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Porting and Performance of the Community Climate System Model
(CCSM3) on the Cray X1
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ABSTRACT: The Community Climate System Model (CCSM3) is the primary model for
global climate research in the United States and is supported on a variety of computer
systems. We present some of our porting experiences and describe the current
performance of the CCSM3 on the Cray X1. We include the status of work in progress on
other systems in the Cray product line.
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1. Introduction:  The Community Climate
System Model

The Community Climate System Model (CCSM3) is
a computer model for simulating the Earth’s climate.  The
CCSM is supported by the National Science Foundation
and the Department Of Energy and is freely available to
the climate community.

The CCSM is built from four dynamical component
models:  atmosphere, ocean, land surface and sea ice.
These communicate with each other via a flux coupler
component in a “hub and spoke” configuration (see
Figure 1). The CCSM and its components are fully
documented in papers available from web pages at the
National Center for Atmospheric Research (NCAR)
(    http://www.ccsm.ucar.edu/models/ccsm3.0    ) and other

papers [Special Issue on Climate Modeling, Int’l J. HPC
Apps.,Vol 19, #3, August, 2005] [CCSM Special Issue, J.
Climate, 11(6)] [Collins, 2005].

Figure 1 Hub and Spoke Design

1.1 The Components

The atmospheric component of CCSM3 is the
Community Atmosphere Model (CAM3), a descendant of
the NCAR atmospheric climate models [Washington,
1982] [Williamson, 1983]. Standard resolutions are T85
for 1.4 degree horizontal grid spacing (128x256x26 grid
size), T42 for 2.8 degree (64x128x26), and T31 for 3.75
degree (48x96x26). The 26 level vertical grid uses a
hybrid pressure coordinate system [Collins, 2004].

The ocean component is based on the Parallel Ocean
Program (POP), version 1.4.3 [Smith and Gent, 2002], an
ocean circulation model developed at Los Alamos
National Laboratory. Typical resolutions are one degree
in the horizontal (320x384x40) and three degree
(100x116x25).
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The land component is the Community Land Model
(CLM3). The land component operates on the same
horizontal grid as the atmospheric component [Levis,
2004] [Oleson, 2004].

The sea ice model CSIM5 is based on the Los
Alamos CICE.  The ice model uses the same horizontal
grid as the ocean component [Briegleb, 2004].

The flux coupler (CPL6) performs a number of the
data and grid conversions required to pass data from
component to component [Craig, 2005].

1.2 CCSM Configurations

The CCSM3 can be run with a variety of options for
each. For example, the CCSM3 currently supports options
for the ocean model ranging from a “Data” model that is
often used for testing the CCSM3 to a somewhat
simplified slab ocean model to the use of a complete
ocean model (POP).

In this paper, all reference to CCSM configurations
refer to “fully coupled” options that utilize CAM3,
POP1.4.3, CLM3, CSIM5, and CPL6.

The CCSM is run on a large number of computer
architectures, ranging from a workstation class
multiprocessor to clusters of numerous varieties to vector
supercomputers. The need to be able to run on all of these
machines guarantees that performance is compromised for
most if not all machines. Some aspects of the
implementation of the model allow for accommodation to
key aspects of the (very different) architectures.

The current version of CCSM is derived from
contributions from researchers around the world over a
period of more than 25 years. The code base is written in
multiple versions of Fortran and a small amount of C. The
CCSM requires the use of MPI and allows the additional
use of OpenMP on some architectures. This, together with
being a Multiple Program Multiple Data (MPMD)
application, is often a significant challenge for vendors
and application porters alike.

2. Introduction: Cray X1

The Cray X1 architecture combines vector and scalar
processor units with cache and a globally addressable
memory. The Single Streaming Processor (SSP) is
composed of a single scalar unit and two vector pipes.
The Multi-Streaming Processor (MSP) is composed of 4
SSPs ganged together with a 2MB cache. A node board
contains 4 MSPs. Memory is physically distributed but
globally addressable. At this time, the CCSM is using
MSPs as processor units. The CCSM does not make use
of OpenMP on the X1 at this time but does use some of
the Cray Streaming Directives (CSDs) to gain similar

effects. In this way, the CCSM relies on the compiler to
spread the computation across the 8 vector pipes of each
MSP.

