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ABSTRACT:  Despite a significant decline in their popularity in the last decade vector 
processors are still with us, and manufacturers such as Cray and NEC are bringing new 
products to market. We have carried out a performance comparison of three full-scale 
applications, the first, SBLI, a Direct Numerical Simulation code from Computational 
Fluid Dynamics, the second, DL_POLY, a molecular dynamics code and the third, 
POLCOMS, a coastal-ocean model. Comparing the performance of the Cray X1 vector 
system with two massively parallel (MPP) micro-processor-based systems we find three 
rather different results. The SBLI PCHAN benchmark performs excellently on the Cray 
X1 with no code modification, showing 100% vectorisation and significantly 
outperforming the MPP systems. The performance of DL_POLY was initially poor, but 
we were able to make significant improvements through a few simple optimisations. The 
POLCOMS code has been substantially restructured for cache-based MPP systems and 
now does not vectorise at all well on the Cray X1 leading to poor performance. We 
conclude that both vector and MPP systems can deliver high performance levels but that, 
depending on the algorithm, careful software design may be necessary if the same code 
is to achieve high performance on different architectures. 
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1. Introduction 

Vector computers entered the scene at a very early 
stage in the history of high-performance computers. The 
first systems to earn the epithet supercomputers were the 
Cray-1 vector computers (although the term has with 
hindsight been applied to earlier scalar systems). The 
concept of vectorisation increases the computational 
performance by efficiently pipelining identical 
calculations on large streams of data. Pipelined arithmetic 
and load/store units generate a peak or asymptotic 
calculation rate of one operation per clock cycle. This 
may be increased further by the provision of multiple, 
parallel units.  The provision of vector instructions avoids 
the performance being limited by the instruction issue rate 
and distinguishes the genuine vector processor from 
pipelined scalar architectures. One of the major 
advantages of the vector processor architecture is the 
ability to keep a large number of memory operations in 
flight at any one time. Optimisation of programs for such 
computers generally requires restructuring of loop nests 
to generate long unit-strides inner loops. 

All of the key computational science groups in the 
UK made use of vector supercomputers during their 
halcyon days of the 1970s, 1980s and into the early 1990s 
[1]-[3]. Their codes were optimised for these systems, 
notably the Cray 1, Cyber 205, Amdahl VP, Cray X-MP, 
Cray Y-MP, Fujitsu VPP and Cray J90. In the past decade 
there has been a decline in the popularity of vector 
processor based systems in favour of massively-parallel 
distributed-memory systems (MPP) built from cache-
based microprocessors.  This decline is shown 
dramatically in Figure 1. Here we have plotted the 
fraction of the aggregate rmax performance in the top 500 
high-end systems [4] delivered by different processor 
architectures. This has been primarily a matter of cost, the 
driver being the financial benefit of utilising commodity 
chips in high-end systems. The high-end market has been, 
and will continue to be, a small fraction of the total server 
market, and there are considerable economies to be 
gained from a common architecture which will scale from 
the desk-side server, through departmental-scale 
machines and beyond to the high-end. 
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Figure 1. The fraction of the total rmax performance in the 
top 500 high-end systems delivered by different processor 
architectures. 

 
This effect has been no less dramatic in the UK 

where the flagship computing provision in the last ten 
years has been dominated by MPP systems. The Cray 
T3D, introduced in 1994 was followed by a Cray T3E, an 
SGI Origin 3000, SGI Altix and, most recently, an IBM 
p690 cluster. 

Some of the former vendors of vector hardware, 
notably Fujitsu and Hitachi, have ceased production of 
vector machines in favour of commodity microprocessor 
systems. Others, notably Cray and NEC, are still bringing 
vector computers to market. Many workers have noted 
the decline in the percentage of peak performance 
attainable by real application codes (e.g. [5]). On vector 
systems many codes were capable of achieving around 
50% of peak, whereas on current microprocessor systems 
only 10% or less is commonly experienced. This goes a 
long way to negating the cost advantage of the 
commodity-based systems.  

When vector systems were dominant, many scientists 
became skilled in adapting and writing codes for efficient 
execution on vector processors and some important codes 
in use today still carry the legacy of this. The code is 
typically organised with long, unit-stride inner loops to 
allow the compiler to generate long vectors. Such is the 
benefit of long vectors that conditional execution is often 
implemented by computing everywhere and masking out 
unnecessary data with a vector mask. Intermediate results 
are often promoted from scalars to vectors increasing the 
amount of memory required. The priority is to generate 
unit-stride, vectorisable loops.  

