
Characterizing Compiler Performance for the
AMD Opteron Processor on a Parallel Platform

Douglas Doerfler
Courtenay Vaughan

Sandia National Labs

May 17th, 2005
CUG 2005

Introduction
• Cray & Sandia National Labs (SNL) have chosen the Portland Group (PGI) C,

C++ and Fortran compiler suite as the nominal compilers for SNL’s Red Storm

• This study takes a look at the Pathscale compiler suite by comparing it
against the PGI suite on applications of interest to SNL and the ASC
program

• There are other excellent Opteron compilers available, but this study is an
outcome of a collaboration with Pathscale to help the maturation of their
product

– However, neither company was consulted for tuning advice
– The companies respective literature and white papers were consulted

• In addition to single processor performance, we looked at scaled (weak-
scaling) problem sets and make inferences about the applications ability to
hide parallel overheads and hence take advantage of compiler optimizations
at scale

Fractional Speedup
• Total fraction of time before optimization is defined as

F(N) = fc(N) + fo(N) = 1
– where fc is computational fraction and

fo is the fraction of overhead
• Total fraction of time after optimization is defined as

Fs(N) = fc(N) * fs(N) + fo(N) < 1
– Where fs is the fractional speedup

• Fs is measured by the application and is defined as
Fs(N) = (time for faster runtime)

/ (time for slower runtime)
• And percent speedup is defined as

Speedup (%) = (1 / Fs(N) – 1) * 100

Environment
• PGI Compiler Suite Version 6.0

– -fastsse
• -fast -Mvect=sse -Mscalarsse -Mcache_align –Mflushz
• -fast -> -O2 -Munroll=c:1 -Mnoframe –Mlre

• Pathscale Compiler Suite Version 2.1
– -O3 -OPT:Ofast

• -OPT:Ofast -> -OPT:ro=2:Olimit=0:div_split=ON:alias=typed -msse2

• Red Squall Cluster
– Dual-Processor 2.0 Ghz Opterons
– 333 Mhz DDR DRAM
– Quadrics QsNetII High-Speed Interconnect
– MPICH 1.2.4 w/Quadrics extensions
– SuSE Linux Professional 9.0 on all nodes

Applications
• CTH

– Multi-material, large deformation, strong shock wave, solid mechanics code
– Fortran 77
– Chosen for its extensive use at SNL and its characteristic 3-D Mesh

message passing traits
• LAMMPS

– (Large-scale Atomic/Molecular Massively Parallel Simulator) is a classical
molecular dynamics code designed for simulating molecular and atomic
systems on parallel computers using spatial-decomposition techniques

– Fortran 90
– FFTW is implemented in C
– Chosen for its extensive use at SNL and well characterized behavior

• PARTISN
– LANL Developed Code
– Neutron transport solutions on orthogonal meshes with adaptive mesh

refinement (AMR) in one, two, and three dimensions
– Chosen for its irregular memory transfer characteristics

CTH
• Shape Charge problem set derived from a real calculation.
• Reports “grind time”, which halves as the problem doubles in size.
• Unable to use -O3 on Pathscale compiler, so -O2 -OPT:Ofast was used.
• Relatively constant advantage for the PGI compiler as the problem scales.

Indicates that fc and fo remain constant with scale.
• This implies that the parallel inefficiency is due to algorithmic issues and that

the total time for computation and overhead increases as the problem scales.

LAMMPS
• Indifferent as to which compiler to use
• Unable to characterize applications ability to take advantage of

compiler optimizations

PARTISN
• Three metrics measured

– Transport Grind Time
– Diffusion Grind Time
– Solver Iteration Time

• Single node anomaly for Pathscale result
• Pathscale advantage from 2 to 128 nodes

– Overhead ~ constant as scale increases
• Solver Iteration result at 128 nodes may be

due to the Red Squall network architecture

PGI
• -fastsse
• -fastsse -Mnontemporal
• -fast -Mcache_align
• -O3 -Munroll=c:1 -Mnoframe -Mlre -

Mcache_align (-fast w/03 and -Mcache_align)

Pathscale
• -O3 -OPT:Ofast
• -O3 -msse2
• -O2

Different Optimization Settings for PARTISN on a Single Node

PARTISN Continued
• Used -O2 with Pathscale
• Left PGI at -fastsse
• Improved Pathscale single node performance
• However, overall Pathscale performance

advantage reduced
• Performance dependent on scale

–8, 32 and 128 node anomalies (?)

Summary and Conclusions
• The PGI Compiler provided the best results for CTH.
• The Pathscale Compiler provided the best results for PARTISN.
• LAMMPS was indifferent.
• Each ended the season with a record of 1-1-1.
• Both compilers can be tweaked with numerous switches and it is most

likely possible that excellent run time results can be obtained with
either compiler.

• However, it seems beneficial to the application developer to have
multiple compilers to choose from, as one may provide a more optimal
result for a given application without significant “fishing” for the right
options.

• Compilers can be a significant monetary investment, but after taking
into account increased efficiency of the platforms resources over an
extended period of time, it may be worth it.

Questions?

