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Abstract: As the trend for increased accessibility to data increases, encryption
is necessary to protect the integrity and security of that data.  Due to the highly
parallel nature of the AES encryption algorithm, an FPGA  based approach pro-
vides the potential for up to an order of magnitude increase in performance over
a traditional CPU.  Our effort will showcase the capability of FPGA based en-
cryption on the Cray XD1 as well as other FPGA related efforts at OSC's center
for data intensive computing.
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1. Introduction
 

Encryption in general and  Advanced Encryption
Standard (AES)  in particular[1], is an application that is
very friendly for Field Programmable Gate Array (FPGA)
architecture.  This is mainly due to the fact that all compu-
tations  are  based  on  bit  manipulation.  AES uses  Finite
Field Arithmetic for all of its  computations.  One of the
characteristics of Finite Field Arithmetic is that addition
and subtraction is done by XOR operations on the two in-
puts and consequently does not produce a ripple carry bit.
This speeds up the computations considerably, making the
AES algorithm a good candidate for FPGAs.  Another ad-
vantage  is that the computations can be replicated many
times and could be easily parallelized for the Electronic
Code Book (ECB) [1] mode of the AES algorithm.
 The ECB mode of the AES algorithm is used in
the FPGA based implementation. We also demonstrate a
Resource Manager built on top of the Message Passing In-
terface (MPI) [2], which facilitates using multiple FPGAs
in parallel to accomplish a task.

2. Motivation

Many  researchers  have  studied  the  AES  algo-
rithm for both software and hardware implementations [3].
The AES implementation in the OpenSSL [4] software is
extensively used at present. Most implementations of AES
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encryption  like  OpenSSL  are  software  based,  meaning
they  run on a CPU.  However, CPUs are not efficient in
bit operations like XOR, used extensively in AES.  This is
mainly due to the fact that the CPU cannot replicate pro-
cessing units.  In environments where encryption is used
for  secure  file  systems  and  communication,   the  CPU
would be overloaded easily even at low traffic levels. 

Our motivation for this project is to offload mun-
dane encryption computations entirely to the FPGA, there-
by freeing the host processor to other more useful compu-
tations.  In  addition,  we  want  to  leverage  the  unique
features of FPGAs as well as the Cray XD1 [5] architec-
ture to speed up the AES algorithm.

3. Problem Definition

Performing  AES Encryption  [1] is  a  computa-
tionally expensive operation.   Often times encryption is
not the main focus of an application, rather it is something
that the application provides as part of its service, an ex-
ample of this is OpenSSL  [4].  OpenSSL uses AES en-
cryption to  secure the  integrity of  the data being trans-
ferred.  The process of encrypting and decrypting data can
take up a large percentage of the CPU's time.  We aim to
alleviate the amount of work done by the CPU by offload-
ing AES encryption to FPGA.

This introduces a new problem.  In the Cray XD1
[5], we have a unique system where user applications may
have direct  access to  reconfigurable hardware (FPGAs).
The problem lies in the fact that there are a limited num-
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ber of FPGAs (six). If a user application needs the FPGA,
it is often the case that it will have ownership of the FPGA
for its  entire lifetime.  There is nothing to prevent this,
other than the time limit exceeding on a batch job.  

As with OpenSSL [4] and its use of encryption,
the user application often times only needs to use FPGA
for a small portion of its overall functionality.  The time
that  the  user  application holds  ownership of  the FPGA
and does nothing with it is wasted time.  Other users could
be waiting for access to the FPGA device.

We aim to alleviate this problem by creating a re-
source management infrastructure that will control the FP-
GAs and their associated functionality. This has the added
advantage that the user application does not need to di-
rectly interface with the FPGA device. Through a simple
client-server mechanism the user application can request
services, and exchange the data.  This  also facilitates  par-
allel use of multiple FPGAs. For example, instead of one
FPGA encrypting 12MB of data, we can have 6 FPGAs
encrypt 2MB of data each.  MPI [2] over the high perfor-
mance Rapid Array Interconnect  [5] is used for this pur-
pose.  It is important to note that this FPGA infrastructure
is not limited to AES Encryption, rather any FPGA based
functionality could be made to work with this system, be it
encryption, compression, signal processing, etc.

