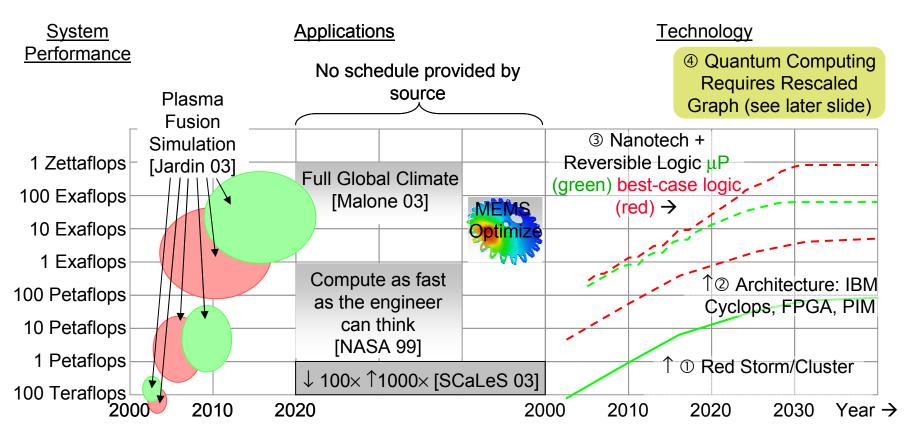


## Petaflops, Exaflops, and Zettaflops for Science and Defense


Erik P. DeBenedictis
Sandia National Laboratories

May 16, 2005





### **Applications and \$100M Supercomputers**

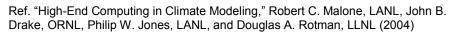


[Jardin 03] S.C. Jardin, "Plasma Science Contribution to the SCaLeS Report," Princeton Plasma Physics Laboratory, PPPL-3879 UC-70, available on Internet.
[Malone 03] Robert C. Malone, John B. Drake, Philip W. Jones, Douglas A. Rotman, "High-End Computing in Climate Modeling," contribution to SCaLeS report.
[NASA 99] R. T. Biedron, P. Mehrotra, M. L. Nelson, F. S. Preston, J. J. Rehder, J. L. Rogers, D. H. Rudy, J. Sobieski, and O. O. Storaasli, "Compute as Fast as the Engineers Can Think!"
NASA/TM-1999-209715, available on Internet.

[SCaLeS 03] Workshop on the Science Case for Large-scale Simulation, June 24-25, proceedings on Internet a http://www.pnl.gov/scales/.

[DeBenedictis 04], Erik P. DeBenedictis, "Matching Supercomputing to Progress in Science," July 2004. Presentation at Lawrence Berkeley National Laboratory, also published as Sandia National Laboratories SAND report SAND2004-3333P. Sandia technical reports are available by going to http://www.sandia.gov and accessing the technical library Sandia National

Laboratories




- Exemplary Zettaflops Problems
- The Limits of Moore's Law
- Beyond Moore's Law
  - Industry's Plans
  - Nanotech and Reversible Logic
  - Quantum Computing
- Conclusions



### **FLOPS Increases for Global Climate**

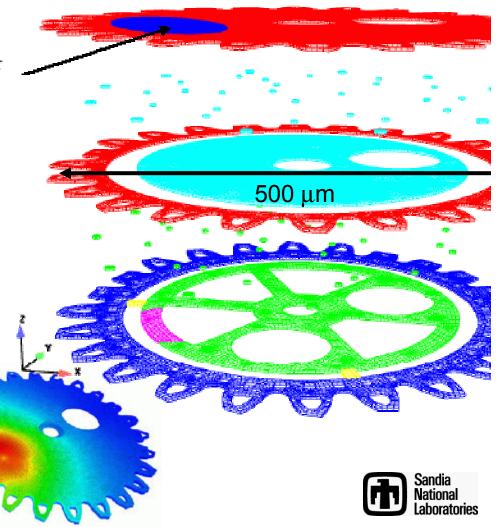
| _              |  | Issue                                                                         | Scaling                    |
|----------------|--|-------------------------------------------------------------------------------|----------------------------|
| 1 Zettaflops 🔻 |  | Ensembles, scenarios<br>10×                                                   | Embarrassingly<br>Parallel |
| 100 Exaflops   |  | Run length<br>100×                                                            | Longer Running<br>Time     |
| 1 Exaflops ◆   |  | New parameterizations 100×                                                    | More Complex<br>Physics    |
| 10 Petaflops * |  | Model Completeness<br>100×                                                    | More Complex<br>Physics    |
| 100 Teraflops  |  | Spatial Resolution<br>10 <sup>4</sup> × (10 <sup>3</sup> ×-10 <sup>5</sup> ×) | Resolution                 |
| 10 Gigaflops 4 |  | Clusters Now In Use (100 nodes, 5% efficient)                                 |                            |