3. CCSM port and validation process

3.1 Porting Introduction

The process of porting a code of the size and
complexity of the CCSM is quite involved. Just getting it
to build the first time on a new machine can be several
weeks of work. Generation of correct climatic results
requires much more work and time. When porting to a
new machine, the safe approach is to begin with limited
or no compiler optimization. The CCSM regularly finds a
number of bugs in a new compiler that may require a
number of workarounds and compiler fixes. With the
Cray X1, for example, Programming Environment 5.2
was skipped entirely due to various issues. Because the
CCSM has the extra complication of being an MPMD
application, one usually starts with the standalone version
of CAM.

3.2 CAM PERGRO

Once standalone CAM appears to be running
properly, a perturbation growth test (PERGRO) can
quickly tell if the numeric results are within a reasonable
bound. A complete description of the CAM port
validation process, including the PERGRO test, can be
found at http://www.ccsm.ucar.edu/models/atm-
cam/port/. The two simulation day computational
requirement for the PERGRO test is very small. The
PERGRO test simply shows the effect of roundoff error
on the computation. A test of a new compiler or compiler
options will hopefully differ from a base climate run by
no more than the roundoff differences from a base
validated climate run. If the difference is dramatically
different than this simple test then significant problems
exist and more extensive testing is delayed until the
problems are resolved.

Figure 2 shows an example of several runs. Results
from 4 runs are plotted in the figure. The curves for runs 2
and 3 coincide in the middle of the figure. The black
curve at the bottom shows the impact of roundoff errors
on the solution when calculated on the IBM Power4
machine at NCAR. The green line that hugs the left and
upper axis shows a compiler and set of options that are
clearly producing incorrect results, being significantly
different than the solution calculated on the IBM. The
purplish pair of plots in the middle show results that differ
from the IBM results by more than roundoff but which
cannot be rejected immediately. Further testing is
required.



CUG 2005 Proceedings 3 of 9

Figure 2: CAM Perturbation Growth Test

3.3 CAM/CCSM Atmospheric Diagnostics

The next step is typically to compare the monthly
history files generated by CAM against a 100 year
baseline. This test computes the monthly averages for the
test configuration and the baseline and generates a large
number of plots and graphs for analysis. A duration of the
test configuration that is less than 100 years can be
compared against the 100 years of the baseline and may
be enough to show numeric divergence. A complete 100
years of the test configuration is required to accept the test
configuration as valid. These atmospheric diagnostics can
be made comparing data from the standalone CAM to a
standalone CAM baseline or by comparing data from
CCSM CAM to a CCSM CAM baseline. Often, this test is
performed as a sanity check along the way while running
100 years of a controlled CCSM run for the CCSM
Statistical Test discussed in the next section. Divergence
of the results permits stopping the test configuration prior
to completing 100 years of simulation.

The ocean, land, and sea ice components also have
specific tests that can be run to aid in isolation of
problems.

3.4 CCSM Statistical Analysis

The final step in the validation of a CCSM port is a
statistical analysis of the CAM history files generated
from a run of 100 simulation years of CCSM. Generating
100 years of data can take considerable computer time.
On the Cray X1, running 100 years of the small T31x3
resolution model on 40 MSPs continuously currently
takes more than 2.5 days to complete.  Running 100 years
of a much larger T85x1 resolution on 132 MSPs
continuously currently takes more than 9 days.

3.5 CCSM Regression Testing

Once an acceptable baseline exists for a machine,
simple tests can be performed to test that a change
produces “bit for bit” exactly the same results.  Code
changes generating results that are not bit for bit must go
through the full validation process to be accepted into the
code baseline.

