
Early Evaluation of the Cray XD1

Mark R. Fahey,

Sadaf Alam, Thomas H. Dunigan, Jr.,

Jeffrey S. Vetter, Patrick H. Worley

Oak Ridge National Laboratory

ABSTRACT: Oak Ridge National Laboratory received 12 chassis of early access
Cray XD1 nodes in October 2004, where each chassis has 12 AMD Opteron proces-
sors. This paper describes our initial experiences with the system, including micro-,
kernel, and application benchmarks results.

KEYWORDS: performance evaluation; Cray XD1; Linux Synchronized Scheduler

1 Introduction

Oak Ridge National Laboratory (ORNL) obtained a
144 processor Cray XD1 for evaluation in October
2004. The Cray XD1 product (formerly from Octi-
gabay) is an Opteron-based cluster with a RapidAr-
ray interconnect. It is currently under evaluation
as part of the DOE Advanced Computing Research
Testbed. As part of the evaluation, a primary task
is to evaluate application performance and compare
with systems from other high-performance comput-
ing (HPC) vendors. Standard benchmarks and cus-
tom microbenchmarks are used to evaluate the sys-
tem where applicable, and for comparison with other
evaluations. However, the emphasis here is on per-
formance evaluations of full applications of interest
to DOE. The applications involved in our current
evaluations include codes drawn from climate mod-
eling, fusion, materials, and hydrodynamics.

Section 2 provides an overview of the ORNL
Cray XD1. Section 3 describes the evaluation pro-
cess including methodology and test machines. Sec-
tion 4 presents performance results from communi-
cation and computation microbenchmarks and cus-
tom kernels. Section 5 has performance data from
applications in global climate, fusion, materials, and
hydrodynamics. Section 7 recaps the performance
characteristics observed in this study and discusses
a few of the outstanding issues.

At the time of writing this report, no substan-
tial testing of the FPGAs has been done and thus
discussion of FPGAs will be omitted.

2 XD1 Overview

In collaboration with Cray Inc, Oak Ridge National
Laboratory acquired twelve chassis of early access
Cray XD1 nodes. Each chassis has 12 AMD Opteron
248 series processors running at 2.2 GHZ, and 4 GB
of memory per processor. The total system has 144
processors (633 Peak GFlops), 576 GB of memory,
and 18 TB of disk.

The Cray XD1 combines a new interconnect,
management tools and reconfigurable computing
technologies with the AMD Opteron processor.

2.1 Compute Processors

The ORNL XD1 has 64-bit AMD Opteron 248 se-
ries 2-way (single core) processors. These processors
have a 64KB L1 instruction cache, a 64KB L1 data
cache, and 1MB L2 cache. The processors can issue
two floating-point instructions per cycle for a peak
rate of 4.4 GFlops per processor.

2.2 Interconnect

The following information is taken from the Cray
XD1 Overview webpage [1].

Cray’s RapidArray Communications Processor
provides the interface from HyperTransport on
the Opteron to the RapidArray interconnect fab-
ric. The entire system is interconnected with
Cray’s RapidArray terabit backplane, providing low-
latency, high-bandwidth connections among the pro-

1

cessors. The RapidArray interconnect is an em-
bedded switching fabric that uses 12 custom com-
munications processors and a 96 GB/s nonblocking
switching fabric per chassis to deliver 8 GB/s band-
width between SMPs with 1.7 microsecond MPI la-
tency. Each chassis presents 24 RapidArray inter-
chassis links with an aggregate 48 GB/s bandwidth.
In addition, one chassis contains six Xilinx Virtex-II
Pro Field Programmable Gate Arrays (FPGA) mod-
ules, each with 5 million gates. All twelve chassis are
installed in a single rack, demonstrating excellent
computational density. Multirack configurations are
available that integrate hundreds of processors into
a single system.

As Figure 1 shows, the Cray XD1 system is based

Figure 1: XD1 Direct Connected Processor Archi-
tecture. Image courtesy of Cray, Inc.

on the Direct Connected Processor (DCP) architec-
ture, coupling many processors into a single, uni-
fied system. Cray’s implementation of the DCP
architecture optimizes message-passing applications
by directly linking processors to each other through
a high performance interconnect fabric, eliminating
shared memory contention and PCI bus bottlenecks.

2.3 System Software and Synchro-

nization

Standard Linux is optimized for interactive and
transaction processing applications that involve

short, variable compute cycles and minimal inter-
processor dependencies. On the other hand, HPC
applications have very different profiles, running
many interdependent processes on multiple proces-
sors. These applications use (explicit or implicit)
barriers to ensure all processors or some subset fin-
ish a given step before any continue on. Sitting
idle at barriers waiting for other processors to com-
plete housekeeping functions obviously reduces pro-
ductiviy.

