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ABSTRACT:

A Cray X1 computer system was installed at the NASA Advanced Supercomputing (NAS) facility
at NASA Ames Research Center in 2004. An evaluation study of this unique high performance
computing (HPC) architecture, from the standpoints of processor and system performance, ease of
use, and production computing readiness tailored to the needs of the NAS scientific community,
was recently completed. The results of this study are described in this article. The evaluation
included system performance and characterization using a subset of the HPC Challenge benchmarks
and NAS Parallel Benchmarks, as well as detailed performance on scientific applications from the
computational fluid dynamics (CFD) and Earth science disciplines that represent a major portion
of the computational workload at NAS. Performance results are discussed and compared with the
main HPC platform at NAS — the SGI Altix.
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1 Introduction

In mid-2004, a small Cray X1 computer system was
installed at the NASA Advanced Supercomputing
(NAS) facility at NASA Ames Research Center for
evaluation purposes. Although the main computer
platforms at NAS in recent years have been based
on distributed shared memory machines from SGI,
NAS has a rich history in the use of vector machines
from Cray such as the XMP, YMP, Cray 2, C-90,
J90, and SV1. The Cray X1, introduced in 2003,
is a scalable vector system that offers high-speed
custom vector processors, high memory bandwidth,
and an exceptionally high-bandwidth, low-latency
interconnect linking the nodes. A significant feature
of the X1 is that it combines the processor perfor-
mance of traditional vector systems with the scala-
bility of modern microprocessor-based architectures.
It is the first vector supercomputer designed to scale
up to thousands of processors with a single system
image.

The X1 system at NAS was evaluated from the
standpoints of processor and system performance,

ease of use, and production computing readiness at
NAS. This paper describes details of our study fo-
cusing on scientific applications and the computa-
tional needs of the science and engineering research
communities that NAS serves.

The primary goals of our evaluation were to: eval-
uate kernel benchmarks and application codes of rel-
evance to NAS and compare performance with sys-
tems from other HPC vendors; determine effective
code porting and performance optimization tech-
niques; determine the most efficient approaches for
utilizing the Cray X1; and predict scalability both in
terms of problem size and processor counts. While
the performance of individual kernels may be pre-
dicted with detailed performance models and lim-
ited benchmarking, the behavior of full applications
and the suitability of this system as a production sci-
entific computing resource can only be determined
through extensive experiments conducted on a real
system using applications that are representative of
the daily workload.

This paper summarizes the results of our evalu-
ation of this unique architecture when using a va-
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Figure 1: Architecture of the X1 node (in red), MSP (in green), and SSP (in blue).

riety of microbenchmarks, kernel benchmarks, and
full-scale application codes from the CFD and Earth
science domains. These scientific disciplines account
for a substantial portion of the computing cycles at
NAS. We also report on our experiences with using
the Co-Array Fortran (CAF) programming model
on the X1 for one of the kernel benchmarks as well
as a full-scale CFD application code.

2 Cray X1 Architecture

The Cray X1 computer is designed to combine the
traditional strengths of vector systems with the gen-
erality and scalability features of superscalar cache-
based parallel architectures (see schematic in Fig. 1).
The computational core, called the single-streaming
processor (SSP), contains two 8-stage vector pipes
running at 800 MHz. Each SSP contains 32 vec-
tor registers holding 64 double-precision words, and
operates at 3.2 GFlops/s peak. All vector opera-
tions are performed under a bit mask, allowing loop
blocks with conditionals to compute without the
need for scatter/gather operations. Each SSP can
have up to 512 addresses simultaneously in flight,
thus hiding the latency overhead for a potentially
significant number of memory fetches. The SSP also
contains a two-way out-of-order superscalar proces-
sor running at 400 MHz with two 16 KB caches (in-
struction and data). The scalar unit operates at
an eighth of the vector performance, making a high
vector operation ratio critical for effectively utilizing

the underlying hardware.
The multi-streaming processor (MSP) combines

four SSPs into one logical computational unit. The
four SSPs share a 2-way set associative 2 MB
data ECache, a unique feature for vector architec-
tures that allows extremely high bandwidth (25–
51 GB/s) for computations with temporal data lo-
cality. An X1 node consists of four MSPs shar-
ing a flat memory through 16 memory controllers
(MChips). Each MChip is attached to a local mem-
ory bank (MBank), for an aggregate of 200 GB/s
node bandwidth. Additionally, MChips can be used
to directly connect up to four nodes (16 MSPs) and
participate in remote address translation. To build
large configurations, a modified 2D torus intercon-
nect is implemented via specialized routing chips.
The torus topology allows scalability to large pro-
cessor counts with relatively few links although it
suffers from limited bisection bandwidth. The X1 is
a globally addressable architecture, with specialized
hardware support that allows processors to directly
read or write remote memory addresses in an effi-
cient manner.

The X1 programming model leverages parallelism
hierarchically. At the SSP level, vector instruc-
tions allow 64 SIMD operations to execute in a
pipeline fashion, thereby masking memory latency
and achieving higher sustained performance. MSP
parallelism is obtained by distributing loop itera-
tions across the four SSPs. The compiler must there-
fore generate both vectorizing and multistreaming
instructions to effectively utilize the X1. Intra-node
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parallelism across the MSPs is explicitly controlled
using shared-memory directives such as OpenMP
or Pthreads, while traditional message passing via
MPI is used for coarse-grain parallelism at the inter-
node level. In addition, the hardware-supported
globally addressable memory allows efficient im-
plementations of one-sided communication libraries
(SHMEM, MPI-2) and implicitly parallel languages
such as Unified Parallel C (UPC) and CAF.

3 The NAS Cray X1 System

The Cray X1 system at NAS is a small 4-node con-
figuration that can be expanded as needed. Since
one node is reserved for the operating system and
other tasks, only three nodes (12 MSPs or 48 SSPs)
are available to the user. This limited the size of the
application test cases that could be evaluated. The
machine has an 800 MHz clock with a peak compu-
tation rate of 12.8 GFlops/s per MSP and system
peak perfomance of 204.8 GFlops/s. The central
main memory is 64 GB and there are 4 TB of FC
RAID disk space. The operating system is UNICOS,
VMP 2.4.10 with single-system image.

4 Benchmarks

As mentioned earlier, we first evaluated the NAS
X1 system using a variety of microbenchmarks and
kernel benchmarks. The results of this evaluation
are described in this section, followed by the per-
formance behavior on various full-scale application
codes.

4.1 Microbenchmarks

The HPC Challenge (HPCC) benchmarks [20] were
used for microbenchmarking the X1. These bench-
marks are multi-faceted and provide comprehensive
insight into the performance of modern high-end
computing systems. They are intended to test var-
ious attributes and stress not only the processors
but also the memory subsystem and system inter-
connects. They are a good indicator of how mod-
ern large-scale parallel systems will perform across
a wide spectrum of real-world applications.

The following seven components of the HPCC
benchmarks were used to measure the performance
of the NAS X1 for comparison with the SGI Altix
3700 (a node of the Columbia supercluster). Note

that an Altix contains 512 processors connected with
SGI NUMAflex, powered by 1.5 GHz Itanium2 pro-
cessors with 6 MB L3 cache.