4. Some Aspects of the CCSM

4.1 CCSM Performance

The production performance of the CCSM3 is most
often expressed as production throughput in number
of simulated years per wall clock day for a specified
number of processors (or years per day).  A century
long simulation takes 25 days for a computer
delivering 4 years per day.  Scaling efficiency is
expressed as simulated years per wall clock day per
CPU (or years per day per cpu). Table!1 shows the
performance on each computing platform of the
standard IPCC (T85 atmosphere, 1 degree ocean)
model configuration.  The number of processors
used for a production run is a choice based on load
balance of the components, batch queue constraints,
and an estimate of the time required to generate the
results. The turn around time can be measured in
weeks when a large simulation of a thousand years
or more are computed [Drake, 2005].

Platform  IBM SP3 IBM p690 ES(NEC SX6) Cray X1

Num CPUs 208 192 184 208

Years/day 1.57 3.43 16.2 13.6

Years/day/cpu 0.0075 0.0179 0.0880 0.0654

Table 1: Computational Performance of CCSM3.0 for
an IPCC T85x1 Run

4.2 Processor Load Imbalance

A primary computational challenge in the CCSM is
the load imbalance generated by the non-homogeneous
structure of a multi-physics, multi-component model.  A
striking example of the structure of the load imbalance
appears in the calculation of the short wave radiation
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balance.  This computation need be done only where the
sun is shining, i.e. on half of the computational domain.
This region changes for each time step.  Load imbalances
within a component are typically resolved using data
decomposition schemes such as those discussed in the
next section.

Load imbalances are also generated from the
concurrent component execution model used by CCSM.
CCSM launches five individual binaries that run
concurrently on separate processor sets. Each of the four
dynamic components communicates with each other via
the coupler component at prescribed stages of processing.
Choosing a “correct” number of processors for each
component is at best a compromise. The goal for a
specified total number of processors is to provide a
number of processors for each component such that
processing delays are minimized, idle processor time is
minimized, and the maximum simulation years per day is
achieved. This is complicated as each component has
different scaling attributes and different data
decomposition restrictions. Some component processing
is dependent on other component processing. A poorly

chosen assignment of processors may result in one
component waiting excessively on the results from
another.

Typically, for a fully active T85x1 configuration, two
of every 3 processors of the total processor count are
assigned to the atmospheric component. The number of
processors assigned to the ocean component is chosen to
best match the processing time of the atmosphere. The
balance of the processors are assigned to the sea ice, land,
and coupler, with the goal being to keep the more
numerous atmospheric processors busy.

Figure 3 shows raw performance for a number of
machines using the T31x3 resolution. Clusters of results
show that small changes in the assignment of processors
to components can greatly affect the performance of the
configuration.

Figure 4 shows the efficiency of each load balance
experiment. A horizontal line would indicate a machine
with perfect scaling.

T31x3 Load Balance Experiments
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Figure 3: Load Balance Experiments (Performance)
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T31x3 Load Balance Experiments
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Figure 4: Load Balance Experiments (Efficiency)

Note: the data in Figures 3 and 4 do not include the
latest (not yet validated) performance for the Cray X1.
See below for projections.

5. Port Status of the CCSM on the Cray X1

5.1 Fall, 2004

Last fall the first successful T31x3 validation on the
Cray X1 was completed with programming environment
5.1.0.5 (PE5105). With a normal conservative first try
approach, the performance of the T31x3 runs with this
baseline was only adequate and scaling was acceptable.
The performance and scaling of the T85x1 runs were not
quite as good as with the T31x3 runs.  However, science
could now be performed on the X1. The primary goal was
to achieve correct scientific results. Performance was a
secondary priority.

5.2 Winter, 2004/2005

A number of changes were proposed and tested
including using the newer programming environment
5.3.0.2 (PE5302), different compiler options, different
Cray Streaming Directives, use of a different option for
CAM load balancing of the physics computations, and use
of a different CAM value controlling vector length,
allowing better vector performance. The combination of
these were thought to be safe. Some were known to be bit
for bit with PE5105. Others were expected to be within
roundoff. Unfortunately, the tests all passed except for the
final 100 year statistical test.