### **Exemplary Exa- and Zetta-Scale Simulations**

 Sandia MESA facility using MEMS for weapons


 Laser spot

 Heat flow in MEMS not diffusion; use DSMC for phonons

Shutter needs 10 →
 Exaflops on an overnight run for steady state

 Geometry optimization → 100 Exaflops overnight run

Adjust spoke width for high b/w no melting



### **FLOPS Increases for MEMS**

|                |  | Issue                                             | Scaling                |  |
|----------------|--|---------------------------------------------------|------------------------|--|
| 100 Exaflops • |  | Optimize<br>10×                                   | Sequential             |  |
| 10 Exaflops ◆  |  | Run length<br>300×                                | Longer Running<br>Time |  |
| 30 Petaflops   |  | Scale to 500μm <sup>2</sup> ×12μm<br>disk 50,000× | Size                   |  |
| 600 Gigaflops  |  | 2D → 3D<br>120×                                   | Size                   |  |
| 5 Gigaflops 🗲  |  | 2μm×.5μm×3μs 2D film<br>10 × 1.2 GHz PIII         |                        |  |





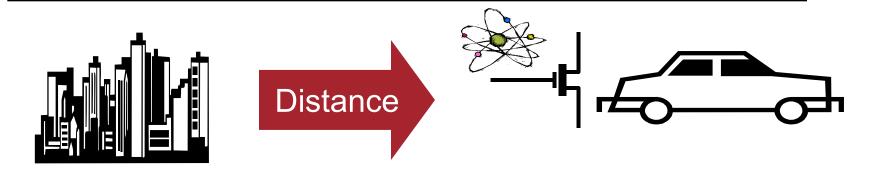
- Exemplary Zettaflops Problems
- The Limits of Moore's Law
- Beyond Moore's Law
  - Industry's Plans
  - Nanotech and Reversible Logic
  - Quantum Computing
- Conclusions





### \*\*\* This is a Preview \*\*\*

|                                                      | Best-Case<br>Logic    | Microprocessor<br>Architecture |                                                 | Physical<br>Factor                                | Source of Authority                                |
|------------------------------------------------------|-----------------------|--------------------------------|-------------------------------------------------|---------------------------------------------------|----------------------------------------------------|
| 2×10 <sup>24</sup> logic ops/s⁴                      |                       |                                | Reliability limit<br>750KW/(80k <sub>B</sub> T) | Esteemed physicists (T=60°C junction temperature) |                                                    |
|                                                      |                       |                                |                                                 | Derate 20,000 convert logic ops to floating point | Floating point engineering<br>t (64 bit precision) |
| Expert<br>Opinion                                    | 100 Exaflops<br>← 125 | 800 Petaflops<br>5:1 →         |                                                 | Derate for manufacturing margin (4×)              | g Estimate                                         |
| Estimate                                             | 25 Exaflops           | 200 Petaflops                  |                                                 | Uncertainty (6×)                                  | Gap in chart                                       |
|                                                      | 4 Exaflops            | 32 Petaflops                   |                                                 | Improved devices (4×)                             | Estimate                                           |
|                                                      | 1 Exaflops            | 8 Petaflops                    |                                                 | Projected ITRS                                    | ITRS committee of experts                          |
| •                                                    | : Supercomputer       | 90 Toroflons                   |                                                 | improvement to 22 nm (100×)                       |                                                    |
| US\$100M budget; consumes 2 MW wall power; 750 KW to |                       | 80 Teraflops                   |                                                 | Lower supply voltage (2×)                         | ITRS committee of experts                          |
|                                                      |                       | 40 Teraflops                   |                                                 | Red Storm                                         | contract Sandi                                     |


### Metaphor: FM Radio on Trip to Santa Fe

- You drive to Santa Fe listening to FM radio
- Music clear for a while, but noise creeps in and then overtakes music
- Analogy: You live out the next dozen years buying PCs every couple years
- PCs keep getting faster
  - clock rate increases
  - fan gets bigger
  - won't go on forever
- Why...see next slide

Details: Erik DeBenedictis, "Taking ASCI Supercomputing to the End Game," SAND2004-0959



### FM Radio and End of Moore's Law



Driving away from FM transmitter→less signal Noise from electrons → no change



Increasing numbers of gates → less signal power Noise from electrons → no change



### **Personal Observational Evidence**

- Have radios become better able to receive distant stations over the last few decades with a rate of improvement similar to Moore's Law?
- You judge from your experience, but the answer should be that they have not.
- Therefore, electrical noise does not scale with Moore's Law.