Different techniques are required for programming 
the cache-based microprocessors that are to be found in 

most of today’s high performance PCs, workstations and 
massively parallel processors (MPP). Processor speeds 
have out-paced memory access speeds to such an extent 
that the major factor limiting performance is now the 
memory access pattern. Unit-stride access is still 
important but for a different reason; that is, to ensure 
optimum use of cache, rather than to optimise processor 
performance. Inner loops should be small, so that their 
data fits within cache; intermediate results should be 
scalars so that they remain in cache or in registers; and 
vector masking should be discarded in favour of 
computing only where necessary. Blocking loop nests to 
increase data locality often helps performance, whereas 
on vector systems it is totally inappropriate.  

Which is superior out of vector and scalar high-end 
systems remains an open question in many quarters. This 
report is aimed at addressing this question by comparing 
the performance of full application codes on both types of 
architecture using systems currently available and in 
service. Section 2 describes the main features of the 
systems we have used, and section 3 describes each code 
and reports the performance results. Section 4 discusses 
some detailed performance analysis for two of the codes 
and we present conclusions in section 5. 

2.  Description of systems 

Cray X1 

Oak Ridge National Laboratory took delivery of a 
Cray X1 system in 2003 and have carried out an 
extensive evaluation of the system [6]. The Cray X1 is a 
scalable parallel computer with symmetric multiprocessor 
(SMP) nodes where the processors are very good vector 
processors with weak scalar performance. The basic 
building block of a Cray X1 system is the SSP. An SSP 
consists of a vector processor that has 32 vector registers 
of 64 elements each, implemented in two vector pipelines 
and operating at 800 MHz. An SSP also has a 400-MHz 
scalar processor. The peak performance of an SSP is 3.2 
gigaflops. The two vector units in an SSP have an 800-
MHz clock and can move a column (vector) of numbers 
from memory into high-speed registers or initiate an 
operation with a string of resultants obtained two per 
clock cycle after initial vector setup. These operations are 
accomplished much more efficiently than typical 
microprocessor operations and generate many more 
resultants per second and higher sustained computation 
rates.  

The Cray X1’s compiler supports two strategies for 
exploiting the hierarchical architecture. In MSP or 
multistreaming mode a single long vectorised loop or an 
unvectorised outer loop is divided and spread across the 
eight vector units of a single MSP. The compiler is also 
able to vectorise a long outer loop and multistream a 
shorter inner loop if the dependency analysis allows this. 
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The compiler also supports SSP mode in which each SSP 
is treated as a separate processor. 

IBM p690+ 

HPCx is the UK’s leading and most recent National 
High Performance Computing Service. It is a large IBM 
p690+ cluster consisting of 1600 1.7 GHz POWER4+ 
processors with 1.60 TB of memory and IBM’s High 
performance Switch (HPS), formerly known as 
“Federation”.  Note that all reported timings for the 
p690+ system were carried out after the upgrade of the 
HPS microcode contained in Service Pack 7 (SP7) which 
yielded a significant improvement in the performance of 
the switch. 

The IBM p690 frame is a 32-way shared-memory 
system with a complex cache architecture. There are two 
POWER4+ processors per chip each with its own Level 1 
data and instruction caches and with a shared on-chip 
Level2 cache. Eight processors (four chips) are integrated 
into a Multi-Chip Module (MCM) together with 128 MB 
of Level 3 cache and 8GB of main memory. Four MCMs 
make up the p690 frame. The total Level 3 cache of 512 
MB per frame and the total main memory of 32 GB per 
frame is shared between the 32 processors of the frame. 

 
Configuration Cray X1 IBM 

p690+ 
SGI Altix 

3700 
Processor  POWER4

+ 
Itanium2 

Processor clock 
(GHz) 

0.8 1.7 1.3 

Processor peak 
(Gflop/s) 

3.2 6.8 5.2 

Processors/node 32 32 256 
Memory/node 
(GB) 

16 32 512 

Memory/ 
processor (GB) 

0.5 1 2 

L1 0.5 MB 64/32 kB  
per CPU 

16/16 kB 
per CPU 

L2 - 1.5 MB 
per 2-CPU 

chip 

256 kB  
per CPU 

 
Caches 

L3 - 128 MB 
per 8-way 

MCM 

3MB 
(1.3GHz) 

6MB 
(1.5GHz) 

OS Unicos/mp 
3.0 

AIX 5.2 SGI Linux 

FORTRAN 
compiler 

Cray 
Fortran 5.3 

xlf 8.1 Intel 7.1 

 
Table 1. Hardware and software characteristics of the 
systems under comparison in the paper. The Cray X1 
“processor” is an SSP as all codes in this paper were run in 
SSP mode. 