– G-PTRANS implements a parallel matrix
transpose given by A = A + BT . It measures
network communication capacity using several
processor pairs simultaneously communicating
with each other.

– G-Random Access measures the rate (in giga
(billions) updates per second) at which the
computer can update pseudo-random locations
of its memory.

– EP-Stream measures sustainable memory
bandwidth and the corresponding computation
rate for simple vector kernels. All the com-
putational nodes execute the benchmark at
the same time and the arithmetic average is
reported.

– G-FFTE performs FFTs across the entire
computer by distributing the input vector in
block fashion across the nodes. It measures
the floating-point rate of execution of double
precision complex Discrete Fourier Transform
(DFT).

– EP-DGEMM measures the floating-point
execution rate of double precision real matrix-
matrix multiplication performed by the
DGEMM subroutine from BLAS. All nodes
simultaneously execute the benchmark and the
average rate is reported.

– Random Ring Bandwidth reports bandwidth
achieved per CPU in a ring communication pat-
tern where the nodes are ordered randomly.
The result is averaged over various random as-
signments of processors in the ring.

– Random Ring Latency reports latency in a ring
communication pattern. Again, the commu-
nicating nodes are ordered randomly and the
result is averaged over various random assign-
ments of processors in the ring.

Table 1 compares performance results for the
HPCC benchmarks on the Cray X1 and SGI Altix,
both installed at NAS. All results are for a base-
line run on 48 CPUs with no tuning or optimiza-
tion performed for either system. Input data for
both systems were identical. From the table, observe
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Table 1: Baseline HPCC benchmark performance
on 48 CPUs for the X1 and Altix, both at NAS.

Benchmark Unit X1 Altix
G-PTRANS GB/s 0.02513 0.8901
G-Random Access GU/s 0.00062 0.0017
EP-Stream Triad GB/s 62.56547 2.4879
G-FFTE GF/s 0.19217 0.6322
EP-DGEMM GF/s 9.88915 5.4463
Random Ring BW GB/s 2.41081 0.7459
Random Ring Lat. µs 13.71860 4.5552

that the Altix outperforms the X1 for the PTRANS,
Random Access, FFTE, and Ring Latency bench-
marks, while the reverse is true for the Stream,
DGEMM, and Ring Bandwidth benchmarks.

4.2 Kernel Benchmarks

The NAS Parallel Benchmarks (NPB) [1, 2] have
been widely used to test the capabilities of paral-
lel computers and parallelization tools. The origi-
nal NPB suite [1] consisted of five kernels and three
compact CFD applications, given as “pencil and pa-
per” specifications. The five kernels mimic the com-
putational core of key numerical methods and the
three compact applications reproduce much of the
data movement and computations found in full-scale
CFD codes. Reference implementations were subse-
quently provided [2] as NPB 2, using MPI as the
parallel programming paradigm. The NPB 2.3 re-
lease included sequential code that was essentially a
stripped-down version of the MPI implementation.

Recent NPB development efforts have focused
on cache performance optimization, inclusion of
other programming paradigms such as HPF and
OpenMP [8, 9], and the addition of new bench-
marks [7, 21]. NPB 3 represents the latest version
of the benchmarks and incorporates these recent de-
velopments.

For the Cray X1 evaluation, a subset of these
benchmarks was selected: two kernels (MG, FT)
and three compact applications (BT, SP, LU). This
subset includes some of the different types of numer-
ical methods found in various typical applications.
Both the MPI and OpenMP versions of these bench-
marks in the latest NPB 3.2 distribution [15] were
used in the evaluation.

Vectorization issues were given due consideration
during the development of NPB 2. As a result, the

NPB 2.x code base is expected to run reasonably
well on vector machines without much modification.
Unfortunately, the cache-friendly optimization for
NPB 3.x limited vectorization in some of the bench-
marks, notably BT and SP. Although the NPB 2.x
code base could have been picked for the X1 eval-
uation, by choosing NPB 3.2 we were also able to
examine the effort needed to port cache-optimized
codes to a vector machine like the X1.

Without any changes, both BT and SP (MPI and
OpenMP versions) performed poorly on the X1 (per-
formance less than 4% of peak) and indicated the
need for additional work to improve performance.
The Cray Fortran compiler provides a very useful
loopmark option that produces a source listing in-
dicating the loops that were optimized (streamed
and/or vectorized) and the reasons why other loops
were not. Using the loopmark listings, we deter-
mined that the main loops in the BT and SP solver
routines were not being vectorized, mainly due to
complicated loop structures, use of small work ar-
rays, and subroutine calls. We made the following
modifications:

– promoted work array dimensions from 3D to 4D
so that large, complicated loops could be split
into smaller, less complicated loops;

– inlined subroutine calls in BT with the
“!dir$ inlinealways” directive; and

– added the “!dir$ concurrent” directive for
loops that are parallel but could not be vec-
torized by the compiler.

With these changes, the codes vectorized fully.
There are two implementations of the LU bench-

mark in NPB 3.2: one uses a pipeline approach while
the other uses a hyper-plane technique [9]. The
pipeline strategy is cache-friendly, but cannot be
easily vectorized; the hyper-plane approach vector-
izes easily, but does not utilize cache efficiently. For
obvious reasons, we used the hyper-plane version for
the X1 evaluation.

The two kernel benchmarks, MG and FT, did
not require many changes to run on the X1. In
order to improve streaming performance, we used
the “!csd$” directive for one loop in MG that the
compiler failed to stream. We also tried to add the
“!csd$” directive to loops in FT, but encountered
a runtime error that is yet to be resolved. In order
to fully utilize the vector capability, a block size of
64 was used for the FFT algorithm in FT.

Recall that on the X1, an application can be com-
piled and run in either MSP or SSP mode. Since
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one MSP contains four SSPs, in principle, the per-
formance of an MSP should be four times that of an
SSP. We examined the performance of the selected
NPBs running in both MSP and SSP modes, and
compared them with those obtained on the Altix.

In the following, results obtained for MG, FT, SP,
and BT are first discussed. The LU benchmark is
worth a special note later. The MPI implementa-
tions of SP and BT require the number of processors
to be a perfect square, while MG, FT, and LU re-
quire the number to be a power of two. On the NAS
X1, we can thus run these benchmarks only up to
8/9 MSPs or 32/36 SSPs. Although OpenMP codes
can run on any number of processors, they are lim-
ited to one shared-memory node, that is, four MSPs
or 16 SSPs.

Table 2 lists the measured performance of four
benchmarks on the X1 (in both MSP and SSP
modes) and the Altix. Since one MSP is equivalent
to four SSPs, the results are tabulated accordingly.
The following observations can be drawn:

– For MPI codes, SSP mode generally performs
better than MSP mode, except for SP where
the 9-MSP run outperformed the 36-SSP run.

– For OpenMP codes, the SSP mode is con-
sistently better, indicating streaming under
OpenMP is not as efficient.