### **Scientific Supercomputer Limits**

|                                                                                         | Best-Case<br>Logic    | Microprocessor<br>Architecture |                                                 | Physical<br>Factor                                | Source of Authority                           |
|-----------------------------------------------------------------------------------------|-----------------------|--------------------------------|-------------------------------------------------|---------------------------------------------------|-----------------------------------------------|
| 2×10 <sup>24</sup> logic ops/s⁴                                                         |                       |                                | Reliability limit<br>750KW/(80k <sub>B</sub> T) | Esteemed physicists (T=60°C junction temperature) |                                               |
|                                                                                         |                       |                                |                                                 | Derate 20,000 convert logic ops to floating point | Floating point engineering (64 bit precision) |
| Expert<br>Opinion                                                                       | 100 Exaflops<br>← 125 | 800 Petaflops<br>5:1 →         |                                                 | Derate for manufacturing margin (4×)              | g Estimate                                    |
| Estimate                                                                                | 25 Exaflops           | 200 Petaflops                  |                                                 | Uncertainty (6×)                                  | Gap in chart                                  |
|                                                                                         | 4 Exaflops            | 32 Petaflops                   |                                                 | Improved devices (4×)                             | Estimate                                      |
|                                                                                         | 1 Exaflops            | 8 Petaflops                    | •                                               | Projected ITRS                                    | ITRS committee of experts                     |
| •                                                                                       | n: Supercomputer      | 80 Teraflops                   |                                                 | improvement to 22 nm (100×)                       |                                               |
| is size & cost of Red Storm:<br>US\$100M budget; consumes<br>2 MW wall power; 750 KW to |                       | ou rerailops                   |                                                 | Lower supply voltage (2×)                         | ITRS committee of experts                     |
| active comp                                                                             |                       | 40 Teraflops                   | <b>←</b>                                        | Red Storm                                         | contract Sandi                                |



- Exemplary Zettaflops Problems
- The Limits of Moore's Law
- Beyond Moore's Law
  - Industry's Plans
  - Nanotech and Reversible Logic
  - Quantum Computing
- Conclusions





### **Proceeding**

- So industry has plans to extend Moore's Law, right?
  - Next slide shows ITRS
     Emerging Research
     Devices (ERD), the
     devices under
     consideration by
     industry
  - All are either hotter, bigger, or slower
  - Erik is now on ITRSERD committee

- What is scientifically feasible for Gov't funding?
  - Nanotechnology
    - Efforts all over
  - Reversible logic
    - Odd name for a method of cutting power below k<sub>B</sub>T
    - Not currently embraced by industry
  - Quantum computing
    - More later



### **ITRS Device Review 2016**

| Technology | Speed<br>(min-max) | Dimension<br>(min-max) | Energy per<br>gate-op | Comparison    |
|------------|--------------------|------------------------|-----------------------|---------------|
| CMOS       | 30 ps-1 μs         | 8 nm-5 μm              | 4 aJ                  |               |
| RSFQ       | 1 ps-50 ps         | 300 nm- 1μm            | 2 aJ                  | Larger        |
| Molecular  | 10 ns-1 ms         | 1 nm- 5 nm             | 10 zJ                 | Slower        |
| Plastic    | 100 μs-1 ms        | 100 μm-1 mm            | 4 aJ                  | Larger+Slower |
| Optical    | 100 as-1 ps        | <b>200 nm-2</b> μm     | 1 pJ                  | Larger+Hotter |
| NEMS       | 100 ns-1 ms        | 10-100 nm              | 1 zJ                  | Slower+Larger |
| Biological | 100 fs-100 μs      | 6-50 μm                | .3 yJ                 | Slower+Larger |
| Quantum    | 100 as-1 fs        | 10-100 nm              | 1 zJ                  | Larger        |

Data from ITRS ERD Section.