5.3 Current Work

The use of the compiler option –Ofp1 was not one of
the compiler flags used with our initial validation. With
the newer PE5302 the use of –Ofp1 proved necessary to
generate correct results.

A minor difference between the two environments is
the use of NOMODINLINE (disabling the automatic
inlining of routines found in modules). With PE5105, the
default was to turn on the NOMODINLINE option. With
PE5302, the default was to turn off the NOMODINLINE
option. This also perturbed the results. For now, the build
procedures are set to specify NOMODINLINE.

Attempts were made to use the compiler options
vector3, scalar3, and stream3 to speed up CCSM. (The
defaults are vector2, scalar2, and stream2.)  Use of these 3
options with all of CAM proved to perturb the results too
much. However, use of the options with all routines of the
CLM appears to be acceptable at this stage of testing.
Current plans are to evaluate using these compiler options
with the other components and with 4 specific CAM
routines shown by profiling to be important.

CAM supports a number of options for physics
decomposition. Where usable, these options can reduce
load imbalance for this phase of the CAM processing. The
speed of the Cray X1 interconnect is fast enough for this
to be a major win. A significant amount of work was
spent in the implementation of these load balance options
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to assure that results would be bit for bit. Control of this is
a runtime option [Worley, 2005].

Another feature of CAM and CLM is the ability to
specify a work unit that controls the array length of some
of the primary work units. Control of this permits setting
sizes appropriate for cache machines or vector machines.
A change in the value for CAM improved the
performance on the Cray X1. A change for CLM is still
being evaluated, as is an alternative use of Cray
Streaming Directives (CSDs).

6. Projected Performance

The performance of the failed validation is shown
below in figures 5 and 6. We anticipate that the

performance of our next baseline will approach these
numbers (but may fall a bit short). The primary sources
for the improved performance, the CAM modifications,
have been shown to produce “bit for bit” results in our
current testing. The next validation attempt is just
beginning.

Figure 5 shows the anticpated performance
improvement for the T31x3 scenario. Figure 6 shows the
anticipated improvement for the much larger resolution
T85x1 scenario.

Figure 5: T31x1 Performance Estimates
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Figure 6: T85x1 Performance Estimates

The improvement measured for the T85x1 is not as
large as that for the T31x3. One possible explanation is
that the compiler was achieving better performance with
the larger array sizes of the T85x1 than it could with the
smaller T31x3. Further analysis with the Cray loop marks
may assist in this analysis.

7. Remaining Work

A T31x3 validation attempt with the majority of the
proposed changes is to begin immediately. Upon
successful completion, a T85x1 IPCC validation will be
performed. It is our goal to get the code into the hands of
the CCSM community as soon as we can to support the
ongoing science and model development activities.

The primary goal at this point is to improve the
general performance and scalability of the model.
Previous performance improvements have been made to
the physical components. It now appears that general
gains may be available through improvements in the
coupler.

A new process for timing performance was
introduced into CAM recently, and may be introduced
into the rest of the CCSM in the near future. This will be
used to generate a more complete performance
characterization on several key machines, including the
Cray X1. This will allow better focus on areas with the
greatest potential gain. It will also facilitate automated
performance regression testing. This will be key to
targeting and fixing problem areas of the CCSM and
maintaining good overall performance.

Work has begun on porting CCSM to the Cray XT3
and to the Cray XD1. At this point, issues have been
encountered with regard to compilation and basic
execution. Launching an MPMD application has been an
issue on the Cray XD1.

Cray will continue to bring out new software
environments that will need to be put through a full
validation test. It is likely that most PE upgrades will not
result in bit for bit results. Work has begun with
programming environment 5.4.

Conclusion

Significant progress has been made improving the
performance of the CCSM on the Cray X1. A number of
methods of supporting portable performance through
configuration options have proven useful on the Cray X1.
The Cray X1 is becoming a significant resource for the
CCSM community.
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