# THOR'S HAMMER RED STORM



Bill Camp







## Challenges Facing the HPC Community

CUG May 16, 2005

William J. Camp *CCIM*, Sandia National Laboratories Albuquerque, NM bill@sandia.gov





## RED STOR hallenges to Custom System Providers

- The great base of applications perform adequately on workstations
- Most ISV's have not invested in truly scalable implementations of their products
- Customers speak with many voices
- Each of them considers themselves to be "bellweathers"
- The high end market has not really grown in 10 years
- Most designers have never carried out a real application task
- The cost of innovation is becoming unreasonable for all but one or two "giants."
- Clusters really do work well for low-end and even some mid-range applications mixes.
- Clusters are cheap to buy and to own.





# **RED STORM** The great base of applications perform adequately on workstations

- What was huge problem even 10 years ago is a desktop application today.
  - E.g., for the most part, materials scientists want to run lots of relatively small calculations
- Product optimization is typically a minimax search procedure that is run as many relatively small jobs
- Most scientists & engineers are comfortable writing serial codes to solve their problems;
  - they are not computational scientists and don't want to parallelize unless they have to
- The commercial codes available to them are either serial or support low levels of parallelism.





#### Most ISV's have not needed to or been able to afford to invest in truly scalable implementations of their products

- Their business model is often based on "per-seat" fees, not per processor
- They have a huge investment in their serial codes
  - Robustness and Ease of Use are more important to their customers than performance
- Often their codes were designed by applications-area experts, not HPC experts
  - For the most part, they would need major restructuring for scalability
  - Unfortunately the incremental ROI is not sufficient to justify the investment
- Large customers are not willing to pay "scalable" fees-- e.g. Platform
- The high end market has not really grown in 10 years
- They worry about betting on the wrong programming model







- Sandia represents the extreme high-end, "distributed-memory" end of the community
- By contrast, NASA wants large shared memory nodes
- Some customers are convinced that they have to have vectors
  - Others cite the high cost of vectors and shun them
  - SOME WANT BOTH!
- Some customers value ease of programming over performance
  - Others are committed to the high-end and comfortable with MPI
- Some want OpenMP or other thread-based shared memory-like programming tools
  - Others cite their poor scalability as a reason to avoid them
- Some like fat-tree or other multistage networks for their "flatness"
  - Others prefer meshes for their cost advantage at very large scale and higher local bandwidth per dollar
- Customers tend to favor either MPI or LOAD-STORE depending on their application mix.







#### Each of them considers themselves to be "bellweathers"

- Everybody wants the prestige of owning "serial # 1"
  - Serial # 2 is "okay" unless your biggest competitor bought #1.
- We all believe that our colleagues from other sites are nice bright folks..."but they really don't understand the market."
- The feature that "Mike" just has to have may make the system uninteresting to "John."
- Some customers never buy anything big but like high-tech toys and are willing to try to shape the market for you.
- Every deal sets a price precedent for the next deal.





### RED STOR The high end market has not really grown in 10 years

- In 1993, the market was about \$2.5B and Cray had about 40% of it.
- SGI was losing visualization market share to Intel and AMD desktops with Graphics cards
- Their response was to move into the server market and take market share from Cray
- By 1996 they had bought Cray and began a downward spiral.
- IBM was quietly taking market share from everyone else and doing it without a true supercomputer!
- Today's market is not any bigger than it was in 1993
  - It might even be smaller in real dollars
- The auto industry basically no longer uses custom supercomputers
- Aerospace and the Oil industry are heading in the same direction





**REDISTING Innovation is becoming unaffordable for** all but "giants."

- Dataflow really would be interesting but only if IBM, Intel and/or AMD adopt it.
- Companies like Cray, SGI, and even H-P cannot afford to develop new processor designs
- If you break a widely-used programming paradigm, you had better offer orders of magnitude increases in perceived cost-performance
  - And even then be prepared to be in it for the long haul.
- The tyranny of vectors held back MPPs
- The tyranny of MPI will hold back new PIM-based programming models
- This is unfortunate but economically makes good sense.
- Inevitably, government needs to invest more on focused R&D investments at the high-end. {HPCS, PathForward, IHEC, HEC-RTF, all need to move ahead and grow}
  - Without involving the big three, IBM, Intel, and AMD, it may not be enough.
- Left to themselves, processor manufacturers are not going to drive high-end appropriate innovation.





#### Clusters really do work well for low-end and even some mid-range applications mixes.

- The same MPI programming model used on MPP's enables clusters.
- Most applications perform adequately on clusters out to 64--256 processors in a "weak-scaling" mode.
- Clusters work great for parallel search problems as are found in
  - Optimization
  - Uncertainty quantification
  - Parameter identification
  - Mapping out materials phase diagrams
- They do well on nearly all embarrassingly parallel problems
- They are replacing MPPs and vectors in signal processing (e.g. seismic inversion)
- Their basic components are high-volume and reliable enough at modest scale.







#### Clusters are cheap to buy and to own.

- Right now most cluster providers are selling AMD or Intel based clusters for 50 CENTS A MEGAFLOPS (or less).
- At the 256--1024-node level, their other costs of ownership are similar to MPPs
- You can actually quantify the advantage of clusters for a given workload (including where it goes away).







# **Challenges to HPC Users**

- Companies keep going away
- IBM is not the (only) answer
- MPI really does provide their only portable, scalable programming model
- They may not like MPI but every day their investment in it grows
- Programming is way too fragile
- It should not be cheaper and easier to test a new part than to simulate its testing reliably
- Computers keep getting more and more unbalanced







## Some solutions for Manufacturers

- Vendors need to define their niche and win in it before expanding beyond it.
- Companies need to be market focused rather than customer compelled!
- Vendors like Cray and SGI need to work with their customers to influence Intel and AMD
- Use high-volume, high-reliability, low-cost technology everywhere you can
- Resist the temptation to build something because you can or because it would be "interesting"
  - The two "geeks" who encourage you to do so do not represent people with money to spend
- Execution is more important than "great technology"-- witness IBM
- Use Open-source strategically but sparingly
- Work with your customers to delineate where the point is that you can beat clusters on a cost/performance basis;
  - Make sure the market understands your simple story of how you do that
- Ask the ROI question before you make any investment and have someone other than the proponent evaluate the ROI.
- Invest in bandwidth over processing speed wherever you can. (A blatant attempt at customer compulsion)







- Make intelligent decisions about cost of ownership-- you will win
- Resist tyrannizing your vendor partner over "bells and whistles"
- Think about managing the transition beyond MPI
  - "A stitch in time saves nine"
- Think about your computing environment as a system of systems
- Besides asking how much more quickly your current computer needs can be met,
  - Think about what can you do tomorrow that you cannot do today
  - Quantify the cost and the payoff relative to alternatives

# Buy Red Storm!





# THOR'S HAMMER RED STORM





