
CUG 2005 Proceedings 1 of 5

TotalView Happenings on Cray Platforms

(An Update by Cray and Etnus)

Luiz DeRose, Robert Clark, Robert Moench
Cray Inc.

Rich Collier and John DelSignore Jr.
Etnus

ABSTRACT: TotalView is uniquely well-suited to debug applications that are developed
on Cray supercomputers, which are used for high-end modelling and simulation. These
applications are very large and complex with long run times. This paper will provide an
update on current available functionality for Etnus's TotalView Debugger on The Cray
X1, Cray XT3, and Cray XD1.

KEYWORDS: Programming Environment Tools, Debuggers, Cray X1 Series, Cray
XT3

1. Introduction

The purpose of this paper is to highlight the presence

of the Etnus TotalView debugger on Cray supercomputer
systems. This includes the Cray X1 Series and the Cray
XT3, primarily. While discussing TotalView on the Cray
XD1 is pertinent as well, those details do not deviate
substantially from any standard Linux clustered system.
There are simply fewer unique issues to comment upon.

2. Etnus TotalView Overview

The Etnus TotalView debugger is a powerful,

sophisticated, and programmable tool that lets you debug,
analyse, and tune the performance of complex serial,
multiprocessor, and multithreaded programs.

TotalView supports threads, MPI, OpenMP, C/C++

and Fortran, plus mixed-language codes. Unique features
like dive, a wide variety of breakpoints, powerful data
analysis, and both Graphical User Interface and

Command Line Interface options make TotalView the
leader in its field.

3. Cray X1 Series

Cray X1 Series Overview

Cray X1 Series systems utilize powerful vector

processors, shared memory, and a modernized vector
instruction set in a highly scalable configuration to
provide the computational power required for advanced
scientific and engineering applications. Cray X1 Series
systems have high memory bandwidth and scalable
system software, which are crucial to achieving peak and
sustained performance.

A Cray X1 Series system combines the single-

processor performance and single-shared address space of
Cray parallel vector processor (PVP) systems with the
high bandwidth, low latency, scalable interconnect, and
scalable microprocessor-based architecture used in Cray
T3E systems.

CUG 2005 Proceedings 2 of 5

UNICOS/mp, the Cray X1 Series' operating system,
provides a single system image. One result of this is that
the user (and debugger) has a more seamless access to,
and presentation of, the resources of the system.

Overview of Node configuration

Cray X1 Series systems are powered by

multistreaming processors (MSPs). Each MSP has four
internal single-streaming processors (SSPs). Each SSP
contains both a superscalar processing unit and a two-
pipe vector processing unit.

The logical grouping of four MSPs and cache-

coherent shared local memory is called a node. Cache
coherency is maintained for the four MSPs in a node.

Physically, all nodes are the same; software controls

how a node is used. Processors are designed so that an
application can run in either MSP mode or SSP mode. In
MSP mode, an MSP provides the user-programmable
processor for typical parallel applications; each MSP
tightly couples the interactions of its four constituent
SSPs and automatically distributes the parallel parts of a
multistreaming application to its SSPs. In SSP mode, each
SSP runs independently of the others, executing its own
stream of instructions. Applications can be built to run
with one or more MSPs or with one or more SSPs, where
the optimal choice depends on the algorithms used within
the application.

Execution modes

Programs can be compiled in any of three modes:

Command, SSP, or MSP. The default is to compile in
MSP mode, allowing the compiler to locate parallelism in
the code and automatically apply the 4 SSPs of an MSP to
the problem. SSP mode allows the programmer to use
other, more hands-on programming models to parallelize
the code. Command mode is for less parallel intensive
programs (ls, grep, etc). TotalView is compiled in
command mode.

Systems are configured to have some nodes set up as

support nodes and others set up as application nodes. By
default command mode executables execute on support
nodes, while SSP and MSP mode executables execute on
application nodes.

All applications (SSP and MSP mode) are placed and

launched via the aprun utility. This will happen by
default, but can be requested overtly when the default
aprun parameters are unsatisfactory.