On the XD1, all the nodes run Linux, but the
compute nodes have a special kernel containing the
Linux Synchronized Scheduler (LSS) that allows
them to synchronize with a global clock and co-
schedule processes to avoid latency in global commu-
nication. Therefore, the LSS ensures that the time
slots for all nodes in a partition will be synchronized.
This means that all nodes in the partition are guar-
anteed to be executing the same system or user time
slots at any give time. By ensuring that an applica-
tion executes in the same timeslot systemwide, time
spent in wait-states can be minimized, substantially
improving processor efficiency.

3 Evaluation Overview

The evaluation is hierarchical and staged. In this
hierarchical approach, the low-level functionality of
the system is examined first. Results are then used
to guide and understand the evaluation of kernels
and application codes. Standard benchmarks are
used when appropriate, to compare with evaluations
of other systems, but the emphasis is on application-
relevant studies.

3.1 Methodology

The hierarchical approach described above has been
employed in the examination of performance issues.
The first step was to establish functional correct-
ness. A system incorporating novel architectural
features as the XD1 must be checked for correct-
ness. The second step was to establish performance
correctness. While some performance details are un-
knowable at this time, gross performance, based on
hardware and software specifications, can be used
to predict performance in a coarse sense. Verifica-
tion of these performance expectations is important
to identify and correct hardware and software im-
plementation errors. The third step was to perform
“technology evaluations” of specific subcomponents

2

of the Cray XD1. Our evaluation covers the follow-
ing technologies:

• RapidArray fabric. This fabric provides an ad-
vertised 2GB/s bandwidth link (aggregate bi-
section) to each Opteron and MPI latency is
1.7 µsec.

• Cray’s RapidArray Communications Proces-
sor provides the interface from HyperTrans-
port on the Opteron to the RapidArray in-
terconnect fabric. This specialized processor
routes messages between processors, ensures
reliable transport, optimizes message transfer,
and handles time synchronization across pro-
cessors.

• AMD Opteron. This platform provides DOE a
development system using AMD Opteron pro-
cessors to begin porting and tuning libraries
and applications to these processors.

• Synchronized Scheduler. Cray has modified
the SuSE Linux OS scheduler to support the
synchronization requirements of parallel ap-
plications rather than interactive applications.
This enhancement should improve application
scalability and overall performance.

Performance activities are staged to produce rel-
evant results throughout the duration of the eval-
uation. For example, subsystem performance was
measured as soon as a system arrived, and mea-
sured again following a significant upgrade or system
expansion. Fortunately, these experiments can be
conducted relatively quickly. In contrast, the port-
ing, tuning, and performance analysis of complex
applications, such as those involving unstructured or
dynamic data structures, take much longer to com-
plete, and were started as soon as possible to have
an impact on the evaluation.

3.2 Test machines

For comparison purposes, performance data are also
presented for the following systems:

• Cray XT3 at ORNL: 3748 compute nodes with
46 service nodes connected as 10 x 16 x 24 (X
x Y x Z) with a torus topology in X and Z
dimensions. The Y dimension is a mesh. Each
node has a 2.4 GHz AMD Opteron and 2 GB
of memory.

• Cray X1 at ORNL: 512 Multistreaming proces-
sors (MSPs), each of which is capable of 12.8
GFlops for 64-bit operations. Each MSP is
comprised of four single streaming processors
(SSPs). The SSP uses two clock frequencies,
800 MHz for the vector units and 400 MHz for
the scalar unit. Each SSP is capable of 3.2
GFlops for 64-bit operations.

• Earth Simulator: 640 8-way vector SMP nodes
and a 640x640 single-stage crossbar intercon-
nect. Each processor has 8 64-bit floating
point vector units running at 500 MHz, and
is capable of a peak performance of 8 GFlops
for 64-bit operations.

• SGI Altix at ORNL: 256 Itaninium2 processors
and a NUMAlink switch. The processors are
1.5 GHz. The machine has an aggregate of 2
TB of shared memory.

• IBM p5 720 at ORNL: Two 2-way proces-
sor cards comprising a 4 processor SMP run-
ning Linux. The processors are 1.65 GHz
POWER5.

• IBM p690 cluster at ORNL: 27 32-way p690
SMP nodes and an HPS interconnect. Each
node has 2 HPS adapters, each with two ports.
The processors are 1.3 GHz POWER4.

• IBM SP at the National Energy Re-
search Supercomputer Center (NERSC): 184
Nighthawk(NH) II 16-way SMP nodes and an
SP Switch2. Each node has two interconnect
interfaces. The processors are the 375MHz
POWER3-II.

• HP/Compaq AlphaServer SC at Pittsburgh
Supercomputing Center (PSC): 750 ES45 4-
way SMP nodes and a Quadrics QsNet inter-
connect. Each node has two interconnect in-
terfaces. The processors are the 1GHz Alpha
21264 (EV68).

4 Performance Results

The results presented here are from standard mi-
crobenchmarks and custom kernels. The results rep-
resent snapshots of the machine at various times. All
results reported here were obtained while the ma-
chine was configured as two 72-processor systems.

