
Implementation of the Vectorized Position-Specific Iterated

Smith-Waterman Algorithm with Heuristic Filtering Algorithm on

Cray Architecture

Witold Rudnicki, Rafal Maszkowski,
Lukasz Bolikowski, Maciej Cytowski, Maciej Dobrzynski, Maria Fronczak,

Interdisciplinary Center of Modeling, Warsaw University

May 2005

ABSTRACT: Smith-Waterman is the algorithm for finding local optimal alignments of two amino acid
sequences, but is too slow for use in regular large database scanning. We have implemented SW algorithm
on Cray X1 architecture, exploiting vectorization and parallelization. In addition we have proposed heuristic
database filtering algorithm, which is particularly well suited for the Cray architecture, exploiting possibilities
given by the BMM unit.

KEYWORDS: Cray X1, BMM chip, bioinformatics, Smith-Waterman, sequence alignment

1 Introduction

The aim of this paper is to briefly summarize
some technical aspects of implementing the Position-
Specific Iterated Smith-Waterman algorithm for lo-
cal sequence alignment on Cray architecture.

The project was initiated at the Interdisciplinary
Center of Modeling in 2002. At first, our goal was
to test the capabilities of the BMM unit1 by imple-
menting the original Smith-Waterman algoritm on
Cray SV1. At that time there was no BioLib2 pack-
age, nevertheless an equivalent tool was necessary.
It turned out that the Smith-Waterman algoritm it-
self cannot substantially benefit from the BMM, but
a better understanding of the unit allowed us to de-
sign certain filters that would limit the number of
calls to the S-W routine.

Finally, as Cray X1 appeared at ICM, it was fea-
sible to implement the iterated version of S-W (PSI
S-W), in a fashion similar to the PSI BLAST3. It
was tempting to check whether such approach could
be competitive to PSI BLAST in terms of speed, and
whether the alignments obtained by PSI S-W could

be substantially better than ones obtained by PSI
BLAST.

2 Theory

2.1 Sequence alignments

The purpose of Smith-Waterman algorithm is to find
a local alignment of two sequences that is maximal
according to the chosen scoring system.

The sequences are simply strings of letters:
there are 20 letters to choose from in case
of amino acids and 4 letters in case of nu-
cleotides. Let us explain what a local align-
ment by an example. Take two amino acid
sequences: MDRKVTPGSTCAVFGLGGVGLSAIMGFIL and
MKLNPGSSGHGGMGATMTSAVMGDRNN. The optimal local
alignment for the two is:

Query: 4 KVTPGSTCAVFGLGGVG---LSAIMG 26

K+ PGS+ G GG+G SA+MG

Sbjct: 2 KLNPGSS----GHGGMGATMTSAVMG 23

1Bit Matrix Multiply (BMM) is a hardware functional unit available on Cray SV1 and Cray X1 architectures that performs
fast multiplication of two 64×64 bit matrices (the adds and multiplies are modulo 2)

2Cray Bioinformatics Library (BioLib) is a set of routines for nucleotide and amino acid sequence manipulation
3Position-Specific Iterated Basic Local Alignment Search Tool (PSI BLAST) is the most popular tool for local sequence

alignment. It is a very fast heuristic, while S-W is an exact algorithm

1



The top row is a fragment of the first sequence,
the bottom row is a fragment of the second one.
Each letter of a sequence is assigned to a letter in
the other sequence, or to a gap between two consec-
utive letters in the other sequence.

A scoring system for all alignments shall be de-
fined to select the optimal alignment from the set
of all possibilities. The system used by the Smith-
Waterman algorithm is based on the probability of
various mutations, such as replacements, insertions
and deletions, in the protein sequences.

The score of an alignment is computed as fol-
lows: each aligned pair of letters is given an integer
value, and the values are summed up. Then each
gap of length l is given a penalty G + lE, where
G and E are constants named gap opening penalty
and gap extension penalty. Finally, all the penalties
are substracted from the sum and the result is the
alignment score.