– Except for SP, streaming seems to be done
poorly. Use of the “!csd$” directive may be re-
quired in some of these cases to improve stream-
ing.

– Through 16 SSPs (the maximum number of
threads allowed to run a pure OpenMP code),
the OpenMP versions scaled better than their
MPI counterparts. This might be related to
runtime fluctuations that are discussed later.
The situation is reversed on the Altix: the MPI
versions scaled better than the OpenMP codes.

– The performance of one SSP is roughly equiva-
lent to one Altix processor, except for BT where
the Altix processor shows roughly twice the per-
formance of an SSP.

Because the MPI version of LU uses the pipeline
approach (not suitable for the X1) and there is no
hyper-plane MPI implementation, we only examined
the performance of the OpenMP code. These results
are reported in Table 3. For comparison, perfor-
mance of the pipeline and hyper-plane versions of
LU on the Altix are also included in Table 3. Ob-
serve that the hyper-plane version performed very

Table 2: MPI and OpenMP performance (in
GFlops/s) of the four NPBs for Class B problem
size on the Altix and X1.

Altix X1-SSP X1-MSP

NPB CPU MPI OMP MPI OMP MSP MPI OMP
MG.B 1 1.433 1.610 0.717 0.706

2 1.855 2.083 1.405 1.378
4 3.463 4.145 2.137 2.657 1 0.940 1.390
8 7.069 7.274 2.455 4.906 2 1.900 2.720

16 13.174 11.356 3.475 9.532 4 3.784 5.623
32 23.759 14.128 6.371 8 4.351

FT.B 1 0.714 0.879 1.076 1.077
2 0.963 1.669 2.064 2.012
4 1.912 3.020 3.443 3.916 1 0.962 1.058
8 4.229 5.580 3.989 5.189 2 1.886 2.033

16 8.131 10.279 6.188 7.740 4 3.728 4.071
32 16.737 16.138 10.106 8 7.448

SP.B 1 0.583 0.960 0.899 0.924
2 1.511 1.824
4 1.505 2.704 2.381 2.691 1 2.061 2.009
9 3.971 4.961 4.211 4.317 2 3.860

16 7.976 7.860 5.874 7.884 4 5.662 7.381
36 17.944 16.627 9.819 9 11.425

BT.B 1 1.163 1.672 0.916 0.821
2 3.045 1.632
4 4.086 5.630 2.930 2.392 1 0.965 0.988
9 8.781 11.372 4.791 4.561 2 1.955

16 15.316 16.492 6.967 8.431 4 4.892 3.925
36 34.821 35.401 12.209 9 10.192

well on the X1 and very similar to the pipeline ver-
sion on the Altix. The performance in MSP mode is
about 15% worse than in SSP mode, which seems
reasonable. On the other hand, the hyper-plane
version did not scale well on the cache-based Al-
tix system and showed no improvement beyond 16
processors.

Table 3: OpenMP performance (in GFlops/s) of the
LU NPB for Class B problem size on the Altix and
X1.

Altix X1-SSP X1-MSP

NPB CPU pipe-l hyper-p hyper-p MSP hyper-p
LU.B 1 1.020 0.750 1.122

2 2.608 1.663 2.001
4 4.658 2.748 3.162 1 2.739
8 7.406 4.293 6.173 2 4.868

16 11.522 5.803 11.070 4 8.909

We observed large runtime fluctuations when run-
ning MPI processes in SSP mode on the X1. This
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Figure 2: Timing variations observed from running the MG NPB for Class B problem size in SSP mode:
MPI (left) and OpenMP (right).

effect can be seen in the left panel of Fig. 2 from
15 separate runs of the MG benchmark on four and
eight SSPs. Of the 15 runs using eight SSPs, there
are two that achieved an optimal performance of
3.65 GFlops/s, but most were close to a baseline of
2.64 GFlops/s; the performance difference is more
than 30%. In contrast, the 16-SSP MPI runs show
very little variation (less than 5%). In particular,
we do not see a similar variation when running the
OpenMP codes, as illustrated in the right panel of
Fig. 2. It is also interesting to note that the best 8-
SSP MPI runs outperform the 16-SSP MPI runs,
and the best 4-SSP MPI runs show similar per-
formance as the corresponding OpenMP runs, al-
though OpenMP scales significantly better.

According to Cray, the large timing variations ob-
served in the SSP runs are related to the design of
the X1. Each MSP has 4 SSPs, ECache, and a single
high speed path to memory. All SSPs in an MSP
share the ECache and the memory path. When run-
ning an application in SSP mode, there is no provi-
sion for controlling how processes are mapped to the
SSPs. For example, a 4-SSP application could end
up using SSPs from 1 to 4 MSPs. If all of the pro-
cesses are mapped to a single MSP, then only one
ECache and one memory path would be utilized.
The reverse would be true if one SSP each from four
different MSPs were used. Both cache and memory
performance can be significantly different depending
on where processes are mapped. The only way to get
consistent multi-processor timings in SSP mode is to
use multiples of 16 SSPs, as demonstrated in Fig. 2.
This is only an issue for SSP mode and does not

apply to MSP mode. Evidently, OpenMP threads
are scheduled differently and do not experience the
same problem.

We also examined more detailed information from
the hardware performance counters reported by the
pat_hwpc tool. Table 4 shows the results for the
five benchmarks running on a single SSP or MSP.
The vectorization percentage is above 99% for all the
benchmarks. The average vector length ranges from
44 to 64 in SSP mode; however, this value drops in
MSP mode by more than 40% for MG and 70% for
FT, indicating that some loops were both streamed
and vectorized. This is a major factor that lim-
its performance in MSP mode. The LU benchmark
is the only one that displays an excellent floating-
point-to-load ratio that seems to have a direct im-
pact on performance. Reducing memory loads and
enhancing streaming are the keys to further improv-
ing NPB performance on the X1.

Table 4: Single-processor performance for the five
NPBs reported from the hardware counters on the
X1.

FP Ops Vec. Vector Length % of Peak

NPB /Load % SSP MSP SSP MSP
MG.B 0.85 99.4 44.65 27.21 24.0 11.8
FT.B 0.94 99.7 64.00 17.49 35.5 8.3
SP.B 1.10 100.0 49.88 35.37 28.9 17.4
BT.B 0.95 100.0 60.87 49.76 25.8 8.3
LU.B 1.75 99.8 55.71 42.80 35.5 21.8
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4.3 CAF Version of SP Benchmark

Cray recommends the use of CAF [5, 6] because
it has lower overhead than MPI for inter-process
communication. CAF is a simple syntactic exten-
sion to Fortran95 that converts it into a robust,
efficient parallel language. It is a shared-memory
programming model based on one-sided communi-
cation where data can be directly referenced from
any processor rather than by explicit messages.

The co-array extension allows the programmer to
distribute the data among memory images using
normal Fortran array syntax. A co-array variable is
defined by adding a square bracket to denote the im-
age of this variable on a processor indicated within
this square bracket. The square bracket can be omit-
ted when referencing a local image of this array.
Since most data references in a parallel code are lo-
cal, the presence of co-array syntax will indicate in-
dicate inter-processor communication. Global bar-
riers for synchronization are also provided.