3

4.1 Microbenchmarks

We use a collection of microbenchmarks to charac-
terize the performance of the underlying hardware,
compilers, and software libraries. The microbench-
marks measure computational performance, mem-
ory hierarchy performance, and interprocessor com-
munication.

For a more in-depth look at microbenchmark per-
formance on the ORNL XD1, see [10] and [2].

4.1.1 Computation

Figure 2 shows a platform intercomparison of the
double-precision floating point performance of a
matrix-matrix multiply (DGEMM) on a single pro-
cessor using the vendor’s scientific library (ACML on
Cray XT3 and XD1, LIBSCI on Cray X1, ESSL on
IBMs, and SCSL on SGI Altix.) The performance

0

2

4

6

8

10

12

100 200 300 400 500 600 700 800 900 1000

G
flo

ps

matrix order

Matrix Multiply (DGEMM)

Cray X1 (800 MHz)
IBM Power5 (1650 MHz)

SGI Altix (1500 MHz)
Cray XT3 (2400 MHz)
Cray XD1 (2200 MHz)

IBM Power4 (1300 MHz)

Figure 2: XD1 DGEMM performance.

of DGEMM has long served as a good indicator of
a machine’s practical peak performance. The XD1
Opteron achieves 3.7 GFlops, about 84% of theoret-
ical peak.

The STREAM benchmark [12] is a simple syn-
thetic benchmark program that measures sustain-
able memory bandwidth (in MB/s) and the corre-
sponding computation rate for simple vector ker-
nels. The triad memory bandwidth of the STREAM
benchmark is presented in the Table 1.

The CacheBench benchmark [14] was run to eval-
uate the performance of the XD1 memory hierar-
chy. CacheBench calculates raw bandwidth and es-
tablishes a peak computation rate for optimal cache
reuse, thereby enabling an application developer to

Table 1: TRIAD memory bandwidth from
STREAM benchmmark.

Processor Triad (GBs) Compiler
Cray X1 MSP 23.8 PE 5.3
Cray XT3 5.1 Pathscale 2.1
Cray XD1 4.1 Pathscale 2.1
Cray XD1 3.2 PGI 5.2-4
IBM p690 2.1 xlf 8.1
IBM power5 4.0 xlf 9
SGI Altix 3.8 Intel 8.1

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

B
an

dw
id

th
 (

M
B

/s
)

Vector length (bytes)

read
write

read/modify/write

Figure 3: XD1 Cachebench performance with Port-
land Group 5.2-4 compiler.

understand the ability of a cache sub-system to sus-
tain large, unit-stride, floating-point workloads.

Figures 3 and 4 show the results of compiler-
optimized read, write and read/write/modify band-
width tests with varying vector lengths on an XD1
processor. The significant variations in the band-
width at different vector lengths show the capacity
of the three different cache levels. For instance, the
XD1 processor has a 64KB level 1 data cache, there-
fore, the read bandwidth drops at a vector length of
524288 bytes. The write latencies on the other hand
depend on a number of architectural features includ-
ing replacement policy and write buffering schemes.

4.1.2 Communication

Message-passing on the XD1 utilizes the Opteron
HyperTransport interface to RapidArray. Our tests
results show that the MPI latency is 1.7 µsec and
bandwidth is 1.3 GB/s between nodes [10].

Interestingly at this time, MPI bandwidth is

4

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

B
an

dw
id

th
 (

M
B

/s
)

Vector length (bytes)

read
write

read/modify/write

Figure 4: XD1 Cachebench performance with Path-
scale 2.1 compiler.

higher between nodes than between the two proces-
sors of an SMP node, see Figure 5. Latency and
bandwidth show little degradation as one commu-
nicates with more distant processors. Note that we
only tested 64-processor configurations.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 (

G
B

s)

message size (bytes)

XD1 MPI banwidth

CPU 0 to 1
CPU 0 to 3

CPU 0 to 33

Figure 5: XD1 MPI Bandwidth.

The HALO benchmark is a synthetic benchmark
that simulates the nearest neighbor exchange of a
1-2 row/column “halo” from a 2-D array. This is
a common operation when using domain decompo-
sition to parallelize (say) a finite difference ocean
model. There are no actual 2-D arrays used, but
instead the copying of data from an array to a local
buffer is simulated and this buffer is transfered be-
tween nodes. Figure 6 compares the HALO latency
for MPI when using 16 processors. The XD1’s low
latency makes it the best performer for small mes-
sages.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000 1e+06 1e+07

la
te

nc
y

(u
se

cs
)

words

HALO MPI on 16 processors

X1
SP4
Altix
XT3
XD1

Figure 6: XD1 Halo.

The XD1 supports a generic version of SHMEM
(GPShmem), but it’s performance is worse than
MPI at this time; latency is 6.4 µsec and bandwidth
is 981 MB/s.