SGI Altix 3700 

CSAR at the University of Manchester operate a 
flagship 512 Itanium2 processor SGI Altix 3700 system 
known as newton. Of the 512 processors, 384 have a 
clock speed of 1.3 GHz and 128 are 1.5 GHz. By 
selecting different batch queues one can select which 
processors are used. The system has 1.5 GB of memory 
per processor and uses the NUMAflex interconnect. The 
node size (the size of a single system image) is 256 
processors and, although MPI jobs can span nodes, the 
system is currently configured with a maximum job size 
of 250 processors. 

The primary characteristics of the three systems are 
summarised in Table 1. 

3. Performance of Applications 

DL_POLY 

DL_POLY [7] is a general-purpose molecular 
dynamics simulation package designed to cater for a wide 
range of possible scientific applications and computer 
platforms, especially parallel hardware. DL_POLY 
supports a wide range of application areas, including [8] 
ionic solids, solutions, metals, zeolites, surfaces and 
interfaces, complex systems (e.g. liquid crystals), 
minerals, bio-systems, and those in spectroscopy. 
Significant enhancements to the code’s capabilities have 
arisen from the recent release of the distributed data (or 
domain decomposition) version (DL_POLY 3) [9].  

The port to the Cray X1 at ORNL was very 
straightforward. The only problems encountered were 
some very minor C pre-processing issues, but once these 
were solved the code compiled using more or less the 
standard options in the makefile for Cray machines. Once 
compiled the tests all run successfully. 

To optimise the code initially a simulation of Sodium 
Chloride was used. This was chosen partially because it is 
a very well understood case, being part of the acceptance 
tests for the HPCx machine at Daresbury, and partially 
because it is a fairly simple example. The actual 
simulation is of 216,000 ions run for 200 timesteps. 

The performance was initially measured on 8 multi-
streaming processors (MSP), and was found to be poor 
taking 916 seconds. This compares with 146 seconds on 
32 processors of the HPCx machine. However running on 
32 single streaming processors (SSP), which should be 
equivalent to 8 MSPs, the time roughly halved to 454 
seconds, indicating that the code does not multi-stream 
well, at least as currently written. However this is still 
somewhat worse than HPCx. 

The code was then profiled with the Cray 
Performance Analysis Tool (PAT). This indicated that 
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two routines were dominating, PARLINK and 
EWALD_SPME. These routines were known not to 
consume much time on HPCx, and so they were 
investigated further. Examining a compiler generated 
listing of PARLINK indicated that the routine was not 
being vectorised. This was not surprising; the algorithm 
generates link lists to hold which atoms a given atom 
interacts with and this is known to vectorise poorly. 
Rewriting the routine to avoid do-while loops and 
backward jumps allowed the compiler to vectorise the 
code, and the elapsed time on 32 SSPs dropped to 292 
seconds. 

For EWALD_SPME a compiler listing indicated that, 
although the compiler was vectorising the inner loop, the 
loop length was very short, typically of length 6 to 10. 
The use of loop jamming techniques, that is rewriting a 
number of nested loops as a single loop, increased the 
length of the loop body that could be vectorised, and this 
further reduced the time on 32 SSPs to 171 seconds, a 
factor of 2.7 faster than the original SSP time. 

Though still slower than HPCx the code can still 
further be improved, though the gains are becoming 
harder to achieve since at this stage no particular routine 
in the code was standing out as being expensive.  

 
Number of 
Processors 

Cray X1 IBM p690+ 

16 337  
32 171 146 
64 91 78 

 
Table 2. Times in seconds for the DL_POLY NaCl 216,000 
ion benchmark case on the Cray X1 and the IBM p690+ 
cluster. 

An initial examination of the scaling of the optimised 
code shows that, as on HPCx, it scales quite well. Table 2 
shows the timing results for the optimised code, the 
number of processors being the number of SSPs on the 
Cray. 

SBLI/PCHAN 

The direct solution of the equations of motion for a 
fluid remains a formidable task and simulations are only 
possible for flows with small to modest Reynolds 
numbers. Within the UK the Turbulence Consortium 
(UKTC) has been at the forefront of simulating turbulent 
flows by direct numerical simulation (DNS).  UKTC has 
developed a parallel version of a code to solve problems 
associated with shock/boundary-layer interaction [10].  