When starting from MPI code, performance im-
provements can be obtained by identifying the
message-passing calls where most of the computa-
tion time is spent and replacing them with CAF
constructs. In this evaluation, however, we chose
an alternate approach. We developed a CAF ver-
sion from the serial rather than the MPI implemen-
tation in order to evaluate the programming effort
involved. We selected the SP benchmark from the
NPB suite that deals with the solution of systems
of scalar, pentadiagonal equations [1]. Since the lat-
est version of the benchmarks (NPB 3) focus on
cache optimization, we chose NPB 2.3 as our start-
ing point as it took vectorization issues into consid-
eration. Note that both serial and MPI implemen-
tations are available in NPB 2.3. The code structure
was similar for MPI and CAF, and tailored to vector
architectures such as the X1.

The SP code involves an initialization phase fol-
lowed by iterative computations over multiple time
steps. At each time step, the right hand sides of
the equations are calculated. A banded system is
then solved in three computationally intensive bidi-
rectional sweeps along each of the x, y, and z direc-
tions. The flow variables are finally updated.

The data structure for this code is a cube of size
n which can be represented in arrays with dimen-
sion (imax, jmax, kmax), where imax = jmax =
kmax = n. For class A problem size, n is 64; for
class B, it is 102. The data decomposition strat-
egy we chose for the CAF version was to equally

distribute planes in the z direction across the pro-
cessors. Thus, using co-array syntax, a variable Q is
declared as Q(imax, jmax, kmax/np)[∗], where np
is the number of processors. By dividing the last
dimension by the processor count, memory storage
is reduced as it causes the co-array to be allocated
on all np processors. For each processor to have an
equal number of z planes, the value of np should be
such that kmax is exactly divisible by np.

When sweeping in the x, y, and z directions in
subroutines x solve, y solve, and z solve, the
process of forward elimination and backward sub-
stitutions leads to recursion in the three indices, re-
spectively. For the x and y directions, the recursion
does not pose any difficulty for our data decomposi-
tion strategy since all the data in these dimensions
is available locally on each processor. However, for
the z direction sweep in subroutine z solve, recur-
sion creates a problem since the data is distributed.
This can be dealt with by swapping the j and k in-
dices, thereby transposing the data. While this may
seem to be a considerable overhead, the advantage
for architectures like the X1 is that an entire plane
of data is available for effective vectorization. The
resulting performance gain far outweighs the trans-
pose overhead which is nominal on the X1 due to
its high bandwidth shared-memory communication
architecture.

Developing a CAF version of the SP code from
the serial implementation gave us the opportunity
to evaluate this programming model on the X1. The
code required many modifications to account for
proper data decomposition. All loop limits had to
be changed. The most time consuming part involved
modifying the z solve subroutine and related rou-
tines to accommodate the transposed variables. We
developed a utility tool to simplify the tedious tasks.
With the CAF syntax, it was relatively simple to
write the array transposition routines and distribute
the arrays across the various processors.

Figure 3 shows results for the class A and B prob-
lem sizes of SP in MSP and SSP modes for both
MPI and CAF versions. Results indicate that CAF
performed better than MPI for both modes. Note
that the results for MSP are shifted by a factor of
four since one MSP consists of four SSPs. As the
number of processors (MSPs or SSPs) grows, the ad-
vantage of CAF over MPI increases. As expected,
the performance of both CAF and MPI versions im-
proves as the problem size increases from class A
to class B. For class A, the average vector length
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Figure 3: Performance of CAF and MPI versions of the SP NPB: Class A (left) and Class B (right).

in the CAF implementation dropped from 43 to 26
when going from 1 to 32 SSPs, whereas in the MPI
version, it dropped from 39 to 10 between 1 and
36 SSPs. The higher vector length is partially re-
sponsible for the better performance of CAF. On
the other hand, the MPI version uses asynchronous
communication while computations are performed.
We could not identify this feature in CAF but, even
if available, would not be able to accommodate our
data partitioning strategy. We conclude that for the
SP benchmark, CAF performs better than MPI for
classes A and B.

Performance comparisons between MSP and SSP
modes also shows similar trends for both CAF and
MPI. When the number of processors is small, SSP
performance is better than MSP. As the number
of processors increases, the situation is reversed.
Note that we did not use any code modifications
or compiler directives to take advantage of stream-
ing that could potentially improve performance in
MSP mode.

5 Scientific Applications

The various application codes chosen for the X1
evaluation were the CFD codes OVERFLOW, RO-
TOR, and INS3D, and the Earth science code
GCEM3D. We address a variety of issues such as
application performance using various parallel pro-
gramming paradigms and execution modes. De-
tailed results are presented in the subsections below.

5.1 OVERFLOW

OVERFLOW is a large CFD application code for
computing aerodynamic flow fields around geomet-
rically complex bodies. Development began in 1990
at NASA Ames [4]; it currently comprises of 1000
subroutines and 100,000 lines of code. OVERFLOW
is written in Fortran77 with a small amount of C to
handle memory allocation. Upgrades and enhance-
ments continued up through 2003, at which time the
code was frozen and effort was directed toward a
second-generation version which would combine the
features of OVERFLOW and an earlier descendant
(called OVERFLOW-D that had a set of capabili-
ties for dealing with bodies in relative motion). The
new code is called OVERFLOW-2. Here we con-
sider only the original code, referred to simply as
OVERFLOW.

OVERFLOW numerically solves the Navier-
Stokes equations of fluid flow with finite differences
in space and implicit integration in time. In a
data preparation step (performed independent of
the code), structured grids are generated about solid
bodies with geometric complexity handled via arbi-
trary overlapping grids. All data access has a regular
pattern with the exception of the transfer of infor-
mation from one zone to another where required by
irregular zonal overlap. OVERFLOW is constructed
in a highly modular fashion with most subroutines
performing just one conceptual operation on a 2D
or 3D array. There are a wide variety of options
including numerical methods, boundary conditions,
and turbulence models.
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OVERFLOW was originally developed with vec-
tor supercomputers of the time (Cray YMP, Cray
C-90) in mind. The numerically intensive subrou-
tines are highly vectorized: hardware performance
monitoring of the code typically indicates 99.9% of
the floating-point operations are vector operations.
Several years later, concurrency was added via ex-
plicit microtasking directives. This allowed the use
of multiple processors on machines like the Cray C-
90. Effective parallelism was limited to about eight
processors because of the small degree of available
concurrency when computing on a single zone.

The advent of clusters and distributed memory
computers led to efforts to exploit other models of
parallelism. One path taken was the hybrid ap-
proach with explicit message passing at the outer
level and loop-level parallelism at the inner level.
Here the outer coarse-grained parallelism occurred
across the zones of the overset grid system, while
the inner fine-grained parallelism was within each
individual zone.

The introduction of large distributed shared mem-
ory machines allows explicit message passing and its
attendant problems (such as software development
and maintenance difficulties, and network perfor-
mance) to be avoided. Instead one can implement a
strategy that uses the shared memory to exchange
information among the zones of a multi-zone geom-
etry. The finer loop-level parallelism remains. This
specific style of hybrid parallelism has been called
Multi-Level Parallelism or MLP [17].