We also show some data from the Pallas MPI-1
Benchmark (PMB) Suite V2.2 [3]. Figures 7 and 8
show the performance of MPI Allreduce and Alltoall
on the XD1 when the Linux synchronized scheduler

10

100

1000

10000

100000

1 10 100 1000 10000 100000 1e+06 1e+07

us
ec

s

bytes

XD1 PMB Allreduce with 32 processors

Linux sync sched
Linux sync sched off

Figure 7: PMB MPI Allreduce.

(LSS) is both on and off.
The data suggests that the LSS helps but only

for message sizes up to somewhere between 1000 MB
and 10000 MB. Also in this range, both Figures 7
and 8 show a curious bump going from 4096 MB to
8192 MB. This bump is a result of a switch in the
communications protocol.

5

10

100

1000

10000

100000

1e+06

1 10 100 1000 10000 100000 1e+06 1e+07

us
ec

s

bytes

XD1 PMB Alltoall with 32 processors

Linux sync sched
Linux sync sched off

Figure 8: PMB MPI Alltoall.

4.2 PSTSWM Kernel

The Parallel Spectral Transform Shallow Water
Model (PSTSWM) [16] represents an important
computational kernel in spectral global atmospheric
models. As 99% of the floating-point operations are
multiply or add, it runs well on systems optimized
for these operations. PSTSWM exhibits little reuse
of operands as it sweeps through the field arrays;
thus it exercises the memory subsystem as the prob-
lem size is scaled and can be used to evaluate the im-
pact of memory contention in SMP nodes. PSTWM
is also a parallel algorithm testbed, and all array
sizes and loop bounds are determined at runtime.

On the XD1 we used PSTSWM to analyze com-
piler optimizations, evaluate performance of the
memory subsystem, and compare performance with
other supercomputers.

Figure 9 shows comparisons of optimization op-
tions. The comparisons are presented as computa-
tion rate versus horizontal resolution for two vertical
resolutions. The problem sizes T5, T10, T21, T42,
T85, and T170 are horizontal resolutions. Each com-
putational grid in this sequence is approximately 4
times smaller than the next larger size. Although
the two figures are for 1 and 18 vertical levels, this
aspect of the problem size does not change the com-
piler option comparison. PSTSWM manages its own
heap, and all loop bounds and array sizes are defined
at runtime. From the figure, we see that this seems
to limit some of the possible performance optimiza-
tions.

Figures 10 and 11 compare performance between
all problem sizes, showing impact of memory hierar-
chy. Most of the work is coupled most tightly hor-

 0

 500

 1000

 1500

 2000

T170T85T42T21T10T5

M
F

lo
p

s/
se

co
n

d
/p

ro
ce

ss
o

r

Horizontal Resolution (18 vertical levels)

Performance of Spectral Shallow Water Model

 (comparing impact of optimization on XD1)

Cray XD1 (2.2 GHz)
 default
 -O2
 -fast
 -fastsse
 -fast -Mipa=fast
 -fastsse -Mipa=fast

 0

 500

 1000

 1500

 2000

T170T85T42T21T10T5

M
F

lo
p

s/
se

co
n

d
/p

ro
ce

ss
o

r

Horizontal Resolution (1 vertical level)

Performance of Spectral Shallow Water Model

 (comparing impact of optimization on XD1)

Cray XD1 (2.2 GHz)
 default
 -O2
 -fast
 -fastsse
 -fast -Mipa=fast
 -fastsse -Mipa=fast

Figure 9: PSTSWM: comparing optimization op-
tions.

izontally, so additional vertical levels spreads things
out, increasing memory access. Large problems drop
from more than one GFlops to 600 MFlops quickly
as a function of number of vertical levels, but stay
at the 600 MFlops rate from then on. Smaller prob-
lems drop more slowly, but to a lower asymptotic
rate. The one and two processor per node compar-
ison shows that this behavior is unaffected by both
processors accessing memory simultaneously. Thus
using both processors does not decrease memory per-
formance or, in other words, increase memory con-
tention.

Figure 12 compares single processor performance
for various horizontal resolutions and a fixed 18 ver-
tical levels. The X1’s superior scaling with respect
to problem size is due to the much higher proces-
sor/memory bandwidth and increased efficiency as
the vector lengths increase.

4.3 SMG2000 Kernel

SMG2000 [6] is a parallel semicoarsening multigrid
solver for the linear systems arising from finite dif-

6

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 0 10 20 30 40 50 60 70 80 90

M
F

lo
p

s
/ s

ec
o

n
d

Vertical Levels

Performance of Spectral Shallow Water Model on Cray XD1

T5
T10
T21
T42
T85
T170

Figure 10: PSTSWM: one processor per node.