Another issue is, that a user application may only
access the FPGA that is attached to the host node.  Since
FPGA nodes could be used for  other  jobs,  applications
which do not need the FPGA may prevent those that do
from having access.  The client-server model we have 
chosen allows user applications running anywhere on the
XD1, perhaps even outside of the XD1 to have access to
the FPGA's functionality.

What we have implemented thus far is, a resource
manager which controls the operation of AES encryption
and decryption in the FPGAs.  The client-server interface
between this  resource  manager  and user  applications  is
currently in development.  Fig. 1 shows the overview of
the  proposed  resource  manager.   Further  details  on  the
current implementation follow in section 5.

4. Technical Resources

The Cray XD1 [5] cluster computing system was
used as the host for this research effort. The goal was to
leverage the unique features of   FPGA devices that are
available on the XD1 for  AES encryption. 

The Cray XD1 that is available at the Ohio Su-
percomputer Center (OSC) is a cluster with 36 Opteron
processors running at 2.2 GHz in three chassis. Each chas-
sis  has  six  Symmetric  Multiprocessor  Processor  (SMP)
units, and each SMP has two Opteron processors. One of
the chassis also contains six FPGA accelerator cards. Each

Fig [1]. FPGA Resource Management System.

accelerator  card  hosts  a  Xilinx Virtex II  Pro  50 device
with a -7 speed rating.  All of the SMPs are connected
through a high speed interconnect known as the Rapid Ar-
ray  [5] with an effective bandwidth of nearly 10.5 Gbps
[6].   The  FPGAs are  connected  to  the  SMP through a
Rapid Array Processor (RAP).  Given that the maximum
clock rate for the FPGA is 200MHz and the FPGA is 64
bits  wide,  the  maximum data  transfer  rate  between the
SMP  memory  subsystem and  the  FPGA  is  12.8  Gbps
(200MHz * 64).

4.1 Software Tools

The XD1 at OSC hosts the Riviera SE mixed lan-
guage HDL design and simulation environment  [7]. This
environment  supports  many  hardware  design  languages
also  called  HDLs.  In  particular,  Riviera  enables  mixed
language,  VHDL and Verilog  simulation.  This  environ-
ment was extensively used for design, development and
debugging of circuits.  The Xilinx ISE 6.3i  development
tool set [8] was extensively used to synthesize and map as
well as for the place and route of the circuits developed.

5. Implementation Details

In this section, a high level overview of the re-
source manager is presented. We will also look at one im-
plementation of AES FPGA based encryption as well as
its performance, shortcomings, and our plans for possible
improvement.

5.1 Resource Management 

Currently  we  have  implemented  the  resource
manager and its interactions with the FPGA hosts, as well
as the FPGA hosts interactions with the respective AES
FPGA bin file.  The bin file  describes the logic that is
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loaded into the FPGA and executed.  The resource manag-
er and FPGA hosts are started together as one MPI job.
The maximum number of processes that can run in this job
is the  number_of_FPGAs + 1.   One should ensure
that  the  resource  manager  is  allocated  to  a  non-FPGA
node.  

When the MPI  [2] processes are started, the re-
source manager waits for all the FPGA hosts to check in.
The check in process involves the FPGA host opening the
FPGA device and resetting it.  A message is passed to the
resource manager, to in effect, check in. Once all FPGA
hosts have checked in, the resource manager informs the
FPGA host, which bin file to load, in our case AES en-
cryption or decryption.  

With the bin files loaded, the resource manager
begins exchanging the data to be worked on by the FP-
GAs.   Non-blocking MPI send and receives [2] are used
in order to avoid waiting for a slow FPGA host if such a
situation should arise.  

5.1.2 Resource Manager Performance

The performance of the resource manager is also
presented to give an  idea to the reader about its capabili-
ties.  Note that the following results are valid for both en-
cryption and decryption.  

Encryption has the same latency as does decryp-
tion, the difference between the two especially with files
as large as 500MB is statistically insignificant.  In other
words there may be a 1 or 2 second difference between
encryption and decryption, but decryption itself can vary
by as much as 1 or 2 seconds between each experiment, as
does encryption.