Launching of distributed memory jobs

On the Cray X1 Series system, TotalView

automatically launches SSP and MSP mode applications
using aprun, while launching command mode
executables without aprun. If the default aprun values
are unacceptable, they can be controlled with the -app
switch on the TotalView call line. The call:

totalview -app "-np 4" a.out

will invoke TotalView on the application a.out, use
aprun to gang schedule and start four processes, run
them to the first user code (e.g. routine main), and stop
them, as shown in Figure 1. The processes are organized
in a control group, such that flow control commands (e.g.
step, go, etc.) will be applied to the entire group. The
user can set debug breakpoints and continue a controlled
debug session.

Figure 1: TotalView root window and process window
from a 4 processors run.

CUG 2005 Proceedings 3 of 5

A useful variant of the above scenario is to use
TotalView to attach to a running application. In such a
case, TotalView is invoked without parameters and the
Unattached tab can be used to display all tasks belonging
to the user and to which TotalView is currently not
attached. By double clicking on any process in the
intended application, TotalView will attach to all of the
processes of that application. Having attached to them,
TotalView will present a Process Window with the entire
set of processes combine as a control group, as shown in
Figure 2.

Figure 2: Attaching to a running application

It should also be noted that TotalView can be used to

debug commands (rather than applications). This is done
automatically whenever the executable supplied to
TotalView is a command mode executable.

Access to SSP specific information of an MSP

The standard -g debugging compilation disables the

default streaming of MSPs. That is, only SSP0 performs
useful work, while SSPs 1-3 are parked in an idle loop.
SSPs 1-3 do get put to work should a streamed region get
executed (library routines or other routines not compiled
with -g).

With the above in mind, TotalView defaults to

showing SSP0 when debugging an MSP executable.
However, it is still desirable to be able to access SSPs 1-3
in certain situations. The most common is when one of
those SSPs takes a synchronous exception. In such an
event, TotalView displays an indication of the offending
SSP on the "Thread" status line of the Process Window,
as shown in Figure 3.

Figure 3: Indication of the offending SSP on the
"Thread" status line of the Process Window.

To further investigate an exception, it is possible to

direct TotalView to switch from displaying information
only about SSP0 and instead display information only
about an alternative SSP. On changing the SSP focus, all
TotalView windows of all processes will update with data
from the requested SSP. This feature can only be used for
display or modification of data. Any attempt at flow
control (stepping, etc) will cause the focus to return to
SSP0. This feature is controlled with the SSP focus
widget, shown in Figure 4.

Figure 4: SSP focus widget.

CUG 2005 Proceedings 4 of 5

Examining core files

On the Cray X1 Series system, a distributed memory

job can generate a core file for each process in the job.
TotalView provides an interface that makes accessing a
set of core files quite straightforward.

The naming convention for core files is:

core.apid.pid

where apid is the id for the application team and pid is
the process id of the individual process.

An example of bringing up TotalView on a core file
set is:

totalview -e "coreset a.out core.2972"

This will invoke TotalView, which will come up with a
single Process Window "attached" to all of the core files
in the set, core.2972.* as processes of a common control
group.

Vector registers

TotalView has been extended to display the vector

and BMM registers of the Cray X1 Series processors.
They are displayed with the other more standard registers,
but as divable 64-element arrays. As with other registers,
variables, and data, they can be cast to all of the data
types of machine.

Programming models

TotalView supports a wide range of parallel

programming models. In the distributed memory arena, it
supports MPI, SHMEM, and to lesser extent, CAF and
UPC. For shared memory models it supports Pthreads and
OpenMP.

4. TotalView on the Cray XT3

Cray XT3 Overview

Cray XT3 supercomputer systems are powerful,

massively parallel processing (MPP) systems. Cray has
combined commodity and open source components with
custom designed components to create a system that can
operate efficiently at immense scale.

Cray XT3 systems are based on the Red Storm
technology that was developed jointly by Cray Inc. and
the U.S. Department of Energy's Sandia National
Laboratories.

Cray XT3 systems are designed to run applications

that require large-scale processing, high network
bandwidth, and complex communications. Typical
applications are those that create detailed simulations in
both time and space, with complex geometries that
involve many different material components. These long
running, resource-intensive applications require a system
that is programmable, scalable, reliable, and manageable.