- Exemplary Zettaflops Problems
- The Limits of Moore's Law
- Beyond Moore's Law
  - Industry's Plans
  - Nanotech and Reversible Logic
  - Quantum Computing
- Conclusions





### The Parallelism Issue

Initially, didn't meet constraints

### Scaled Climate Model

2D → 3D mesh, one cell per processor

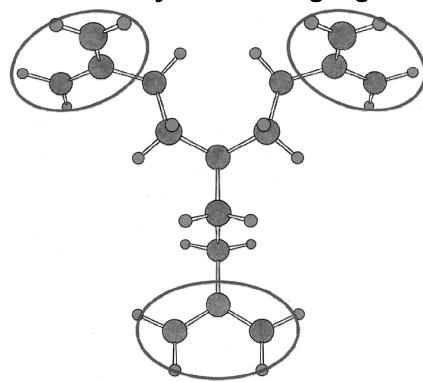
Parallelize cloud-resolving model and ensembles

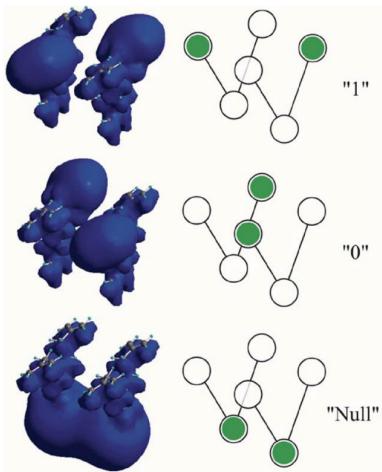
One Barely Plausible Solution

Consider special purpose logic with fast logic and low-power memory

Consider only highest performance published nanotech device QDCA

Initial reversible nanotech

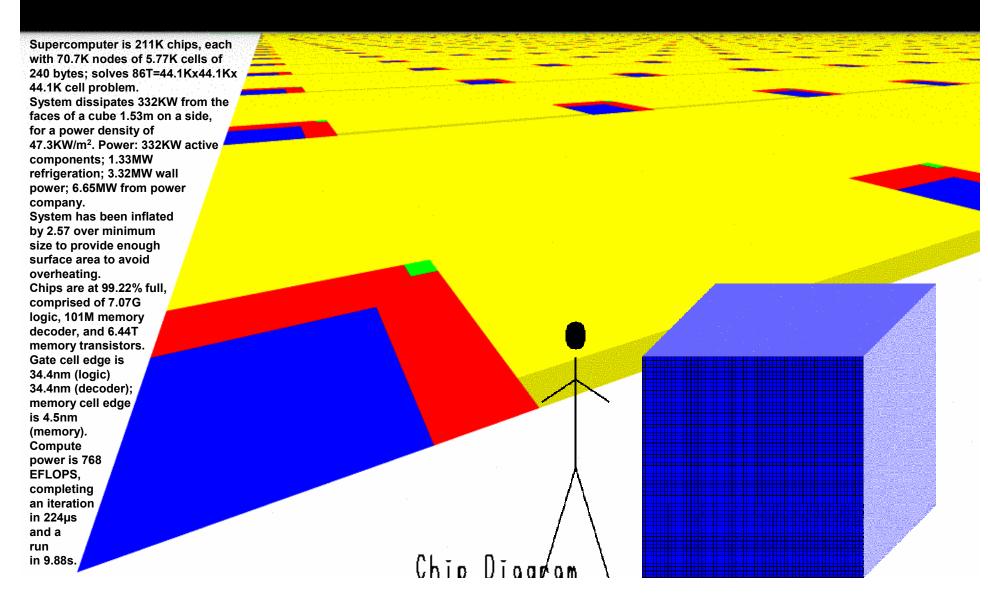

More Device Speed


More

Parallelism

### **An Exemplary Device: Quantum Dots**

 Pairs of molecules create a memory cell or a logic gate



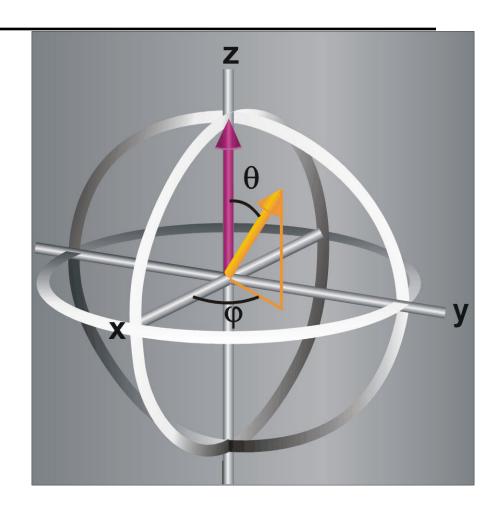







### **Atmosphere Simulation at a Zettaflops**

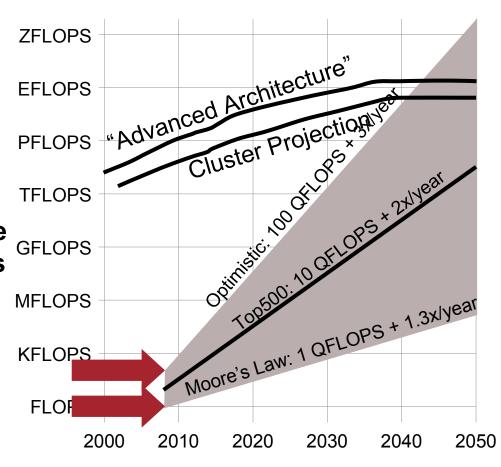





- Exemplary Zettaflops Problems
- The Limits of Moore's Law
- Beyond Moore's Law
  - Industry's Plans
  - Nanotech and Reversible Logic
  - Quantum Computing
- Conclusions



### Why Quantum Computing is Interesting

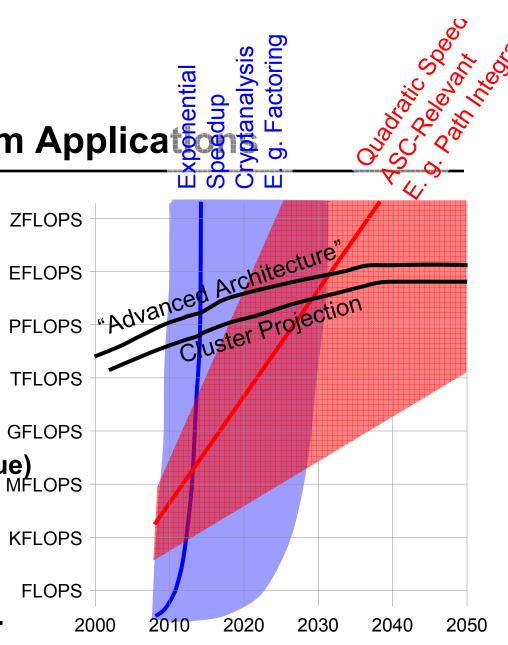

- A Superset of Digital
  - Spin "up" is a 1
  - Spin "down" is a 0
  - Other spins
    - Sidewise
    - Entangled
    - Phase
  - Like wildcards
    - · 1011??????
    - Up to 2<sup>N</sup> states → in "quantum parallel"