The MLP strategy for OVERFLOW was orig-
inally implemented on SGI shared-memory ma-
chines. Loop-level parallelism was added via ex-
plicit OpenMP directives corresponding to the ear-
lier Cray microtasking directives. Explicit OpenMP
directives were also added in some subroutines, typ-
ically those containing a triply-nested loop which
had been autotasked by the C-90 compiler but which
other compilers would not automatically parallelize.

The task of implementing the MLP version on the
X1 required some system-specific initializations [3].
In addition, OpenMP was replaced by streaming.
Subroutines with triply- or doubly-nested loops
needed no changes as the Cray compiler automati-
cally streams the outer loop, as a rule. A few explicit
streaming and inlining directives were necessary in
cases where parallelism occurred across subroutine
boundaries and was not visible to the compiler. A
handful of other routines also required minor modi-
fications.

Figure 4: Body surface geometry for a typical trans-
port aircraft showing the plane of symmetry used
in the OVERFLOW computations. Different colors
denote different computational zones.

In summary, the MLP version of OVERFLOW
was run in MSP mode on the X1. Shared mem-
ory is used for information exchange between pro-
cesses while streaming and vectorization are used
within each MSP while fine-grained parallelism is
via OpenMP. For comparison, this version was also
run on the SGI Altix.

A realistic transport aircraft geometry (see Fig. 4)
was chosen as a test case. This configuration has 77
zones with almost 23 million grid points and rep-
resents a moderately large problem. Performance
results are compared in Table 5. All timing data is
shown as average wall clock seconds per time step,
and ignore startup and shutdown transients. The
value directly determines how long a user has to wait
for a job to complete once it starts executing. Ob-
serve that, for this test case, one X1 MSP is roughly
equivalent to 3.5 Altix CPUs (in other words, one X1
SSP is equivalent to about one Altix CPU). Table 5
also shows performance data in microseconds per
grid point per time step to give a case-independent
measure of machine performance. For reference, a
benchmark run of OVERFLOW on a single CPU of
the C-90 required 8.455 µs per grid point per time
step and operated at 0.47 GFlops/s.

Regression analyses show that the relation be-
tween time t and number of CPUs N for the Altix is
t = 48.68·N−0.78, while for the X1, the expression is
t = 100.16 ·N−0.97 (here N is the number of SSPs).
This indicates that for this set of processor counts,
the code scales better on the X1 (exponent nearer
−1) than on the Altix.
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Table 5: Performance of MLP version of OVER-
FLOW on the X1 and Altix.

X1 Altix

MSP s/step µs/pt/step CPU s/step µs/pt/step
1 26.205 1.140 4 19.871 0.865
2 13.215 0.575 8 9.893 0.431
4 6.869 0.299 16 5.235 0.228
8 3.481 0.151 32 2.784 0.121

12 2.343 0.102 48 2.152 0.094

Table 6: Hardware performance monitor data for
MLP version of OVERFLOW on the X1.

FP Ops Vec.
MSP GF/s /Load Len.

1 2.895 1.39 50.20
2 5.462 1.39 50.11
4 9.763 1.39 49.80
8 15.885 1.38 49.23

12 19.666 1.38 48.25

Performance monitoring of this case on the X1
using hardware counters is shown in Table 6. On
one MSP, the code attains about 23% of peak speed.
The average vector length is reasonable but the code
only does about 1.4 floating-point operations per
memory load. This is basically due to the highly
modular nature of the code as mentioned earlier:
most subroutines perform only a small amount of
arithmetic operations but access a large amount of
memory in the process.

5.2 ROTOR

The ROTOR code was developed at NASA
Ames [14, 16] in the late 1980’s and early 1990’s to
accurately simulate the unsteady flow in a gas tur-
bine stage. This code has been widely distributed
and forms the basis of several related application
codes that are currently in use in industry, NASA,
and other government agencies.

A gas turbine stage typically consists of a row of
(stationary) stator airfoils and a row of (rotating)
rotor airfoils adjacent to each other in an annular
region formed between a hub and outer casing. The
flow is inherently unsteady due the motion of the
rotor row relative to the stator row, the interaction
of the rotor airfoils with the wakes and passage vor-
tices generated upstream, and vortex shedding from
the blunt airfoil trailing edges. Accurate simula-

Figure 5: Perspective view of gas turbine stage used
in the ROTOR computations. The stator row is on
the left and the rotor row is on the right. Flow di-
rection is from left to right, and rotor airfoils rotate
toward the viewer.

tions that can capture these unsteady effects can
be very useful to gas turbine designers for engine
performance optimization, noise minimization, and
new design efforts. The ROTOR code accomplishes
this by solving the 3D Navier-Stokes equations in
a time-accurate manner and accounting for the ef-
fects of “stator-rotor interaction” by using a system
of computational grids that can move relative to one
another.

Figure 5 is a perspective view of the axial tur-
bine stage that is considered in this evaluation study
showing the stator (left) and rotor (right) airfoils
mounted on the hub (the outer casing is not shown).
Figure 6 shows a 2D multiple-zone grid that is used
in ROTOR to discretize the flow domain shown in
Fig. 5. These 2D grids are wrapped on a cylindrical
surface conforming to the turbine hub and several
such grids are stacked from the hub outward to form
the 3D grid. The governing equations together with
appropriate boundary conditions are solved on this
grid until a periodic solution is obtained.

To provide a flavor for the capabilities of such
simulations, some typical results from an earlier
study [14] using the ROTOR code are shown in
Fig. 7. The figure depicts the instantaneous pres-
sure distribution on the airfoil, hub, and rotor tip
surfaces. On the stator airfoils, the flow is seen to
be almost 2D, while on the rotor airfoils strong 3D
effects are seen. Note that the pressure distribution
shown in Fig. 7 represents merely one snapshot in
time — in order to visualize the unsteady effects,
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Figure 6: Schematic of 2D patched and overlaid
grids typically used to construct the 3D grid. For
clarity, a subset of the gridpoints used are shown.

Figure 7: Typical computational results showing the
instantaneous pressure distribution in the turbine
stage. Darker colors (black, magenta, blue) rep-
resent lower pressures while lighter, brighter colors
(yellow, red, white) represent higher pressure values.

an animation of such results over multiple time in-
stances is required.

The original ROTOR code targeted Cray vector
supercomputers (XMP, YMP, C-90) where it was
typically run in serial fashion on a single proces-
sor. The code was highly vectorized and gener-
ally achieved about 0.5 GFlops/s sustained perfor-
mance on a single C-90 processor. With the shift
in recent years at NAS toward cache-based, dis-
tributed shared memory machines such as the SGI
Origin and Altix series, it was clear that a multi-
level parallel programming paradigm coupled with
“cache-friendly” code optimizations was needed to
exploit these new architectures. The hybrid MLP
approach was therefore adopted to exploit the dis-
tributed shared memory feature of these machines in
combination with OpenMP directives for loop-level
parallelism.