The code (SBLI) was originally developed for the 
Cray T3E and is a sophisticated DNS code that 
incorporates a number of advanced features: namely high-
order central differencing; a shock-preserving advection 
scheme from the total variation diminishing (TVD) 

family; entropy splitting of the Euler terms and the stable 
boundary scheme.  The code has been written using 
standard Fortran 90 code together with MPI in order to be 
efficient, scalable and portable across a wide range of 
high-performance platforms. The PCHAN benchmark is a 
simple turbulent channel flow benchmark using the SBLI 
code.  

 

 
Figure 2 Performance of the PCHAN T3 benchmark on the 
Cray X1, the IBM p690+ cluster and the SGI Altix 3700 
(1.3GHz and 1.5GHz processors). 

The most important communications structure within 
PCHAN is a halo-exchange between adjacent sub-
domains. Providing the problem size is large enough to 
give a small surface area to volume ratio for each sub-
domain, the communications costs are small relative to 
computation and do not constitute a bottleneck.  

Figure 2 shows performance results for the T3 data 
case, a grid of 360x360x360, from the Cray X1, the IBM 
cluster and the SGI Altix and shows ideal scaling on all 
systems. Hardware profiling studies of this code have 
shown that its performance is highly dependent on the 
cache utilisation and bandwidth to main memory [11]. 

 It is clear that memory management for this code is 
taking place more efficiently on the Altix than on the 
p690+. The match to the streaming architecture of the 
Cray X1 is excellent. Timings for the Cray X1 and the 
IBM p690+ are shown in Table 3 together with the 
performance ratio. At 128 processors the ratio is 4.3, 
dropping to 2.5 at 1280 processors, possibly as the sub-
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domain size reduces and the vector length of the inner 
loops becomes smaller. 

 
 

PCHAN Number 
of 

processor
s 

IBM 
p690+ 

Cray X1 Ratio 
Cray/IBM 

128 1245 290 4.3 
192 812 189 4.3 
256 576 147 3.9 
512 230 75 3.1 
768 146 52 2.8 

1024 112 39 2.9 
1280 81 32 2.5 

 
Table 3. Execution times in seconds for the PCHAN T3 
benchmark on the Cray X1 and IBM p690+ including the 
performance ratio between the Cray and the IBM. 

 

POLCOMS 

The Proudman Oceanographic Laboratory Coastal 
Ocean Modelling System (POLCOMS) has been 
developed to tackle multi-disciplinary studies in 
coastal/shelf environments [11]. The central core is a 
sophisticated 3-dimensional hydrodynamic model that 
provides realistic physical forcing to interact with, and 
transport, environmental parameters. The hydrodynamic 
model is a 4-dimensional finite difference model based on 
a latitude-longitude Arakawa B-grid in the horizontal and 
S-coordinates in the vertical. Conservative monotonic 
PPM advection routines are used to ensure strong frontal 
gradients. Vertical mixing is through turbulence closure 
(Mellor-Yamada level 2.5). 

In order to study the coastal marine ecosystem, the 
POLCOMS model has been coupled with the European 
Seas Regional Ecosystem Model (ERSEM) [12]. Studies 
have been carried out, with and without the ecosystem 
sub-model, using a shelf-wide grid at 12km resolution. 
This results in a grid size of approx. 200 x 200 x 34. In 
order to improve simulation of marine processes, we need 
accurate representation of eddies, fronts and other regions 
of steep gradients. The next generation of models will 
need to cover the shelf region at approximately 1km 
resolution. 

In order to assess the suitability of the POLCOMS 
hydrodynamic code for scaling to these ultra-high 
resolutions we have designed a simulated 2km shelf-wide 
benchmark which runs (without the ecosystem model) at 
a grid size of 1200x1200x34. In order to keep benchmark 
run times manageable, the runs were kept short (100 
timesteps) and the initialisation and finishing times were 
subtracted from the total run time. The performance is 

reported in Figure 3 as the amount of work (gridpoints × 
timesteps) divided by the time.  

 
Figure 3. Performance of the POLCOMS 2km benchmark 
on the Cray X1, the IBM p690+ cluster and the SGI Altix 
3700 (1.3GHz and 1.5GHz processors). 

As with the SBLI code communications are limited 
almost entirely to nearest neighbour boundary exchange 
operations and we see almost perfect linear scaling on the 
p690+ HPS. However, the scaling on the Altix 3700/1300 
is starting to run out above 128 processors. The absolute 
performance is highly dependent on cache and memory 
issues [11]. However the Cray X1 is not competitive. 
Timings for the Cray X1 and the IBM p690+ are shown 
in Table 4 together with the performance ratio, but note 
that in contrast with Table 3 this is the IBM/Cray ratio not 
the Cray/IBM ratio!  