The scoring system is, thus, respresented by a
symmetric table T of scores for each pair of letters,
and a pair (G,E) of penalties. The table is 20× 20
for amino acids and 4 × 4 for nucleotides. A frag-
ment of BLOSUM62, a popular amino acid scoring
table, is shown below:

A R N D C Q E
A 4 -1 -2 -2 0 -1 -1
R -1 5 0 -2 -3 1 0
N -2 0 6 1 -3 0 0
D -2 -2 1 6 -3 0 2
C 0 -3 -3 -3 9 -3 -4
Q -1 1 0 0 -3 5 2
E -1 0 0 2 -4 2 5

Note that the diagonal elements are always posi-
tive and greater than any other one in the row. This
is natural, since alignment of a sequence A with it-
self (a perfect alignment) should have score greater
than any alignment of A with a different sequence.

2.2 Smith-Waterman algorithm

The Smith-Waterman is a simple dynamic program-
ming algorithm. Let A and B be the two sequences
being aligned. It starts by allocating a table S of
dimensions equal to the lengths of A and B. Then
it fills the table from upper-left to bottom-right (by
rows, columns or antidiagonals – any of these orders
is good) with value:

Si,j = max




Si−1,j−1 + T (Ai, Bj)
Si,j−1 − Penalty
Si−1,j − Penalty

0


 (1)

Penalty here stands either for G, when a gap is
opened, or for E, when it is extended. The intuitive
meaning of a value Si,j is the score of the best local
alignment ending at Ai, Bj .

At each step, when a maximum value is found,
it is recorded from which direction the result was
obtained: diagonal, top, left, or none. The table S
together with information about the directions pro-
vide enough data to find the best local alignment.

To find the best alignment, one has to do as fol-
lows. First, find the maximum value within table
S. This is the end of the highest scoring local align-
ment. Then, backtrace from the cell in the recorded
direction. A diagonal move from Si−1,j−1 to Si,j
represents an aligned letter pair Ai, Bj ; a horizon-
tal move from Si−1,j to Si,j represents Ai aligned
with a gap between Bj−1 and Bj ; a vertical move
is analogous to the horizontal one; while max = 0
at Si,j means the optimal local alignment starts at
Si+1,j+1.

2.3 Database searches and PSI S-W

A typical use of a local alignment algorithm is such:
one sequence, a query, is aligned against a database
of sequences, one by one. The most significant align-
ments, and their corresponding sequences are pre-
sented to the user.

Position Specific Iterated Smith Waterman (PSI-
SW) is a modification of the original SW algorithm
analogous to the PSI-BLAST modification of the
BLAST algorithm. In this algorithm the single scor-
ing table is replaced by the position specific scor-
ing matrix (PSSM or profile). A set of unique 20
scores for each amino acid in the query sequence
is used. These scores are obtained in the iterative
self-consistent procedure. In the first step the scores
from the similarity matrix, such as BLOSUM62 are
used to find the set of homologous sequences. Then
all sequences are aligned with the query and frequen-
cies of the aminoacid appearance at each position is
computed and translated into the scores in the posi-
tion specific scoring matrix. Then a new search for
the homologous sequences is performed using new
PSSM, presumably leading to finding more homolo-
gous sequences than in the search with the original

2



socring matrix. This procedure is repeated until no
more new sequences are found.

3 Implementation

3.1 Core S-W

The core Smith-Waterman algorithm is quite
straightforward to implement. One crucial observa-
tion is that updating the S table should be done by
antidiagonals, since all operations on a antidiagonal
are then independent of each other, which enables
vectorization.

3.2 Filtering

For the filtering phase, the S table is divided into
several overlapping 64×64 subtables (overlapping is
required to eliminate some edge effects). Each sub-
table is initially filled with 0s and 1s: a cell Si,j is
set to 1 iff T (Ai, Bj) > 0. Such table can be stored
in a BMM register and a series of vector bit op-
erations determines whether the region is likely to
hold a high-scoring alignment. When such a 64× 64
subtable is found, then the filter calls the real Smith-
Waterman algorithm for this pair of sequences.