For the X1 evaluation studies reported here, a
vectorized version of the MLP-OpenMP code was
developed, drawing from past experience with the
original Cray serial vector code and the hybrid MLP
approach which was used with the “cache-friendly”
version of the code. The MLP library routines de-
veloped for the SGI Origin were ported to the X1 by
Chris Brady of Cray, Inc. Due to time constraints,
we did not explore the use of streaming directives
(other than those automatically generated by the
compiler) and focused mainly on using the machine
in SSP mode. (Some results comparing MSP and
SSP modes are, however, provided.) This choice was
also based on the fact that the test problem requires
12 processors at a minimum. Since the machine at
NAS is small (12 MSPs or 48 SSPs available), only
one OpenMP thread could be used in MSP mode,
while up to four OpenMP threads could be used
in SSP mode. As part of this evaluation, a CAF
version of ROTOR was also developed for compar-
ison with the shared-memory MLP approach. The
CAF implementation also uses OpenMP directives
for loop-level parallelism.

The test case chosen for the performance evalua-
tion studies is a 6-airfoil turbine geometry and grid
system that is identical to that depicted in Fig. 5
and Fig. 6 with the exception that three airfoils are
used in each row (instead of three in the stator and
four in the rotor row). This was done to accom-
modate the problem on the small X1 at NAS. This
results in 12 grids or zones, since the region around
each airfoil is discretized using two grids. These 12
zones are computed in parallel, and one or several
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Table 7: Single-processor performance of ROTOR
(optimized for the C-90) on the X1 with only com-
piler generated automatic streaming.

Test Grid Time FP Ops Vec. Vec. GF % of
Case Pnts Mode (s) /Load Len. % s Peak

C 0.7M MSP 12.10 1.15 20.1 99.2 0.77 7.8
SSP 16.94 1.24 24.9 99.2 0.53 16.6

M 6.9M MSP 79.42 1.17 30.2 99.5 1.32 10.3
SSP 135.30 1.26 38.1 99.5 0.75 23.4

F 23.3M MSP 225.62 1.18 36.6 99.6 1.58 12.3
SSP 414.24 1.26 42.1 99.6 0.83 25.9

OpenMP threads are used for loop-level parallelism
in each zone as needed. Three different grid sizes
were used in each zone: coarse (0.7M gridpoints),
medium (6.9M gridpoints), and fine (23.3M grid-
points).

Table 7 shows the performance of the original “se-
rial” ROTOR code (optimized for the Cray C-90) on
the X1. Results for both MSP and SSP modes are
presented. Note that no manual streaming direc-
tives were inserted. Observe that the serial code vec-
torizes well; the average vector lengths range from
about 20 to 37 for the coarse to fine grids in MSP
mode and from 25 to 42 in SSP mode. In MSP
mode, the code achieves 0.77 GFlops/s (7.8% of
peak) for the coarse grid, and 1.58 GFlops/s (12.3%
of peak) for the fine grid. In SSP mode, it achieves
0.53 GFlops/s (16.6% of peak) and 0.83 GFlops/s
(25.9% of peak) for the coarse and fine grids, respec-
tively. The results indicate that the serial code runs
more efficiently in SSP mode than in MSP mode. To
put these results in historical perspective, we note
that the code ran on a single processor of the C-
90 at about 0.5 GFlops/s for problem sizes compa-
rable to the medium grid case shown here (where
the X1 achieves 1.32 GFlops/s in MSP mode and
0.75 GFlops/s in SSP mode). In all the MSP re-
sults presented in this table and others, we empha-
size that the use of manually inserted streaming di-
rectives could potentially improve performance.

Table 8 compares the performance under MSP
and SSP modes for the parallel versions of RO-
TOR. Results are shown for both the MLP and
CAF implementations with one OpenMP thread.
Across 12 processors, the MLP code achieves 7.30
and 15.37 GFlops/s for the coarse and fine grids in
MSP mode, and 3.60 and 6.41 GFlops/s respectively
in SSP mode. The best results are for the fine grid
and show the application achieving 10% of peak in

Table 8: Performance of MLP and CAF versions of
ROTOR in MSP and SSP modes with one OpenMP
thread and 12 processors.

Test Grid Para- Time GF % of
Case Pnts Mode digm (s) /s Peak

C 0.7M MSP MLP 1.00 7.30 4.75
SSP MLP 2.03 3.60 9.38
MSP CAF 0.99 7.38 4.80
SSP CAF 1.90 3.85 10.03

M 6.9M MSP MLP 7.41 12.65 8.24
SSP MLP 17.34 5.41 14.09
MSP CAF 7.16 13.35 8.69
SSP CAF 17.01 5.62 14.64

F 23.3M MSP MLP 20.61 15.37 10.00
SSP MLP 49.40 6.41 16.69
MSP CAF 20.21 16.34 10.64
SSP CAF 47.66 6.65 17.32

Table 9: Performance of MLP and CAF versions
of ROTOR in SSP mode with multiple OpenMP
threads.

MLP-OMP CAF-OMP

Test Grid OMP Time GF Spee Time GF Spee
Case Pnts SSP Thrd (s) /s dup (s) /s dup

C 0.7M 12 1 2.03 3.60 1.00 1.90 3.85 1.00
24 2 1.06 6.90 1.92 1.02 7.15 1.86
36 3 0.72 10.10 2.81 0.70 10.51 2.73
48 4 0.57 12.80 3.56 0.55 13.32 3.45

M 6.9M 12 1 17.34 5.41 1.00 17.01 5.62 1.00
24 2 8.46 11.12 2.06 8.23 11.61 2.07
36 3 6.18 15.22 2.81 5.99 15.96 2.84
48 4 4.81 19.56 3.62 4.60 20.78 3.70

F 23.3M 12 1 49.40 6.41 1.00 47.66 6.65 1.00
24 2 23.76 13.33 2.08 22.97 13.79 2.07
36 3 17.24 18.38 2.87 16.49 19.21 2.89
48 4 13.88 22.82 3.56 12.77 24.81 3.73

MSP mode and 16.69% of peak in SSP mode. Com-
parison of results between MLP and CAF shows a
small improvement (ranging from 1–6%) using CAF
in both SSP and MSP modes.

Table 9 compares MLP and CAF versions of
ROTOR including the effect of multiple OpenMP
threads. In this and subsequent tables, we re-
strict ourselves to SSP mode. Between one to four
OpenMP threads are used to spread the test prob-
lem across 12 to 48 SSPs. The results for both the
MLP and CAF codes are similar, with the CAF
version performing slightly better overall. With in-
creasing OpenMP threads, speedups of about 3.6
are noted for both codes for the different grid sizes.
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Table 10: Performance comparison of ROTOR:
CAF-OpenMP in SSP mode on X1 and MLP-
OpenMP on Altix.