 
 

POLCOMS Number 
of 

processor
s 

IBM 
p690+ 

Cray X1 Ratio 
IBM/Cray 

128 542 6613 12.2 
192 352 4381 12.5 
256 260 3096 11.9 
512 125 1617 13.0 
768 86 1040 12.2 

 
Table 4. Execution times in seconds for the POLCOMS 2km 
benchmark on the Cray X1 and IBM p690+ including the 
performance ratio between the IBM and the Cray. 
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4. Performance Analysis 

We used Cray’s Performance Analysis Tool (PAT) to 
investigate further the performance of the SBLI and 
POLCOMS codes. PAT can be run in a number of 
different ways to measure performance of an application 
as a whole, based on resource usage, accounting, and 
hardware performance, (pat_hwpc) or to measure 
performance at the granularity of individual functions, 
source code line number, etc. (pat_build and pat_report). 
We ran 64 processor (SSP) jobs of the benchmarks using 
pat_hwpc. Some key hardware counter numbers from the 
output are shown in Figure 4.  

The values are represented as percentages e.g. the 
vector operations as a percentage of all operations, the 
vector memory references as a percentage of all memory 
references etc. For the average vector length this is given 
as a percentage of 64, the maximum vector length of the 
SSP.  

It is clear that the PCHAN benchmark vectorises very 
well, as we suspected from the performance figures. 
Vector floating point operations and vector memory 
references are at 100%. On 64 processors the grid of 
360x360x360 is partitioned into 90x90x90 sub-domains 
leading to an inner loop length of 90. The average vector 
length is very close to 45.  

The POLCOMS code was originally a vector code 
with long inner loops. The data arrays were organised 
with the two horizontal dimensions first (contiguous in 
memory) and in some cases the horizontal dimensions 
were collapsed into a single index in order to increase the 
length of the inner loops. However the code has been 
significantly restructured to suit cache-based systems 
[13]. The major three-dimensional arrays now have the 
vertical dimension first. This helps cache re-use by 
allowing whole water columns to remain in cache e.g. for 
one-dimensional processes such as convection and 
vertical diffusion, or for use by a subsequent outer-loop 
iteration in the advection code. 

The effect of this code structure on the Cray X1 is 
clear from Figure 4. Not all important loops have 
vectorised so that the proportion of vector floating point 
operations is down at 90% and vector memory references 
at 67%. Given the rather slow speed of the scalar 
processor on this system, this is quite enough 
dramatically to restrict the performance. Furthermore the 
average vector length is low at about 11. 

5. Conclusions 

Our experience is that the porting of codes from 
MPPs to the Cray X1 presents no great difficulty. The 
performance of the scalar unit is quite poor. To achieve 

satisfactory performance it is essential that the code 
should vectorise fully, if necessary by investing effort to 
resolve vectorisation problems. To this end the use of 
PAT and compiler listings was very useful. We found that 
SSP mode gave better performance than MSP mode, 
though we made no effort to improve the multi-streaming 
performance of the code. 

 
 

Figure 4. Comparison of the percentage of total operations, 
memory references, etc. from hardware performance 
counters for the PCHAN T3 and POLCOMS 2km 
benchmarks. 

We have compared the performance of three different 
codes, one an explicit finite-difference CFD code, one a 
molecular dynamics code and one a coastal-ocean code, 
between the Cray X1 vector system and two massively 
parallel (MPP) micro-processor-based systems. We find 
three rather different results.  

The SBLI PCHAN benchmark performs excellently 
on the Cray X1 with no code modification, showing 
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100% vectorisation and significantly outperforming the 
MPP systems. The performance of DL_POLY was 
initially poor, but we were able to achieve a performance 
improvement of 2.7 through a few simple optimisations. 
The POLCOMS code has been substantially restructured 
for cache-based MPP systems and now does not vectorise 
at all well on the Cray X1, leading to poor performance.  

The UK Meteorological Office, who operate an NEC 
SX-6 vector system, use a modified version of the 
POLCOMS code as a part of the UK’s coastal flood 
warning system. Their modifications make a dramatic 
improvement to the performance on vector systems and 
the POLCOMS development team is working on ways to 
incorporate the vector modifications into the main version 
of the code in a portable way. 

 We conclude that both vector and MPP systems can 
deliver high performance levels but that, depending on 
the algorithm, careful software design may be necessary 
if the same code is to achieve high performance on 
different architectures. 
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