
CUG 2005 Proceedings 1 of 5 

The New Generation of Cray Performance Tools 

Luiz DeRose, Bill Homer, Dean Johnson, and Steve Kaufmann 
Cray Inc. 

ABSTRACT: In order to be able to achieve and sustain high-performance on today’s 
supercomputers, users need a performance tools infrastructure that can handle the 
challenges associated with complex architectures. In this paper we describe the Cray new 
generation of performance tools, which were designed and developed to provide the 
functionality needed for performance analysis of scientific applications in a portable and 
easy to use way. 

KEYWORDS: Programming Environment Tools, Cray X1 Series, Cray XT3, Cray XD1 

 

1. Introduction 
 
In order to be able to achieve and sustain high-

performance on today’s supercomputers, users require 
performance tools that can correlate the parallel source 
code with the dynamic performance behavior of 
applications from both software and hardware 
measurements, still providing a portable, intuitive, and 
easy to use interface. At Cray, this challenge was 
approached with the design and development of an 
infrastructure that provides the functionality needed for 
performance measurement and analysis of scientific 
applications in a portable and easy to use manner. In this 
paper we present this new generation of Cray 
performance tools. 

The remainder of this paper is organized as follows. 
In Section 2, we describe the Cray approach to 
performance tools. In Section 3, we present an overview 
of the Cray tools. Finally, Section 4 presents our 
conclusions with a summary of the recent updates and 
new features on the Cray tools. 

2. Cray Performance Tools Approach 
The performance tools strategy on Cray systems is 

based on the observation that performance analysis is 
normally done in multiple steps of a two-phase 
optimization process: single processing optimization and 
parallel processor optimization. On parallel vector and 
scalar systems (with mpi or similar communication 
mechanisms), users normally split the computation 
domain in smaller subdomains, which are operated by 
individual tasks. The users initially try to optimize a 
single task (including vector optimization) and then look 
into parallel issues. During the single processor 

optimization phase, the user attempts to answer the 
following questions: 

1. Does my program have performance problems? 
2. Where are the main bottlenecks? 
3. What are the causes of the performance 

problems? 
In order to answer the first two questions, users are 

normally interested in simple tools that can provide an 
overall view of the program execution and do not require 
manual instrumentation, while to answer the third 
question, users are in general willing to instrument the 
source code, although, the availability of automatic 
instrumentation is preferred. At this level, hardware 
performance counters are one the most important asset for 
the tools to be able to provide detailed information, which 
can be correlated with the source code and the individual 
functional units of the system.  

During the parallel processing optimization phase, 
the user attempts to answer the following questions: 

1. Does my program have communication or 
synchronization problems?  

2. What are the causes of the parallel performance 
problems? 

In order to answer the first question, users look for a 
simple to use communication profiling tool, while a 
tracing infrastructure, integrated with a graphical user 
interface is the best solution for answering the second 
question. 

3 Cray Tools Overview 
The new generation of Cray performance tools was 

designed to address the questions described above. It 
consists of the CrayPat performance analysis toolkit, for 
program instrumentation, data collection, trace 
generation, and performance analysis, and the Cray 
Apprentice2, for graphical visualization of the 
application performance. 



CUG 2005 Proceedings 2 of 5 

3.1 CrayPat 
CrayPat is a performance analysis toolkit composed 

of several utilities. The four main components are 
pat_hwpc, pat_build, pat runtime library, and 
pat_report. The pat_hwpc utility is a stand-alone 
component, designed to answer question (1) of the single 
processor optimization phase (although it also works for 
parallel programs), while the other components of 
CrayPat were developed to address questions (2) and (3) 
of the single processor optimization phase, as well as 
question (1) of the parallel optimization phase. 