It  seems almost  intuitive  that  utilizing multiple
FPGAs in parallel will increase overall performance, and
for completeness we show this in Figs. 2 and 3.  The fig-
ures show the throughput of encryption for varying num-
bers of FPGAs.  A 500MB file was used  for this experi-
ment.    The  throughput  refers  to  the  rate  at  which the
Resource Manager is able to encrypt the data.  As expect-
ed the throughput is directly proportional to the number of
FPGAs. 

As  we  increase  the  number  of  FPGAs  the
amount,  or  portion of  the 500MB file  that  each  FPGA
needs to handle decreases.  Since the FPGAs are encrypt-
ing less data they complete the task at a lower latency. The
Resource  Manager  has  to  send  and  receive  the  same
amount  of  data,  irrespective of  the number of FPGAs.
This indicates that the  Rapid Array Interconnect [5] is not
the the bottleneck.   

Fig [2]. Encryption rate for multiple FPGAs work-
ing in parallel.

Fig [3]. Time to encrypt 500MB for multiple FP-
GAs working in parallel.

 Fig. 4, shows the latency for software and FPGA
based  implementations of the AES encryption algorithm
[4].   Clearly,  a  single  processor  out  performs a  single
FPGA on large data sets, but we will show in the follow-
ing sections, that the task of encrypting data in multiple
FPGAs is much faster than in a CPU.  Due to current limi-
tations of our implementation there is significant overhead
incurred in getting the data from FPGA host application
into the FPGA itself.
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Fig [4]. Time to encrypt files of varying size for
both software and FPGA based methods.

Our current implementation however  benefits by
encrypting  in  parallel.   As   shown in  Fig.  4,  software
based  encryption of  500MB takes around 115 seconds,
while 1 FPGA takes around 175 seconds.   However,  in
Fig. 3, two FPGAs in parallel only take about 90 seconds
for the same task.  If all six FPGAs are used in parallel it
requires approximately 39 seconds, which is considerably
less than the software based version.

5.2 Register-based FPGA AES implementation

In the XD1 [5], the CPU can communicate with
the FPGA in several ways.  The XD1 reserves 128MB of
system memory for  CPU-FPGA communication[9] [10].
Of the 128MB, currently only 64MB is available for com-
munication, of which 32MB is specifically reserved for in-
teraction with user application registers. The Cray XD1's
FPGA  API   provides  the  function
fpga_wrt_appif_val() as  well  as  the function
fpga_read_appif_val() for  writing  and  reading
user application-specific registers. We used this API for
our register-based FPGA implementation.

5.2.1 Implementation

The register based FPGA AES  implementation is based
on a push model framework. The CPU takes the initiative
and pushes the data actively to the FPGA, which process-
es the data.  Finally the CPU reads back the results. 

Fig. 5 lists the pseudo code of our implementa-
tion. AES encryption [1] is designed to operate on 128-bit
chunks of data at a time. In our implementation each en-
cryption operation of a 128-bit chunk involves 10 itera-
tions. Therefore a direct translation of algorithm to FPGA 

Fig [5]. Register based FPGA algorithm.

Frequency(MHz) Area in slices

Encryption 160MHz 3010 (12%)

Decryption 150MHZ 3508 (14%)

Table  1.  Frequency and resource requirements
of AES modules.

hardware will have a latency of 11 clock cycles, with each
iteration processed in a cycle.  For register based encryp-
tion, we  followed this approach. Our code was based on
an open-source implementation [11].  Table [1] shows  the
core  frequency and FPGA resource requirements of  the
encryption and decryption modules.

 One might argue for a pipeline based approach
instead of the non-pipelined approach that we implement-
ed. However, register-based implementation inherently fa-
vors  the  non-pipelined  version  for  two main reasons.  

First, the delay of the non-pipelined version is not
visible to the CPU, which reads the output immediately af-
ter writing to the registers.  The function call  overhead is
high enough for the FPGA to process 16B of data, which
is the maximum size of a register [10].  In other words the
host application can  immediately read the data back after
it has written the input data.  This is because the FPGA
can process the data faster than the host application can
call the next function to read.  

Secondly,  a  pipeline-based  implementation
makes sense for an asynchronous implementation where
there is enough data to fill the pipeline. With the register-
based implementation only 16 bytes are dealt with at one
time.    Hence  there  is  not  enough  data  to  fill  in  the
pipeline.

