a dramatic
improvement to the performance on vector systems and
the POLCOMS development team is working on ways to
incorporate the vector modifications into the main version
of the code in a portable way.

 We conclude that both vector and MPP systems can
deliver high performance levels but that, depending on
the algorithm, careful software design may be necessary
if the same code is to achieve high performance on
different architectures.

References

[1] The use of Vector Processors in Quantum
Chemistry; Experience in the U.K., M.F. Guest
and S. Wilson, Daresbury Laboratory Preprint,
DL/SCI/P290T; in Supercomputers in Chemistry',
ed. P.Lykos and I. Shavitt, A.C.S. Symposium
series 173 (1981) 1.

[2] Application of the CRAY-1 for Quantum Chemistry
Calculations, V.R. Saunders and M.F. Guest
Computer Physics Commun. 26 (1982) 389.

[3] The Study of Molecular Electronic Structure on
Vector and Attached Processors: Correlation
Effects in Transition Metal Complexes,
Supercomputer Simulations in Chemistry, ed. M.
Dupuis, Lecture Notes in Chemistry, 44, (1986) 98
(Springer Verlag)

[4] TOP500 supercomputer sites
http://www.top500.org/

[5] Parallel Processing in Environmental Modelling,
M. Ashworth, in Parallel Supercomputing in
Atmospheric Science: Proceedings of the Fifth
Workshop on the Use of Parallel Processors in
Meteorology, eds. G-R. Hoffmann and T.
Kauranne, (1993), 1-25, (World Scientific).

[6] Cray X1 Evaluation Status Report, P.A. Agarwal
et al (29 authors), Oak Ridge National Laboratory,
Oak Ridge, TN, USA, Technical Report
ORNL/TM-2004/13

http://www.ccs.ornl.gov/CRAYEvaluationTM200
4-15.pdf

[7] DL_POLY: A general purpose parallel molecular
dynamics simulation package, W. Smith and T.R.
Forester, J. Molec. Graphics 14 (1996) 136.

[8] DL_POLY: Applications to Molecular Simulation,
W. Smith, C. Yong and M. Rodger, Molecular
Simulation 28 (2002) 385.

[9] The DL-POLY Molecular Simulation Package, W.
Smith,
http://www.cse.clrc.ac.uk/msi/software/DL_POLY
/

[10] Direct Numerical Simulation of Shock/Boundary
Layer Interaction, N.D. Sandham, M. Ashworth
and D.R. Emerson,
http://www.cse.clrc.ac.uk/ceg/sbli.shtml

[11] Single Node Performance of Applications and
Benchmarks on HPCx, M. Bull, HPCx Technical
Report HPCxTR0416, (2004)
http://www.hpcx.ac.uk/research/hpc/technical_rep
orts/HPCxTR0416.pdf

[12] Eddy Resolved Ecosystem Modelling in the Irish
Sea, J.T. Holt, R. Proctor, M. Ashworth, J.I. Allen,
and J.C. Blackford, in Realizing Teracomputing:
Proceedings of the Tenth ECMWF Workshop on
the Use of High Performance Computing in
Meteorology, eds. W. Zwieflhofer and N. Kreitz,
(2004), 268-278, (World Scientific).

[13] Optimization of the POLCOMS Hydrodynamic
Code for Terascale High-Performance Computers,
M. Ashworth, J.T. Holt and R. Proctor, HPCx
Technical Report HPCxTR0415, (2004)
http://www.hpcx.ac.uk/research/hpc/technical_rep
orts/HPCxTR0415.pdf

Acknowledgments

The authors would like to thank Oak Ridge National
Laboratory (ORNL) and the UK Engineering and
Physical Sciences Research Council (EPSRC) for access
to machines.

About the Authors

Mike Ashworth is Head of the Advanced Research
Computing Group in the Computational Science &
Engineering Department (CSED) at CCLRC Daresbury
Laboratory and has special interests in the optimisation of
coupled environmental models for high-performance
systems. Ian Bush is a computational scientist at CSED
with specialisation in high performance parallel
algorithms for computational chemistry, molecular

CUG 2005 Proceedings 8 of 8

dynamics and materials applications. Martyn Guest is
Associate Director of CSED and leads the HPCx
Terascaling Team. He is a leading researcher in the
application of computational chemistry methods on high-
performance computers. All three authors contribute to
the HPCx Terascaling Team.

All authors can be reached at CCLRC Daresbury
Laboratory, Warrington WA4 4AD, UK, E-Mails:
m.ashworth@dl.ac.uk, i.j.bush@dl.ac.uk and
m.f.guest@dl.ac.uk.