The pat_hwpc utility executes a given application, 
records specified hardware performance counters events, 
and at the end of the execution writes a summary report to 
standard output with times, counts, and derived metrics 
such as average vector length, megaflop rates, and cache 
miss rates. Alternately, it can be used to attach to a 
process that is already executing. Hardware performance 
counters events and other timing information can also be 
saved to a file for later evaluation by the CrayPat 
reporting facility. Currently, pat_hwpc is only supported 
on the Cray X1 series, but work is under way for support 
on the Cray XT3 and Cray XD1 systems. However, a 
library (libhwpc.a) is alternatively available for the 
collection of hardware performance counters events on 
the Cray XD1 and Cray XT3 systems. Libhwpc provides 
a programming interface for tracing regions, and supports 
access to the underlying hardware performance counters 
using the Performance API (PAPI), developed by the 
Innovative Computing Laboratory at the University of 
Tennessee in Knoxville. The user explicitly links the 
program with “-lhwpc” and a report is printed to 
stdout at the end of program execution. 

 CrayPat performs experiments on running 
applications. An experiment is an evaluation of an 
application as it executes. The way that experiments work 
is determined both by how an application is instrumented, 
and how it is executed. CrayPat is applied to applications 
for single or multiple PEs with shared memory (SM) or 
distributed memory (DM) design. CrayPat also supports 
threaded applications, including the OpenMP 
programming model, and for the Cray X1, both MSP and 
SSP mode applications. CrayPat provides a number of 
experiments that collect data in different ways. Thus, if 
several experiments are applied to the same application, 
the bias implicit in any given experiment is rendered 
acceptable.  

Instrumentation of an application is the first 
preparatory step required for performance evaluation. 
Instrumentation sets up the capture of software state, 
hardware state and time: 

• The Software state can include thread and call stack 
information or the actual parameter values passed 
into a function entry point.  

• The Hardware state can include the Program Counter 
(PC) or some Hardware Performance Counter 
(HWPC) event values.  

• Time stamps are recorded in high resolution using 
the Real-Time Clock (RTC) and HWPC cycle 
counter. 
The instrumented application is executed in the same 

manner and in the same environment as the original 
application. It can be executed multiple times with 
varying data sets, each iteration producing a new 
experiment data file. The CrayPat reporting features can 
accept multiple experiment data files for a single 
application - the more material, the more complete and 
thorough the performance evaluation. 

CrayPat does not require that applications or parts of 
applications to be recompiled. A single link, managed by 
CrayPat, is all that is required. As part of the CrayPat 
environment, link details are embedded in the executable 
file. CrayPat uses these details to create the link operands 
and the instrumented application. The original application 
is not changed. 

The utility pat_build is used for automatic 
instrumentation of the application, for performance data 
collection. It allows the user to define when the 
performance collection is triggered and how the 
performance data is recorded.  

The triggering mechanism can be activated by an 
external agent, such as a timer or a hardware counter 
overflow, which is known as asynchronous or sampling, 
or internally, by code inserted through instrumentation, 
which is normally referred as synchronous or event 
tracing.  

If an application is instrumented for an asynchronous 
experiment, the nature of the experiment is selected at 
run-time. Asynchronous experiments are statistical: they 
sample the state of the application at given intervals. The 
interval can be a time interval (for example, every 10 
milliseconds), or it can be a hardware performance 
counters event that overflows at defined value. The types 
of asynchronous experiments include: PCs from OS-
based profiling and PCs from sampling via interval 
timers. When sampling, other state information can be 
recorded at the time the PC is recorded. Among other 
information are the call stack, dynamic heap, system 
resources, and the values of selected hardware 
performance counters. Currently; the Cray XT3 system 
does not support sampling. We are investigating the 
possibility of providing sampling based on hardware 
counter overflow. 

If an application is instrumented for a synchronous 
experiment, function entry points are counted and 
recorded. At the time of instrumentation, the user chooses 
which function entry points to record. All function entry 
points that have predefined “trace wrappers” can be 
traced. In addition, CrayPat provides an Application 
Programming Interface (API) for finer control over the 
recording of the state during run-time. The API 



CUG 2005 Proceedings 3 of 5 

encompasses a number of functions that can be inserted 
into the application source code. These functions are only 
activated in the instrumented program. The API facilitates 
recording similar state to tracing, but for regions within a 
function. API functions are provided for both C and 
Fortran. 