X1 Altix

Test Grid OMP Time GF Spee Time GF Spee
Case Pnts CPU Thrd (s) /s dup (s) /s dup

C 0.7M 12 1 1.902 3.85 1.00 1.694 4.32 1.00
24 2 1.023 7.15 1.86 1.035 7.07 1.64
36 3 0.696 10.51 2.73 0.946 7.74 1.79
48 4 0.549 13.32 3.45 0.843 8.68 2.01

M 6.9M 12 1 17.010 5.62 1.00 19.292 4.95 1.00
24 2 8.231 11.61 2.07 11.081 8.62 1.74
36 3 5.986 15.96 2.84 10.120 9.44 1.91
48 4 4.598 20.78 3.70 8.889 10.75 2.17

Table 10 compares ROTOR performance between
the X1 and the Altix. The comparison is made us-
ing the CAF (best performing) implementation on
the X1 in SSP mode and using a cache-optimized
scalar MLP code on the Altix. It is important to
note that the Altix version is still being optimized.
Results show that with one OpenMP thread, code
performance on the Altix is slightly better than on
the X1 (4.32 GFlops/s versus 3.85 GFlops/s). This
is probably due to the small problem size and its
ability to fit in Altix cache. For larger problem
sizes, as evident from the medium grid results, the
X1 slightly outperforms the Altix (5.62 GFlops/s
versus 4.95 GFlops/s). With increasing OpenMP
threads, the code on the X1 also shows much bet-
ter speedup. In particular, speedups of about 3.6
are achieved with four OpenMP threads on the X1,
while the equivalent speedups on the Altix are about
2.1. The reason for this anomalous behavior on the
Altix is currently under investigation.

5.3 INS3D

The INS3D code [12], also developed at NASA
Ames, solves the incompressible Navier-Stokes equa-
tions for both steady-state and unsteady flows and
has been used in a variety of applications.

A recent application of the INS3D code has been
in performing computations of the unsteady flow
through full scale liquid rocket engine pumps and
fuel-liners [13]. Liquid rocket turbopumps oper-
ate under severe conditions and at very high ro-
tational speeds. The low-pressure-fuel turbopump
creates transient flow features such as reverse flows,
tip clearance effects, secondary flows, vortex shed-

Figure 8: Surface grids used by INS3D for the low
pressure fuel pump inducer and the flowliner.

ding, junction flows, and cavitation effects. Flow
unsteadiness that originates from the inducer is con-
sidered to be one of the major contributors to the
high frequency cyclic loading that results in cycle
fatigue. The reverse flow that originates at the tip
of an inducer blade travels upstream and interacts
with the bellows cavity.

To resolve the complex flow geometry, an overset
grid approach is employed in INS3D where the prob-
lem domain is decomposed into a number of simple
grid components. Connectivity between neighbor-
ing grids is established by interpolation at the grid
outer boundaries. Addition of new components to
the system and simulation of arbitrary relative mo-
tion between multiple bodies are achieved by estab-
lishing new connectivity without disturbing the ex-
isting grids.

A typical computational grid used for pump com-
putations is shown in Fig. 8. This particular grid
system has 264 zones and 66 million grid points. Un-
steady computations for the flowliner analysis were
performed on the Altix platform at NAS. For the
purpose of this evaluation, a smaller test case which
includes only the S-pipe A1 test section was run on
the X1.

Figure 9 displays particle traces colored by axial
velocity entering the low pressure fuel pump. The
blue particles represent regions of positive axial ve-
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Figure 9: Instantaneous snapshot of particle traces
colored by axial velocity values as computed by
INS3D.

locity, while the red particles indicate four back flow
regions. The gray particles identify the stagnation
regions in the flow.

To evaluate the performance of the MPI-OpenMP
version of the INS3D code on the X1, a 3D high
Reynolds number turbulent flow through the A1-
test stand is chosen. The grid for the test case con-
sisted of six zones and a total of 2 million grid points.
Each grid contained between 0.3 and 0.4 million grid
points allowing for good load balance within each
MPI group. For the purpose of testing the scalabil-
ity of the code in SSP mode with respect to both
the number of MPI groups and number of OpenMP
threads, we grouped the zones into 1, 2, 3, and 6
MPI groups. For each MPI group size, a number
of OpenMP threads ranging from 1 to 8 were used.
By varying the number of MPI groups and OpenMP
threads, we can determine which methodology scales
better on the X1. In MSP mode, we utilized com-
piler generated streaming and disabled the OpenMP
commands; we still ran the test case for all the MPI
group sizes in this mode.

Table 11 displays the SSP mode performance us-
ing the various MPI groups and OpenMP threads.
Note that OpenMP parallelization scales reasonably
well up to four OpenMP threads and then begins to
level off. On the other hand, the coarse-grained MPI
parallelization seems to scale better up to six groups.
The INS3D code vectorizes well with average vec-
tor lengths of 20 to 45 in SSP mode. The code
achieves a high percentage of peak (31%) with one
MPI group and one OpenMP thread; the value de-
creases as the number of MPI groups and OpenMP
threads increases.

Table 11: Performance of MPI-OpenMP version of
INS3D in SSP mode.

SSP OMP Time FP Ops Vec. Vec. GF % of
/MPI Thrd (s) /Load Len. % /s Peak

1/1 1 66.90 1.90 42.70 99.7 0.994 31.06
2/1 2 45.20 1.87 36.56 99.7 1.472 22.00
4/1 4 37.08 1.78 28.64 99.7 1.792 14.00
6/1 6 32.99 1.70 23.87 99.7 2.020 10.52
8/1 8 30.98 1.64 20.69 99.7 2.148 8.39
2/2 1 34.33 2.11 44.45 99.7 1.928 30.12
4/2 2 26.98 1.89 36.57 99.7 2.471 19.30
8/2 4 21.66 1.85 28.87 99.7 3.078 12.02

12/2 6 20.42 1.74 23.87 99.7 3.262 8.49
16/2 8 18.34 1.68 20.70 99.7 3.613 7.05
3/3 1 29.88 1.94 42.70 99.7 2.236 23.29
6/3 2 18.28 1.90 36.57 99.7 6.647 18.99

12/3 4 15.25 1.84 28.64 99.7 4.305 11.21
18/3 6 13.75 1.77 23.86 99.7 4.852 8.42
24/3 8 13.68 1.69 20.70 99.7 4.875 6.34
6/6 1 17.06 1.93 42.70 99.7 3.909 20.35

12/6 2 11.04 1.92 36.57 99.7 5.858 15.25
24/6 4 8.40 1.88 28.64 99.7 7.968 9.85

Table 12: Performance of MPI version of INS3D
in MSP mode with compiler generated automatic
streaming.

MSP Time FP Ops Vec. Vec. GF % of
/MPI (s) /Load Len. % /s Peak
1/1 40.80 1.91 19.20 99.7 1.623 12.68
2/2 22.10 1.94 19.20 99.7 2.986 11.66
3/3 15.90 1.94 19.20 99.7 6.249 11.04
6/6 8.27 1.95 19.20 99.7 8.265 10.76

Table 12 displays the same runs performed in
MSP mode but with OpenMP calls replaced by
compiler generated automatic streaming. We ob-
serve similar behavior as in the SSP case with four
OpenMP threads (compare with Table 11). This
demonstrates that automatic streaming is effectively
equivalent to having four OpenMP threads, which
was the most efficient number to use in SSP mode.
However, one difference is in the percentage of peak
performance that is achieved by INS3D for this test
case. In SSP mode, sustained performance when
using four OpenMP threads decreases from 14% for
one MPI group to 9.8% for six MPI groups. Instead,
in MSP mode, this percentage only decreases from
12.7% to 10.8%. A bigger test case running on a
larger X1 is needed to provide a better comparison
and more insight.
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5.4 GCEM3D

Finally, we evaluate the performance of the parallel
GCEM3D (Goddard Cumulus Ensemble Model) ap-
plication on the X1. GCEM3D is a cloud-resolving
model that has been developed and improved at
NASA Goddard Space Flight Center over the past
two decades [18].