3.2.1 Filling the 64× 64 matrices

In order to create the 64× 64 tables, the bit matrix
multiply operation is used. Each letter of the alpha-
bet is represented as a 64-bit vector (the size of a
word): A = (1, 0, 0, 0, . . .), B = (0, 1, 0, 0, . . .), etc.
The query is divided into 64-letter long segments,
each represented by a bit matrix Q. The matrix Q
contains the rows of the scoring table corresponding
to the letters of the query. It has a very useful prop-
erty: for any 64-letter long segment of a database
sequence D (which is a 64×64 matrix of vector rep-
resentations of letters), Q bit-multipied by D gives
exactly the subtable S for this query and database
sequence.

3.2.2 Identifying long runs rich in 1s

Two main observations are used as a base for the
filter. First, the high-scoring regions usually contain
long diagonal segments containing mostly 1s. The
job of the vector bit operations is to locate the short
series of 0s that are surrounded by long series of 1s
and convert the 0s to 1s. Then, it is checked whether

there is a run of 1s that is longer that a given thresh-
old. If this is the case, then the 64×64 subtable has
passed this test.

The example below shows how to do such a test.
For a diagonal 00111001101110001000 a series of
right shifts and ORs is done:

00111001101110001000

00111001101110001000

00111001101110001000

----------------------

0011111111111110111000

Next, a series of left shifts and ANDs is done:

0011111111111110111000

011111111111110111000

11111111111110111000

----------------------

00111111111110001000

This set of operations converted all the runs of at
most two 0s into 1s. The last step is to check whether
there is a sufficiently long segment of 1s.

3.2.3 Identifying islands of 1s

Another pattern exploited by the filter is the fact
that the high-scoring regions also contain islands of
1s uncut by any 0 (these segments are much shorter
than segments from the previous case). Here, the job
of vector bit operations is simply to check if there is
a sufficiently long run of 1s.

Again, a series of shifts and ANDs can
identify such regions. For a diagonal
00111001101110001000 the result is:

00111001101110001000

00111001101110001000

00111001101110001000

----------------------

0000100000001000000000

A non-zero result means that there were islands
of 1s on the diagonal.

3.2.4 Filter parameters

The two tests can be combined either by the OR

or by the AND rule. In fact, most parameters and
thresholds of the filter are command-line options.
Some research was done to identify the sets of filter
parameters that are particularly good for database
searches. Two default settings were defined: a con-
servative and an aggressive one.

3



3.3 PSI S-W

The implementation of PSI S-W algorithm was also
straightforward. It required certain changes to the
original S-W code, since the iterated version intro-
duces Position-Specific Scoring Matrices (PSSM) in-
stead of the traditional scoring tables.

3.4 Statistics, user interface

The tool output is similar to the reports generated
by BLAST for at least two important reasons: the
reports are easy to read, and most people involved
in bioinformatics are accustomed to them.

An important step in selecting the alignments
that are to be reported to the user is to assess their
statistical significance. The tool assesses the signifi-
cance using Karlin-Altschul-Dembo theory, the same
that is used by BLAST ([4], [5]).

4 Performance

4.1 Quality of results

A number of queries were run against the SWISS-
PROT database using BLAST and various versions
of our tool. Settings of the test was similar to the
one presented in [2].

Table 1 shows the number of sequences in the
database that attain a fixed level of significance, for
different queries and algorithms.

4.2 Speed of execution

A query against a database of 10,000 random se-
quences took, depending on the algorithm version:

Algorithm Time for 1 SSP
PSI S-W 80 sec.
PSI S-W + cons. filter 31 sec.
PSI S-W + aggr. filter 7 sec.

5 Conclusions

5.1 Summary of the tool

We managed to implement the Smith-Waterman al-
gorithm and its performance is comparable to the
one implemented independently in Cray BioLib.

Moreover, we have designed an optional filter
that calls S-W only for the sequences that have a

good chance of attaining a high alignment score.
The filter was designed to efficiently use the BMM
unit. It works well for good, significant alignments,
but will not speed up the search in less obvious cases.

Finally, Position-Specific Iterated version of the
S-W algorithm was implemented.

5.2 Comparison with BLAST

It seems natural to compare the capabilities of our
tool to the BLAST and PSI BLAST.