Performance data can be summarized during runtime 
and stored in the form of a profile, or can be saved in the 
form of a trace file, where for each traced event 
(instrumented functions and PAT API calls) that is 
executed during run-time, a tracing record is created in 
the experiment data file. Profiling produce the most 
compact experiment data files. On the other hand, with a 
trace file, one can reproduce the complete performance 
behaviour of the application.  

A number of trace function groups are predefined. 
They represent function entry points that are related in 
function and application. These groups include: 

• MPI, SHMEM, UPC, CAF 
• OpenMP 
• Pthreads 
• System Calls 
• Dynamic Heap 
• ANSI Math 
• Raw I/O, buffered I/O, flexible file I/O 

Instrumentation uses the application itself to collect 
state and timing information. Pat_build manages the link 
of the original program with the pat runtime library that 
facilitates this data collection, creating an “instrumented” 
executable, which is executed the same way as the 
original application. During the course of the 
instrumented program execution, an experiment data file 
is created containing recorded state and event 
information. 

The pat_report utility analyses the state and event 
data in the experiment data file, created as a result of 
executing the instrumented program. It produces a text 
report, which users can customize for content and format. 
The pat_report utility can aggregate data or keep it 
segregated by SSP (Cray X1 only), thread, and process. 
Reports display such detail as hardware performance 
counters event values, call trees, and special processing 
for the function groups mentioned earlier. In addition, 
pat_report is also used to generate the input file used by 
the Cray Apprentice2 visualization component. 

Additionally, a couple of utilities are available to 
improve easy of use: pat_run and pat_help. The 
pat_run utility provides an alternate interface to the 
CrayPat collection of tools. It combines in a single 
invocation the selection of data to be collected with the 
execution of the instrumented program, and automatically 
produces an appropriate report. The pat_help utility 
provides a text-based interactive help facility for CrayPat, 
where one can access information about and examples of 
using the CrayPat performance analysis tool. 

3.2 Cray Apprentice2 
Cray Apprentice2 is a multi-platform, multi-function 

performance data visualization tool that takes as input the 
performance file generated by CrayPat. It provides the 
familiar notebook-style tabbed user interface and can 
display a variety of different data panels, depending on 
the type of performance experiment that was conducted 
with CrayPat. It has an identical interface between the 
Cray product lines. Cray Apprentice2 is a visualization 
mechanism designed to address questions (2) of the single 
processor optimization phase, as well as question (2) of 
the parallel optimization phase mentioned in Section 2.                           

Cray Apprentice2 is built with scaling in mind. It is 
built with the idea of many threads of execution and large 
amounts of performance data, all within a single tabbed 
window interface. Information is typically presented first 
at the most programmer-centric level, such and routines 
and then allowing for “diving” deeper into the data, 
showing things like a breakdown by PE. 

Cray Apprentice2 provides call-graph based profile 
information, as shown in Figure 1, which can be mapped 
to the source code. The profile view contains three panes: 
The bottom left pane provides an overall view of the 
application call graph. The right side pane displays a 
zoom of the call graph, which is selected using the 
window available in the overview pane. Finally, a text 
profile sorted by time or calls is available on the top left 
pane. The sizes of the boxes are dependent on the 
execution time or in the sampling case, on the number of 
hits. Thus, using the profile view, one can quickly 
identify the functions or regions in the program that are 
possible causes of performance bottlenecks.  

 

 
Figure 1: Cray Apprentice2 profile view 

 



CUG 2005 Proceedings 4 of 5 

Summary information about communication and user 
functions, instrumented regions, as well as I/O, can also 
be obtained graphically with standard statistics displays, 
as shown in Figure 2, which shows MPI statistics and in 
Figure 3, which shows pair-wise communication 
statistics. 

 

 
Figure 2: Cray Apprentice2 statistics view 

 

 
Figure 3: Cray Apprentice2 pair-wise communication 
statistics 

In addition, time line based trace visualization, 
supporting the traditional parallel processing and 
communication mechanisms, such as MPI and OpenMP 
are available, as shown in Figure 4, which presents the 
time line view, and Figure 5, which presents an activity 

view. Performance visualization for I/O is also available, 
as shown in Figure 6. 