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 0 10 20 30 40 50 60 70 80 90

M
F

lo
p

s
/ s

ec
o

n
d

Vertical Levels

Performance of Spectral Shallow Water Model on Cray XD1

 (using both processors in SMP node simultaneously)

T5
T10
T21
T42
T85
T170

Figure 11: PSTSWM: two processors per node show-
ing performance as seen by single processor.

ference, finite volume, or finite element discretiza-
tions of the diffusion equation on logically rectangu-
lar grids. The code solves both 2-D and 3-D prob-
lems with discretization stencils of up to 9-points in
2-D and up to 27-points in 3-D. Applications where
such a solver is needed include radiation diffusion
and flow in porous media. Our examination includes
both the setup of the linear system and the solve it-
self. Note that this setup phase can often be done
just once, thus amortizing the cost of the setup phase
over many timesteps. This trait is relatively com-
mon in implicit timestepping codes.

SMG2000 is an SPMD code that uses MPI,
and parallelism is achieved by data decomposi-
tion. SMG2000 is a highly synchronous code. The
communications and computations patterns exhibit
the surface-to-volume relationship common to many
parallel scientific codes. Hence, parallel efficiency is
largely determined by the size of the data “chunks”
mentioned above, and the speed of communications

 0

 1000

 2000

 3000

 4000

 5000

T340T170T85T42T21T10T5

M
F

lo
p

s
/ s

ec
o

n
d

Horizontal Resolution (with 18 vertical levels)

Serial Kernel Performance

 Spectral Shallow Water Model

Cray X1 w/compile-time levels
Cray X1
SGI Altix (1.5 GHz)
Cray X1 (SSP)
IBM p690 (1.3 GHz)
Cray XD1 (2.2 GHz)
HP ES45 (1.0 GHz)

Figure 12: PSTSWM: 18 vertical levels, all horizon-
tal resolutions.

and computations on the machine. SMG2000 is also
memory-access bound, doing only about 1-2 compu-
tations per memory access, so memory-access speeds
will also have a large impact on performance.

As Figure 13 shows the performance of SMG2000
on the XD1, XT3, SP4 and SP3. The problem size
per processor stays fixed as the number of processors
increases (weak scaling) and so a “flat” line in the
figure is good. Thus, the performance of SMG2000
shows the best performance on the Cray XD1, and
then the XT3, even though the XD1 has a 2.2Ghz
Opteron (when compared to the 2.4Ghz Opteron in
the XT3). In a typical solve, SMG2000 sends thou-
sands of messages per processor, so its performance
benefits from the very low latency interconnect pro-
vided by the XD1.

Figure 13: SMG2000.

7

5 Applications

The performance and efficiency of applications in the
areas of global climate, fusion, materials, and hydro-
dynamics have been evaluated. These full applica-
tions (described below) have been ported to the ma-
chine with the initial emphasis on correct function-
ing of the code, and, subsequently, upon sequential
and then parallel performance and scalability.

The following sections describe the initial appli-
cation targets for evaluation. Future evaluation will
be open to other domains.

5.1 POP

The Parallel Ocean Program (POP) [11] is the ocean
component of CCSM [5] and is being developed
and maintained at Los Alamos National Laboratory
(LANL). The code is based on a finite-difference for-
mulation of the three-dimensional flow equations on
a shifted polar grid. In its high-resolution configu-
ration, 1/10-degree horizontal resolution, the code
resolves eddies for effective heat transport and the
locations of ocean currents.

We used a benchmark configuration (called x1)
representing a relatively coarse resolution similar to
that currently used in coupled climate models. The
horizontal resolution is roughly one degree (320x384)
and uses a displaced-pole grid with the pole of the
grid shifted into Greenland and enhanced resolution
in the equatorial regions. The vertical coordinate
uses 40 vertical levels with a smaller grid spacing
near the surface to better resolve the surface mixed
layer. Because this configuration does not resolve
eddies, it requires the use of computationally inten-
sive subgrid parameterizations. This configuration is
set up to be identical to the actual production con-
figuration of the Community Climate System Model
with the exception that the coupling to full atmo-
sphere, ice and land models has been replaced by
analytic surface forcing.

Figure 14 shows a platform comparison of POP
throughput for the “x1” benchmark problem. The
XD1 performance is similar to that of the IBM
Power4 and SGI Altix.

Figure 15 shows the performance of the
barotropic portion of POP. This component is dom-
inated by solution of 2D implicit system using con-
jugate gradient solves and is known to scale poorly.
Figure 15 clearly shows that the XD1 scales better
than several competing platforms.

 1

 2

 4

 8

 16

 32

 64

 128

 1 2 4 8 16 32 64

S
im

u
la

ti
o

n
 Y

ea
rs

 p
er

 D
ay

Processors

Cray X1 (MPI and Co-Array Fortran)
Earth Simulator
Cray X1 (MPI-only)
SGI Altix (1.5 GHz)
IBM p690 cluster (1.3 GHz, HPS)
Cray XD1 (2.2 GHz)
HP AlphaServer SC (1.0 GHz)

Figure 14: POP “x1” benchmark showing simulated
years per day.