### **Emergence of Quantum Computing**

- There appears to be an engineering case for quantum computers of 1-100 Q-FLOPS
- One would expect an exponential growth rate for quantum computers similar to Moore's Law, but the rate constant is impossible to predict, so three possibilities have been graphed






# Quantum Applicate of the control of

- Consider the classical computer equivalent to a Quantum Computer
- First use believed to be factoring in cryptanalysis, with exponential speedup over classical computers (blue)

  MFLOPS
- Second, a quantum computer can also be used for other applications (pink) with quadratic speedup (e.g. **Actinide chemistry**)



ОШ





- Exemplary Zettaflops Problems
- The Limits of Moore's Law
- Beyond Moore's Law
  - Industry's Plans
  - Nanotech and Reversible Logic
  - Quantum Computing
- Conclusions





### **Conclusions**

- Important applications exist to 1 Zettaflops
- Performance of \$100M μPbased supercomputers will rise to only ~30-200 Petaflops
  - This will be sufficient to meet all existing plans
  - However, there are many apparently valid uses of computers that exceed these limits, but where there is no commitment at this time

- Advanced Architectures

   (e. g. PIM) will rise to ~4-25
   Exaflops
  - Cray Cascade moves in this direction
- Nanotech and Reversible logic good to perhaps 1 Zettaflops
- Quantum computing
  - Will not help existing code
  - Blasts out of the top of the chart for new codes