 
Figure 4: Cray Apprentice2 time line view 

 

 
Figure 5: Cray Apprentice2 activity view 

 
 
All Cray Apprentice2 displays are integrated into the 

same tabbed graphical interface, allowing one to switch 
easily from one display to another. In addition, Cray 
Apprentice2 uses the concept of calipers, which 
synchronizes the time frame on all displays, providing the 



CUG 2005 Proceedings 5 of 5 

flexibility for users to select a time frame for analysis on 
one display, without having to reset all other displays. 

 

 
Figure 6:  Cray Apprentice2 I/O visualization 

 
Additionally, Cray Apprentice2 provides displays 

with performance information in text mode, as well as a 
complete on-line help. 

 
4  Conclusions 

In this paper we presented an overview of the new 
generation of Cray tools, which was developed to provide 
a portable and easy to use performance tools 
infrastructure for all Cray systems.  

Over the last year, the Cray tools infrastructure has 
been improved in a number of areas, including the 
addition of the following features: 

• The Cray Apprentice2 graphical visualization 
interface. Among its main features are multiple views 
of data, including profile, summary statistics, call 
graph, and time line.  

• CrayPat availability on all three main Cray systems: 
X1 Series, XT3, and XD1, as well as on the Linux 
Cross Compiler package. 

• The pat_run utility, which combines selection of 
metrics, execution, and report generation into a single 
step.  

• Run time summarization (RTS) of data, which is now 
the default. This means a partial aggregation of data 
during the execution of the instrumented program, 
which dramatically decreases both the size of the data 
file and the time required to generate a report.  

• Improved support for OpenMP programs, with the 
ability to show load balance across threads in parallel 
regions. 

• Support for MPMD programs (multiple program 
executables). 

• New pair of API calls, PAT_region_begin and 
PAT_region_end, to designate regions of interest 
within a function. 

• Reports showing callers or a calltree can now show 
the line numbers for each call. 

• Pruning of library "internals" from callers/calltree 
views and reports.  

 
Acknowledgements 

The authors would like to thank colleagues of the 
Programming Environments and Testing group, and users 
in the Benchmarking and Applications group at Cray Inc., 
for their contributions during the development, 
implementation, and testing of CrayPat. In addition, we 
would like to thank the PAPI team at the University of 
Tennessee in Knoxville for the help with the PAPI port to 
the XT3. 

References 
All components of the CrayPat performance toolkit 

and related information are located in the man pages.  
Details about the use and description of the PAPI are 

in the papi(3)man pages, the PAPI User’s Guide 
(number S-6515), and the PAPI Programmer’s Reference 
(number S-6514), as well as on the PAPI page: 
http://icl.cs.utk.edu/papi/  

Details about the use and description of the hardware 
performance counters are in the counters(5) and 
papi_counters(5) man page. 

The following publications provide more information 
on CrayPat and Cray Apprentice2: 

 Optimizing Applications on the Cray X1 System 
(number S-2315). 

Cray XT3 Programming Environment User’s Guide 
(number S-2396)  

Cray XT3 System Overview (number S-2423).  

About the Authors 
Dr. Luiz DeRose is a Sr. Technical Engineer and the 

Programming Environment Tools Manager at Cray Inc. 
He has twenty years of experience designing and 
developing tools for HPC. He can be reached at 1340 
Mendota Heights Rd, Mendota Heights, MN 55120 USA, 
E-mail: ldr@cray,.com 

Bill Homer, Dean Johnson, and Steve Kaufmann are 
Software Engineers in the Programming Environment 
Tools group at Cray Inc. They have many years of 
experience developing performance tools for high 
performance computation. They can be reached at 1340 
Mendota Heights Rd, Mendota Heights, MN 55120 USA. 
Their email addresses are homer@cray.com, 
dtj@cray.com, and sbk@cray.com respectively. 