 0.1

 1

 10

 100

 1 2 4 8 16 32 64

S
ec

o
n

d
s

p
er

 S
im

u
la

ti
o

n
 D

ay

Processors

Cray X1 (MPI and Co-Array Fortran)
Earth Simulator
Cray X1 (MPI-only)
SGI Altix (1.5 GHz)
IBM p690 cluster (1.3 GHz, HPS)
Cray XD1 (2.2 GHz)
HP AlphaServer SC (1.0 GHz)

Figure 15: POP “x1” benchmark showing the
barotropic contribution, which typically does not
scale well.

5.2 CAM

The Community Atmospheric Model (CAM) [9] is
the atmospheric component of the Community Cli-
mate System Model (CCSM), the primary model
for global climate simulation in the U.S. and the
target of the climate SciDAC project, “Collabora-
tive Design and Development of the Community
Climate System Model for Terascale Computers.”
The prominent dynamics algorithm of the CAM is
a semi-Lagrangian transport method in combina-
tion with a semi-implicit Eulerian spectral method.
This code grew out of the spectral models devel-
oped at the National Center for Atmospheric Re-
search (NCAR).

At this time we do not have performance num-
bers for CAM, but we nonetheless report the cur-

8

rent status. We have noticed that results from CAM
are not deterministic. Running two identical exper-
iments with same processor count resulted in differ-
ent answers. We found that it is already known [8]
that the “CAM pergro” [15] tests fail on Opterons
compiled with PGI 5.2-4. In contrast, CAM has
been shown to work correctly on Opteron clusters
at NCAR with the Pathscale compilers [8]. We have
not had time to verify this on the XD1 yet.

5.3 GYRO

GYRO [7] is a code that simulates tokamak tur-
bulence by solving the time-dependent, nonlin-
ear gyrokinetic-Maxwell equations for both ions
and electrons. The coupled gyrokinetic-Maxwell
(GKM) equations provide a foundation for the first-
principles calculation of turbulent tokamak trans-
port. GYRO uses a five-dimensional grid and ad-
vances the system in time using a second-order,
implicit-explicit (IMEX) Runge-Kutta (RK) inte-
grator. GYRO is a GKM code that has both
global and electromagnetic operational capabilities.
GYRO has been ported to a wide variety of modern
MPP platforms.

In the following, we show performance results
for the B1-std benchmark problem. This problem is
otherwise known as the Waltz Standard Case, which
is a flux-tube electrostatic simulation with kinetic
electrons and collisions on a 140×8×8×16×20×2
grid for a total of 5,734,400 gridpoints. It uses mul-
tiples of 16 processors.

Figure 16 shows the walltime to completion
for each processor count when running in different
modes on the XD1. These modes are: one processor
per node with main (interconnect) fabric only, one
processor per node with main and expansion fabric,
two processors per node with main fabric only, and
two processors per node with main and expansion
fabric. Figure 17 shows the time attributed to MPI
from Figure 16. Although the data presented earlier
in Figure 5 indicated the communication between
processors in the same node is more expensive than
between nodes, the data in Figure 17 do not cor-
respond to that theory knowing that GYRO uses
a lot of communication bandwidth when perform-
ing its MPI Alltoalls. In fact, using both proces-
sors is more efficient than using one processor per
node for the same total number of processors. This
may be because the one processor per node tests are
“spread out” more (running on more chassis), lead-
ing to higher interchassis contention.

200

400

600

800

1000

1200

1400

15 20 25 30 35 40 45 50 55 60 65

W
al

lti
m

e
(s

ec
on

ds
)

Processors

XD1 timings of GYRO B1-std benchmark

1 proc per node, only main fabric
1 proc per node, main and expansion network

2 proc per node, only main fabric
2 proc per node, main and expansion network

Figure 16: GYRO B1-std benchmark run in various
modes on the XD1.

40

60

80

100

120

140

160

180

200

220

240

260

15 20 25 30 35 40 45 50 55 60 65

W
al

lti
m

e
(s

ec
on

ds
)

Processors

XD1 MPI timings of GYRO B1-std benchmark

1 proc per node, only main fabric
1 proc per node, main and expansion network

2 proc per node, only main fabric
2 proc per node, main and expansion network

Figure 17: GYRO B1-std benchmark run in various
modes on the XD1.

We also use this test case to compare the XD1
to the other test platforms. Figure 18 shows per-
formance of GYRO across the test platforms. The
data are plotted as timesteps per seconds against
the number of processors. The XD1 compares quite
favorably to its competitors.