5.2.2 Performance of register based AES encryption

We  shall  now  look  at  some  primitive  perfor-
mance metrics of our encryption implementation.  We will
also  show  the  performance  compared  to  the  software
based version.
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foreach 16B of data
    fpga_wrt_appif_val 16B raw-data
    16B enc-data ← fpga_rd_appif_val
end foreach



Time (μ secs)

fpga_wrt_appif_val 0.37

fpga_rd_appif_val 1.49

Table 2.  Timings of communication primitives.

Time (μ secs)

FPGA Encryption time 3.74

FPGA Decryption time 3.79

Table  3.  Timings of encryption and decryption
modules when operated on 16 bytes of data.

Table 2 lists  the timings of the communication
primitives that are used in the FPGA implementation. We
observe that the function fpga_rd_appif_val is ap-
proximately  5  times  slower  than
fpga_wrt_appif_val.    Since  both encryption and
decryption involve two function calls for writing and read-
ing registers,  their timings in Table 3 can be easily ex-
plained in terms of latency of primitive operations.  

5.3 Improving FPGA performance

As the numbers in Table 3 indicate, it would take
around 4 microseconds to process 16 bytes of data. That
translates to a throughput of about 4MB/sec. The commu-
nication overhead  further decreases this to 3MB/sec as
shown previously in Fig 2, we see this by examining the
slope of the graph.  

The drawback of the register based FPGA imple-
mentation is the high overhead of function calls.  This can
be resolved if we tackle the problem by using  a pull mod-
el.  In the pull model, the FPGA takes the initiative to pull
the raw data from the source, process it, and finally store
the results in the destination. 

To  implement this,  we have used the API  call
fpga_set_ftrmem [9]  to allocate shared memory
space for  communication between the FPGA and CPU.
On the FPGA, we need to design an I/O subsystem that is
capable of communicating with the FPGA transfer region
(ftrmem) in the host. The following sections explain the
issues that are involved in the design of the  I/O subsys-
tem. 

5.3.1 Motivation for I/O subsystem

The I/O subsystem is motivated by I/O bound ap-
plications where data needs to be streamed continuously,
for example, encryption and compression.  These types of
applications are also compute intensive.  The reconfigura-

bility of FPGAs facilitates pipe-lining, which enables the
compute engine to consume data as fast as the I/O sub-
system can supply. As a result the bottleneck lies with I/O.

Any custom core needs to interface with the out-
side world through the RTClient on the XD1. Currently,
the Cray XD1 is supplied with a interface for communicat-
ing with the Rapid Array Processor (RAP). The I/O sub-
system of the XD1 relies on hyper transport [11] technolo-
gy. One important advantage of hyper transport is "burst
communication"  mode  where  a   maximum of  8  quad-
words (eight 64-bit words)  can be transferred in a single
request.  Any I/O subsystem design should leverage this
feature.  To our knowledge, currently there is no Intellec-
tual  Property (IP)  core that  can be used freely by XD1
users.  Our goal is to design an efficient general purpose
I/O interface to the RTCore.  

5.3.2 I/O subsystem design issues

Some of the issues that influenced the design of the I/O
sub system are discussed next.

• Hyper transport packets have 8 quad-words in a Burst
Communication (BC).  BC is further augmented by the
RTCore,  by  allowing  up  to  32  outstanding  BC  re-
quests.  Therefore, the user logic can issue 32 BC re-
quests in consecutive clock cycles and get 256 (32 x 8)
quad-words in subsequent clock cycles.   Any design
should make an efficient use of this facility. 

• The RTCore is designed such that user logic address
requests and written data, share the  same pins. In the
XD1 these are the ureq  lines [10].  This constrains the
design to schedule read address requests, write address
requests and written data on the same lines.

• Though one can theoretically issue 32 read requests,
the 32 read responses need not be in the same order as
the requests were issued.  The HT guarantees that data
within a burst packet, that is 8 quad-words, will be in-
order.  The RTCore does not guarantee order between
the 32 packets. The user logic is responsible for order-
ing the responses.

• The Opteron is based on little-endian architecture. As
a  result  communication  of  data  from a  byte-aligned
buffer  will be interpreted in different manner by the
FPGA since the communication  order  is  big-endian.
The API provided by Cray constrains us to take into
consideration this issue while designing our cores. As
an example take the function call  fpga_wrt_ap-
pif_val [9], which takes an unsigned long as the
argument for the data to be written.  If  one needs to
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pass a character buffer as an argument, a simple cast to
unsigned long is not sufficient. The bytes within the
buffer need to be also reordered.