Cray XT3 Node configuration

The basic scalable component is the node. There are

two types of nodes. Compute nodes run user applications.
Service nodes provide support functions, such as
managing the user's environment, handling I/O, and
booting the system. Each compute node and service node
is a logical grouping of a processor, memory, and a data
routing resource.

Users log into service nodes and invoke commands

and user applications from them. User applications are
then propagated to compute nodes where they run using
the Message Passing Interface (MPI) and SHMEM
parallel programming, distributed memory models.

The applications launcher, yod

The invocation of a user application is accomplished

with the aid of a command called yod. yod executes on
the service node on behalf of the application, arranges for
the allocation of compute nodes and the launching of the
application on those nodes.

TotalView and yod

To debug an application on the Cray XT3, TotalView

and yod are used in conjunction (much as TotalView and
mpirun might be used on other systems). In the
following call:

totalview yod -a -sz=4 a.out

TotalView is invoked on the service node with yod and
the user's executable (a.out) as parameters. When the
user tells TotalView to start debugging (via go),
TotalView will launch yod. yod will facilitate the launch
of the user's executable and coordinate TotalView's attach
to all of the launched processes on the compute nodes.
TotalView gives the user an opportunity to stop the
processes, opening a Process Window on the group of

CUG 2005 Proceedings 5 of 5

processes in the application. The processes are organized
in a control group, such that flow control commands (e.g.
step, go, etc.) will be applied to the entire group. The
user can set debug breakpoints and continue a controlled
debug session.

A useful variant of the above scenario is to use

TotalView to attach to a running application. In such a
case TotalView is invoked without parameters and the
Unattached tab can be used to display all tasks belonging
to the user and to which TotalView is currently not
attached.

By double clicking on the yod process, TotalView

will attach to yod and all of the processes of the
application associated with that yod process. Having
attached to yod, TotalView will present a Process
Window for the yod process.

Of greater interest are the application processes. By

viewing the Attached tab, the application processes can be
seen attached as a group. Double clicking on the group
will present a Process Window with the entire set of
processes combined as a control group.

It should also be noted that TotalView can be used to

debug commands (rather than applications) running on a
service node. This is done without the use of yod or
compute nodes.

Scalability

TotalView controls the user's application processes

with server processes running on service nodes. Each
server controls up to 64 processes. Much as login nodes
are load balanced by distributing users evenly over the
system's service nodes, so too are the TotalView server
processes. In this manner, the debugging of large
numbers of processes is distributed across the resources
to the entire system.

Security

The creation of TotalView server processes is

accomplished through the use of secure shell clients (ssh).
Each server is dynamically launched, as needed, with ssh.
This provides secure encrypted communications between
TotalView and its servers running on one or more of the
service nodes. This does mean, of course, that users need
to have proper machine authorization and keys set up to
use TotalView.

Bibliography
Cray XT3TM System Overview
Cray X1TM Series System Overview
http://www.etnus.com/

About the Authors
Dr. Luiz DeRose is a Sr. Technical Engineer and the

Programming Environment Tools Manager at Cray Inc.
He has twenty years of experience designing and
developing tools for HPC. He can be reached at 1340
Mendota Heights Rd, Mendota Heights, MN 55120 USA,
E-mail: ldr@cray,.com

Bob Moench is a Software Engineer at Cray Inc. He
has worked on debuggers for the last several years. He
can be reached at 1340 Mendota Heights Rd, Mendota
Heights, MN 55120 USA, E-mail: rwm@cray.com

Bob Clark is a Software Engineer at Cray Inc. He has
worked on debuggers for the last several years. He can be
reached at 1340 Mendota Heights Rd, Mendota Heights,
MN 55120 USA, E-mail: clark@cray.com

Rich Collier is the VP of Engineering at Etnus. He
can be reached at 24 Prime Parkway, Natick, MA 01760
USA, E-mail: rich.collier@etnus.com

John DelSignore is the Chief Architect at Etnus. He
has worked on debuggers for twenty years. He can be
reached at 24 Prime Parkway, Natick, MA 01760 USA,
E-mail: john.delsignore@etnus.com