5.4 VASP

VASP is the Vienna Ab-initio simulation package
[4]. VASP is a package for performing ab-initio
quantum-mechanical molecular dynamics (MD) us-
ing pseudopotentials and a plane wave basis set. The
approach implemented in VASP is based on a finite-
temperature local-density approximation (with the
free energy as variational quantity) and an exact

9

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100 120 140

T
im

es
te

ps
 p

er
 s

ec
on

d

Processors

GYRO B1-std benchmark

X1
Altix (1.5ghz)

Power4 (1.3ghz)
XD1 (2.2ghz) 64-proc image

XT3 (2.4ghz)

Figure 18: GYRO B1-std benchmark case showing
timesteps per second versus processor count.

evaluation of the instantaneous electronic ground
state at each MD-step using efficient matrix diag-
onalization schemes and an efficient Pulay mixing.

In Figure 19, the performance of VASP on a test
case with 216 atoms is plotted across the various
test platforms. The scaling is quite similar among
the microprocessor based architectures with only the

1000

10000

100000

0 5 10 15 20 25 30 35

W
al

lti
m

e
(s

ec
on

ds
)

Processors

VASP 216atoms

Pwr4
Altix
XD1

XD1-nosync
XT3

X1 (MSP)
X1 (SSP)

Figure 19: VASP walltime for 216 atoms test case.

vector architecture showing some odd scaling char-
acteristics especially in SSP mode.

Figure 19 includes timing data on the XD1 with
the Linux synchronized scheduler off. The data show
for this application that the synchronized scheduler
provides approximately a 20% reduction in walltime.

5.5 sPPM

sPPM [13] solves a 3-D gas dynamics problem on
a uniform Cartesian mesh, using a simplified ver-
sion of the Piecewise Parabolic Method. The al-
gorithm makes use of a split scheme of X, Y, and
Z Lagrangian and remap steps, which are com-
puted as three separate sweeps through the mesh
per timestep. Message passing provides updates to
ghost cells from neighboring domains three times per
timestep.

The standard sPPM benchmark case [13] in-
volves a shock passing through a gas with a density
discontinuity. The interaction of the shock and the
discontinuity leads to the Richtmyer-Meshkov insta-
bility. It is decomposed on a 2304 x 2304 x 4608 grid
totalling over 24 billion zones.

sPPM has been tested on numerous computer
systems, and it is easy to scale the problem (weak
scaling) to any number of processors. As we see in
Figure 20, sPPM scales very well across four plat-
forms. On the XD1, scaling from 4 processors to
64 processors has 98.3% parallel efficiency. Because
sPPM sends very large messages infrequently, MPI
latency impacts performance less than bandwidth.

Figure 20: sPPM.

6 Conclusions

We have observed most notably that the XD1 has a
very low MPI latency of 1.7 µsec. The Linux syn-
chronized scheduler (LSS) results showed that this
has a significant impact on performance; up to 20%
improvement for the VASP application. The XD1
has outperformed competitor platforms that have a

10

higher peak Megaflop rating on several applications.
Finally, the XD1 scales well for the tests we have
run up to 64 processors.

The machine was upgraded one week before the
conference to a 144 processor system. Several tests
were run in this larger configuration, but there were
anomalies in the data that were not understood and
therefore not reported.

Future work includes investigating the affects of
affinity provided by the xd1launcher command. In
particular, the xd1launcher commands provides the
user with a way to set the CPU affinity with or with-
out the LSS. Each user process is bound to a single
CPU. This was not available for most of the early
tests. In addition, future work will continue efforts
to achieve functional correctness with the CAM ap-
plication. At this time, this appears to be a PGI
5.2-4 compiler issue. We will continue investigations
with the PGI 6.0 compiler and the 2.1 Pathscale
compilers.

Acknowledgments

This research was sponsored by the Office of Math-
ematical, Information, and Computational Sciences
Division, Office of Science, U.S. Department of En-
ergy under Contract No. DE-AC05-00OR22725 with
UT-Battelle, LLC. Accordingly, the U.S. Govern-
ment retains a non-exclusive, royalty-free license to
publish or reproduce the published form of this con-
tribution, or allow others to do so, for U.S. Govern-
ment purposes.

We thank the ORNL CCS XD1 system adminis-
trators, Nina Hathaway of Oak Ridge National Lab-
oratory and Dave Londo of Cray, Inc., for all the
hard work in setting up, configuring, and upgrading
the machine in support of these tests.

About the Authors

Mark R. Fahey is a senior Scientific Application An-
alyst in the Center for Computational Sciences at
Oak Ridge National Laboratory. He is the current
CUG X1-Users SIG chair. Mark has a PhD in math-
ematics from the University of Kentucky. He can
be reached at Oak Ridge National Laboratory, P.O.
Box 2008 MS6008, Oak Ridge, TN 37831-6008, E-
Mail: faheymr@ornl.gov.

Sadaf Alam is a post-doctoral research asso-
ciate in the Future Technologies group, Computer

Science and Mathematics Division at the Oak
Ridge National Laboratory. She can be reached
at the Oak Ridge National Laboratory, P.O.Box
2008 MS6173, Oak Ridge, TN 37381-6173, Email:
alamsr@ornl.gov.