A detailed discussion of the simulations on which
the current results are based can be found in [19].
Figure 10, taken from [19], shows 3D simulated
cloud hydrometeor mixing ratios for an Atmospheric
Radiation Measurement (ARM) case. The white
isosurfaces denote the cloud water and cloud ice,
blue denotes snow, green denotes rain water, and
red denotes hail. Also shown are the simulated
surface rainfall rate (mm/hr) corresponding to the
same cloud fields. For the X1 evaluation, two par-
allel versions of the GCEM3D code, based on the
MPI and OpenMP paradigms, were used. In both
implementations, almost the same geophysical fluid
dynamics models are solved, the only exception be-
ing the land model which has not yet been integrated
into the OpenMP version.

Figure 10: GCEM3D model-simulated cloud isosur-
faces (top) and surface rainfall rate (bottom) (cour-
tesy of Ref. [19]).

Table 13: Performance of MPI version of GCEM3D
in MSP mode.

Time GF Vec. FP Ops Mem
MSP (s) /s Len. /Load (MB)

1 1772 1.096 27 2.0 448
2 901 2.125 27 2.0 624
4 675 2.835 15 1.9 976
8 342 5.600 15 1.9 912

12 389 5.048 8 1.7 848

Table 14: Performance of MPI version of GCEM3D
in SSP mode.

Time GF Vec. FP Ops Mem
SSP (s) /s Len. /Load (MB)

1 2519 0.762 47 2.1 384
2 1401 1.371 46 2.1 496
4 920 2.084 45 2.0 720
8 523 3.675 45 2.0 1168

12 524 3.684 24 2.0 1552
16 413 4.674 24 2.0 2064
32 237 8.198 24 1.9 2080

The MPI version of GCEM3D is based on ex-
plicit message passing and uses an SPMD style pro-
gramming model [11, 19]. The paradigm is that of
coarse-grain parallelism using a domain decomposi-
tion strategy. The initial grid is divided into smaller
subgrids in the longitude and latitude directions;
one MPI task is then spawned for each subgrid. The
OpenMP implementation [10], on the other hand, is
based on a fine-grain parallelization strategy applied
at the loop-level via compiler directives. In this ap-
proach, the initial grid is not partitioned.

Tables 13 and 14 show performance for the MPI
version of GCEM3D on the X1 in MSP and SSP
modes, respectively. The global 3D grid used for
the MPI runs consisted of 104×104×42 grid points.
The number of MSPs and SSPs listed in these tables
is equal to the total number of MPI tasks, or equiv-
alently, the number of subgrids. All computations
were run for a total physical simulated time of 30
minutes.

Table 14 shows performance of the MPI version of
GCEM3D when executed in SSP mode. The code
scales nicely up to eight SSPs just as in the MSP
case (the efficiency is about 60%). Note that the
average vector length is reduced by a factor of al-
most two when the number of SSPs increases be-
yond eight. Overall, the vector lengths are higher in
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Table 15: Performance of OpenMP version of
GCEM3D in SSP modeX1.

Time GF Vec. FP Ops Mem
SSP (s) /s Len. /Load (MB)

1 5872 0.319 56 1.7 880
2 3102 0.604 55 1.7 896
4 1647 1.135 53 1.7 928
8 880 2.116 50 1.7 1008

16 475 3.906 44 1.7 1152

SSP mode due to multistreaming effects as discussed
above. For an equivalent number of SSPs, the code
always performs better in SSP mode. For instance,
the total GFlops/s for four SSPs is twice that for one
MSP. The memory usage again increases steadily
with the number of SSPs, but at a lower rate for
SSP counts beyond 16. The reason for the increased
memory usage in SSP mode when using more than
eight SSPs is not clear.

Table 15 presents performance results for the
OpenMP version of GCEM3D. The global 3D grid
used here consisted of 256×256×32 grid points.
From total execution times reported in this table,
it is evident that the OpenMP code scales almost
linearly. The parallelization efficiency is 77% for 16
SSPs. However, sustained performance is relatively
low, about half when compared with the MPI code
(see Table 14). This may be due to the fact that the
vector operations per load is 1.7 for the OpenMP
version and 2.1 for the MPI code. Vectorization for
the OpenMP code was about 92% for all runs, which
was significantly less than the 99.7% achieved for the
MPI code. Again, this could be due to the shorter
length of the do-loops constructs imposed by the
OpenMP directives. As expected, the memory us-
age increases slowly as SSP count increases due to
OpenMP overhead.

6 Summary and Conclusions

The performance of the NAS Cray X1 was eval-
uated using a variety of microbenchmarks, kernel
benchmarks, and CFD and Earth science applica-
tion codes. The evaluation was somewhat limited
due to time and machine size constraints; however,
based on our experience, we can draw the following
conclusions:

1. The X1 is an interesting architecture and rela-
tively easy to program. The programming en-

vironment is user-friendly, the compilers are ro-
bust, and various performance tuning, optimiz-
ing, and monitoring tools are available.

2. The availability of two different modes, MSP
and SSP, may seem confusing at first glance but
provides additional flexibility in implementing
and subsequently tuning applications to the ar-
chitecture.

3. On vectorized codes it is relatively easy to
achieve reasonable performance (about 25% of
peak) in SSP mode. In MSP mode, our expe-
rience indicated that compiler generated auto-
matic streaming was not as effective and this
was reflected in the performance. The inser-
tion of manual streaming directives could po-
tentially improve application performance in
MSP mode.

4. With the availability of the MLP subroutine li-
brary on the X1, it is now possible to have the
same application codes running on all the high-
end computers at NAS, the SGI Origin and Al-
tix, as well as the X1, using the same API.

5. Co-array Fortran was easy to implement on
both the NPB SP benchmark as well as the
ROTOR CFD application code, and offered
slightly improved performance relative to the
MPI and/or MLP implementations.

6. OpenMP thread scaling on the X1 was good
with reasonably linear speedups as the number
of threads was increased to four.

7. Timing variations over multiple repeat runs
were observed in the SSP mode for the MPI
benchmark codes when the number of SSPs was
not a multiple of 16. This phenomenon appears
to be related to the X1 design.

8. Comparison of results between the X1 (in SSP
mode) and SGI Altix indicates equivalent per-
formance between the two architectures. For
smaller grid sizes that can fit in cache, the Al-
tix has a slight performance edge (about 10%),
but for larger grid sizes the X1 performs better
by roughly the same amount.
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