Characterizing Compiler Performance for the
AMD Opteron Processor on a Parallel Platform

Douglas Doerfler
Courtenay Vaughan
Sandia National Labs

May 17th, 2005
CUG 2005

Introduction

Cray & Sandia National Labs (SNL) have chosen the Portland Group (PGI) C,
C++ and Fortran compiler suite as the nominal compilers for SNL’s Red Storm

This study takes a look at the Pathscale compiler suite by comparing it
against the PGl suite on applications of interest to SNL and the ASC
program

There are other excellent Opteron compilers available, but this study is an
outcome of a collaboration with Pathscale to help the maturation of their
product

- However, neither company was consulted for tuning advice

- The companies respective literature and white papers were consulted

In addition to single processor performance, we looked at scaled (weak-
scaling) problem sets and make inferences about the applications ability to
hide parallel overheads and hence take advantage of compiler optimizations
at scale

Fractional Speedup

» Total fraction of time before optimization is defined as
F(N) = £,(N) + f,(N) = 1
— where f_ i1s computational fraction and
f, 18 the fraction of overhead

e Total fraction of time after optimization 1s defined as
Fo(N) = £o(N) * f(N) + f(N) < 1
— Where { is the fractional speedup
* I, 1s measured by the application and is defined as

F.(N) = (time for faster runtime)
/ (time for slower runtime)

* And percent speedup is defined as
Speedup (%) =(1/F,(N)—1)*100

Environment

* PGI Compiler Suite Version 6.0

— -fastsse
» -fast -Mvect=sse -Mscalarsse -Mcache_align —Mflushz
» -fast ->-02 -Munroll=c:1 -Mnoframe —MIre

e Pathscale Compiler Suite Version 2.1

— -03 -OPT:Ofast
« -OPT:Ofast -> -OPT:ro=2:0Ilimit=0:div_split=ON:alias=typed -msse2

e Red Squall Cluster
— Dual-Processor 2.0 Ghz Opterons
— 333 Mhz DDR DRAM
— Quadrics QsNetll High-Speed Interconnect
— MPICH 1.2.4 w/Quadrics extensions
— SuSE Linux Professional 9.0 on all nodes

Applications

e CTH

— Multi-material, large deformation, strong shock wave, solid mechanics code
— Fortran 77

— Chosen for its extensive use at SNL and its characteristic 3-D Mesh
message passing traits

e LAMMPS

— (Large-scale Atomic/Molecular Massively Parallel Simulator) is a classical
molecular dynamics code designed for simulating molecular and atomic
systems on parallel computers using spatial-decomposition techniques

— Fortran 90
— FFTW is implemented in C
— Chosen for its extensive use at SNL and well characterized behavior

« PARTISN
— LANL Developed Code

— Neutron transport solutions on orthogonal meshes with adaptive mesh
refinement (AMR) in one, two, and three dimensions

— Chosen for its irregular memory transfer characteristics

CTH

Shape Charge problem set derived from a real calculation.

Reports “grind time”, which halves as the problem doubles in size.
Unable to use -O3 on Pathscale compiler, so -O2 -OPT:Ofast was used.
Relatively constant advantage for the PGI compiler as the problem scales.

Indicates that f_ and f_ remain constant with scale.

This implies that the parallel inefficiency is due to algorithmic issues and that
the total time for computation and overhead increases as the problem scales.

sec/zone-cycle

CTH Shape Charge Study
Grind Time

—&— PGI —#— Pathscale —>¢—PGI Speedup

1.00E-05

1.00E-06

1.00E-07

1.00E-08

10.0%

5.0%

~— 0.0%

-5.0%

1 2 4 8 16 32 64 128
MPI Job Size

Efficiency

120.0%

100.0%

80.0%

60.0%

40.0%

20.0%

0.0%

CTH Shape Charge Study
Scaling Efficiency

—=&—PGI —A— Pathscale

2 4 8 16 32 64 128
MPI Job Size

LAMMPS

 Indifferent as to which compiler to use

e Unable to characterize applications ability to take advantage of
compiler optimizations