An obvious advantage of Smith-Waterman is
that it is an exact algorithm, while BLAST in only
a heuristic. On the other hand, even a highly vec-
torized implementation of S-W is still, by an or-
der of magnitude, slower than BLAST. Therefore,
the choice between S-W and BLAST depends on
whether the user needs to have the exact results.
If so, then Smith-Waterman is required, and Cray
platform is an excellent choice due to vectorization.

With filtering, an optional feature, the tool be-
comes a heuristic too. In some cases it becomes com-
petitive to BLAST in terms of speed, but otherwise
BLAST is much faster while giving similar results.
It is worth to notice though, that BLAST vectorizes
poorly, so if we restrict ourselves to the Cray X1
platform, our tool remains competitive.

Finally, the comparison between PSI BLAST and
PSI S-W is similar to the discussion on BLAST and
S-W: the choice between the two depends on whether
the user needs exact results.

About the authors

The project was led by Dr. Witold Rudnicki,
Deputy Director, HPC Division, ICM. His scien-
tific research focuses on bioinformatics and HPC.
He can be reached at: ICM Warsaw Univer-
sity, Pawinskiego 5A blok D, 02-106 Warsaw,
Poland, e-mail: rudnicki@icm.edu.pl. Lukasz Bo-
likowski, Maciej Cytowski, Maria Fronczak and
Rafal Maszkowski are Software Developers at ICM.
Maciej Dobrzynski was a student of Dr. Rudnicki in
an early stage of the project.

A large portion of work was done by Witold
Rudnicki and Rafal Maszkowski, who initiated the
project. Witold was responsible for the theoretical
design, while Rafal implemented the core S-W and
done some extensive BMM hacking.

4



References

[1] Altschul, S.F., Gish, W., Miller, W., Myers,
E.W. and Lipman D.J. (1990) Basic local align-
ment search tool, J. Mol. Biol., 215, 403-410.

[2] Altschul, S.F., Madden, T.L., Schaffer, A.A.,
Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.
(1997) Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs.
Nucleic Acids Res. 25, 3389-402.

[3] Henikoff, S. and Henikoff, J.G. (1992) Amino
acid substitution matrices from protein blocks,
Proc. Natl. Acad. Sci. USA, 89, 10915-10919.

[4] Karlin, S., Altschul, S.F. (1990) Method for
assessing the statistical significance of molecu-
lar sequence features by using general scoring

schemes, Proceedings of the National Academy
of Science, USA 87, 2264-2268.

[5] Karlin, S., and Dembo, A. (1992) Limit distribu-
tions of maximal segmental score among markov-
dependent partial sums, Advances in Applied
Probability 24, 113-140.

[6] Pearson, W.R. and Lipman, D.J. (1988) Im-
proved tools for biological sequence comparison,
P. Natl Acad. Sci. USA, 85, 2444-2448.

[7] Wootton, J. C. and S. Federhen (1993). Statistics
of local complexity in amino acid sequences and
sequence databases. Computers in Chemistry 17,
149-163.

[8] Wootton, J. C. and S. Federhen (1996). Analy-
sis of compositionally biased regions in sequence
databases. Methods in Enzymology 266, 554-571.

Protein family Query BLAST PSI BLAST S-W PSI S-W S-W w/filter PSI S-W w/filter

Serine protease inhibitor P01008 155 161 157 161 121 121
Ras P01111 500 1001 568 1407 192 200
Globin P02232 57 722 147 786 48 48
Hemagglutinin P03435 141 145 142 170 108 108
Interferon α P05013 76 76 76 76 70 70
Histocompatibility antigen P10318 289 454 296 392 146 146
Cytochrome P450 P10635 502 717 662 716 312 312
Glutathione transferase P14942 119 238 127 211 73 84
Alcohol dehydrogenase P07327 221 303 232 287 128 129

Table 1: Number of SWISS-PROT sequences yielding statistically significant alignements for various queries
and algorithms. All the tests used BLOSUM62 matrix with (G,E) = (11, 1) and E-value of 0.01.

5