Tom Dunigan is a Senior Research Scientist in
the Computer Science and Mathematics Division at
Oak Ridge National Laboratory. He has been con-
ducting early evaluations of advanced computer ar-
chitectures since the mid 80’s. When not testing
new computer systems, he is investigating protocols
for high-speed networks. He can be reached at Oak
Ridge National Laboratory, P.O. Box 2008 MS6016,
Oak Ridge, TN 37831-6016, E-Mail: thd@ornl.gov.

Jeffrey S. Vetter is a senior R&D staff member
in the Computer Science and Mathematics Division
of Oak Ridge National Laboratory, where he leads
the Future Technologies Group. His research inter-
ests include experimental software systems and ar-
chitectures for high-end computing. Vetter has a
PhD in computer science from the Georgia Insti-
tute of Technology. He is a member of IEEE and
the Association for Computing Machinery. He can
be reached at the Oak Ridge National Laboratory,
P.O.Box 2008 MS6173, Oak Ridge, TN 37381-6173,
Email: vetterjs@ornl.gov.

Patrick H. Worley is a Senior Research Scientist
in the Computer Science and Mathematics Division
at Oak Ridge National Laboratory. He has been
conducting early evaluations of advanced computer
architectures since the early 90s. He also does re-
search in performance evaluation tools and method-
ologies, and designs and implements parallel algo-
rithms in climate and weather models. Worley has
a Ph.D. in computer science from Stanford Univer-
sity. He is a member of SIAM and the ACM. He can
be reached at Ridge National Laboratory, P.O.Box
2008 MS6016, Oak Ridge, TN 37831-6016, Email:
worleyph@ornl.gov.

References

[1] Cray XD1 overview.
http://www.cray.com/products/xd1/.

[2] Evaluation of early systems.
http://www.csm.ornl.gov/evaluation.

[3] Pallas MPI benchmarks.
http://www.pallas.com/e/products/pmb/.

11

[4] Vienna ab-initio simulation package.
http://cms.mpi.univie.ac.at/vasp/.

[5] M.B. Blackmon, B. Boville, F. Bryan, R. Dick-
inson, P. Gent, J. Kiehl, R. Moritz, D. Randall,
J. Shukla, S. Solomon, G. Bonan, S. Doney,
I. Fung, J. Hack, E. Hunke, , and J. Hurrel.
The community climate system model. BAMS,
82:2357–2376, 2001.

[6] P.N. Brown, R.D. Falgout, and J.E. Jones.
Semicoarsening multigrid on distributed mem-
ory machines. SIAM J. Sci. Comput., 2000.

[7] J. Candy and R.E. Waltz. An Eulerian
gyrokinetic-Maxwell solver. J. Comput. Phys.,
186:545, 2003.

[8] George Carr. Private communication.

[9] W.D. Collins and et. al. P.J. Rasch. De-
scription of the NCAR community atmospheric
model (CAM 3.0). Tech Note NCAR/TN-
464+STR, National Center for Atmospheric
Research, Boulder, CO, 2004.

[10] T.H. Dunigan. XD1 evaluation.
http://www.csm.ornl.gov/∼dunigan/xd1.

[11] P.W. Jones. The Los Alamos Parallel Ocean
Program (POP) and coupled model on MPP
and clustered SMP computers. In G.R. Hoff-
man and N. Kreitz, editors, Making its Mark -

The Use of Parallel Processors in Meteorology:

Proceedings of the Seventh ECMWF Proceed-

ings Workshop on Use of Parallel Processors in

Meteorology, Singapore, 1999. World Scientific
Publishing Co. Pte. Ltd.

[12] John McAlpin. STREAM: sustainable mem-
ory bandwidth in High Performance Comput-
ers. http://www.cs.virginia.edu/stream.

[13] A.A. Mirin, R.H. Cohen, B.C. Curtis, W.P.
Dannevik, A.M. Dimits, M.A. Duchaineau,
D.E. Eliason, D.R. Schikore, S.E. Anderson,
D.H. Porter, P.R. Woodward, L.J. Shieh, and
S.W. White. Very high resolution simulation
of compressible turbulence on the IBM-SP sys-
tem. Proc. SC99: High Performance Network-
ing and Computing Conf. (electronic publica-
tion), 1999.

[14] P.J. Mucci, K. London, and J. Thurman. The
cachebench report. Technical report, University
of Tennessee, Knoxville, TN, 1998.

[15] J.M. Rosinski and D.L. Williamson. The accu-
mulation of rounding errors and port validation
for global atmospheric models. SIAM J. Sci.

Comput., 1997.

[16] P.H. Worley and I.T. Foster. Parallel spec-
tral transform shallow water model: A runtime-
tunable parallel benchmark code. In Proceed-

ings of SHPCC ’94, pages 207–214. IEEE Com-
puter Society, 1994.

12