Loop Time

45

40

35

30

25

20

15

10

Lammps Stouch Study

—— PGI —A— Pathscale —%— Pathscale Speedup

7.0%

HM”‘J+¥—I;’4_

- 6.0%

5.0%

4.0%

3.0%

2.0%

1.0%

0.0%

-1.0%

1 2 4 8 16 32 64 128
MPI Job Size

-2.0%

PARTISN

Partisn SNT48 Timing Study
Transport Grind Time

. —&— PGI ~—#— Pathscale —>¢— Pathscale Speedup
e Three metrics measured
— Transport Grind Time 1000.000 15.0%
— Diffusion Grind Time
— Solver Iteration Time
* Single node anomaly for Pathscale result 100.000 0.0%
[
e Pathscale advantage from 2 to 128 nodes s
— Overhead ~ constant as scale increases g
. 10.000 -15.0%
* Solver Iteration result at 128 nodes may be
due to the Red Squall network architecture
1.000 T -30.0%
1 2 4 8 16 32 64 128
MPI Job Size
Partisn SNT48 Timing Study Partisn SNT48 Timing Study
Solver Iteration Time Diffusion Grind Time
—&— PGI ~4— Pathscale —>¢—Pathscale Speedup —=— PGI ~—#4— Pathscale —>¢—Pathscale Speedup
800.000 80.0% 1000.000 30.0%
700.000 L 70.0%
@ 600.000 /‘I 60.0%
E 500.000 A\ / I soo | g 100.000 20.0%
g 400.000 / 0.0% | 9
i:’ 300.000 _74-—/"’ - P, 300% =45 000 10.0%
8 200.000 —3 — 20.0%
100.000 10.0%
0.000 : : : : 0.0% 1.000 : : : : : L 0.0%
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
MPI Job Size MPI Job Size

Different Optimization Settings for PARTISN on a Single Node

PGI Pathscale
e -fastsse e -O3 -OPT:Ofast
e -fastsse -Mnontemporal e -O3 -msse2
e -fast -Mcache_align e -0O2
e -O3 -Munroll=c:1 -Mnoframe -Mlre -
Mcache_align (-fast w/03 and -Mcache_align)
PGI Optimization Levels for Partisn Pathscale Optimization Levels for Partisn
4,00 1.20
3.50
1.00 —
3.00
¢ g 0.80 — I
g 250 ~fastsse E
u 0
é W -fastsse -Mnontemporal é -03 -OPT:Ofast
92,00 , 0 0.60 —— _ _ B -03 -msse2
z ~fast -Mcache_align .:.’ 0
- -03 -Munroll=c:1 -Mnoframe -Mlre - E
g 1.50 Mcache_align (-fast w/03 and -Mcache_align) 4
F “E_’ 0.40 —— —— —
=
1.00 — — — ||
0.20 — E— I
0.50 {— == —_— ||
0.00 0.00

Transport Diffusion Solver

Transport

Diffusion

Solver

PARTISN Continued

Used -O2 with Pathscale
e Left PGI at -fastsse
e Improved Pathscale single node performance
* However, overall Pathscale performance

Partisn SNT48 Timing Study
Transport Grind Time

—&— PGI ~— 4 Pathscale —>—Pathscale Speedup

1000.000

15.0%

100.000)/% X 0.0%
advantage reduced g \/(——x
°
e Performance dependent on scale £ .
—8, 32 and 128 node anomalies (?) 10.000 \\ -
1.000 - - - - -30.0%
1 2 4 8 16 32 64 128
MPI Job Size
Partisn SNT48 Timing Study Partisn SNT48 Timing Study
Solver Iteration Time Diffusion Grind Time
—8— PGI 4 Pathscale —>¢—Pathscale Speedup —&— PGI ~—#4— Pathscale —>¢—Pathscale Speedup
800.000 80.0% 1000.000 20.0%
700.000) 70.0%
v 600.000 = 60.0% /\ /\
E //4- . 100.000 10.0%
B 500.000 ﬁ 50.0% 95_’ ~ \ / \
8 400.000 40.0% | =
2 £
= A ,M 0 £
@ 300.000 .% g .- 30.0% 10.000 X 0.0%
E = o . 0%
8 200.000 T — Vf \X/ \\(20.0% V
100.000 10.0%
0.000 0.0% 1.000 -10.0%

1 2 4 8 16 32 64
MPI Job Size

128

1 2 4 8 16 32 64
MPI Job Size

128

Summary and Conclusions

The PGI Compiler provided the best results for CTH.

The Pathscale Compiler provided the best results for PARTISN.
LAMMPS was indifferent.

Each ended the season with a record of 1-1-1.

Both compilers can be tweaked with numerous switches and it is most
likely possible that excellent run time results can be obtained with
either compiler.

However, it seems beneficial to the application developer to have
multiple compilers to choose from, as one may provide a more optimal
result for a given application without significant “fishing” for the right
options.

Compilers can be a significant monetary investment, but after taking
into account increased efficiency of the platforms resources over an
extended period of time, it may be worth it.

Questions’?