• When data is read from the RAM of  the CPU, the data
that arrives is not necessarily in order.  To get the data
back in the correct order we need to buffer the data
within the FPGA.  Currently the XD1 uses the    Xilinx
Virtex  II  Pro  FPGA  [10] as  accelerator  modules,
which have hardcore on-chip RAM modules that can
be configured as RAM for scratch-pad purposes. Typi-
cally, writes to RAM are registered, meaning the RAM
controller needs to lock the memory region as the state
of the bits is changed. This means  that data is written
one  clock  cycle  after  registering  the   address,   but
reads from RAM are usually unregistered, and data is
available in the same cycle that the address is request-
ed.  However,  on  the  BRAM modules  of  the  Xilinx
Vertex, the reads are also registered.  This means that
the data is available only after one clock cycle and has
to be factored into the I/O subsystem design.  

• The Cray XD1 Programming Guide [9] mentions that
one cannot allocate more than 2MB in each call to the
function  fpga_set_ftrmem.   This call is used to
allocate space in an application buffer that the FPGA
can then access.  During our development we found
that  a  single  process  cannot  call  that  function more
than twice. The reason is the XD1 is still considered a
beta  level  system,  and  the  system  software  and
firmware are not throughly tested. As a result, for the
time being, we are  constrained to 2MB of memory
space for our applications.

5.3.3 Overview I/O subsystem Design

In this section we  give an overview of the I/O
subsystem design. The main modules of the design and
their interactions with each other are described.

• Ftrmem: Due to the constrains of the current API im-
plementation, one cannot allocate more than 2MB of
an FPGA transfer region (ftrmem). This 2MB is parti-
tioned into 1MB each for loading the raw data by CPU
and storing processed data by FPGA.

• Control Registers: On FPGA fabric we have  five 64-
bit registers configured for control and status reporting
purposes. These registers are used for communicating
with  the  FPGA.   The  virtual  addresses  of  the  data
source and destination for the processed data needs to
be communicated to the FPGA.  These registers are
used to trigger the FPGA logic.

• BRAM:  As mentioned  in  the  previous  section,  the
user logic can issue up to 32 outstanding requests, but
the packets corresponding to the requests do not neces-
sarily arrive in order. Therefore, we need a scratch-pad
to store the packets in order.  The BRAM is made up
of 32 x 64-byte entries. The BRAM is dual-ported for
concurrent  reading and writing.   Previously,  we de-
scribed some issues with registered reads and our ap-
proach,  another  feature  of  BRAM  is  that  the  data
widths of read port and write port are independent of
each other. Therefore, it is possible to configure one
BRAM with a  64-bit  write  port  and  a  128-bit  read
port. This fact can be exploited in  the case of AES en-
cryption [1] where 128-bits are processed at a time.

• Semaphore:  The BRAM acts  as  a  store  where data
from the CPU's RAM, is written and is read by user-
logic on the FPGA fabric. Therefore, we have a pro-
ducer-consumer  synchronization  problem  which  we
solve  using  a  32-bit  binary  semaphore.  Each  bit  of
semaphore acts as a  guard for each entry within the
BRAM.  This BRAM with 32 entries,  is analogous to
a 2KB cache with 32 cache-lines of 64 bytes each. The
semaphore bits are analogous to valid bits for a cache
line.

• Source-tag to Address mapping:   When the FPGA
fabric issues a read request, it gets a 5-bit source tag.
Finally, when the response arrives, it has a source tag
associated  with  it,  but  the  I/O  subsystem needs  to
know the  BRAM address  where  the  data  has  to  be
stored.  Source-tag  to  address  mapping  provides  this
service.

• Read  module: This  module,  as  its  name  signifies,
reads the raw data from the RAM into the BRAM.  It
synchronizes with the write module using semaphores.
When  the read module issues a read request for an ad-
dress,  it gets a source tag. This source tag is matched
with the 8 least  significant  bits  of  the  read  address,
then the source-tag and address map is updated. When
the response arrives with the source tag, it is used to
lookup the  destination address in the BRAM.

• Write module: This module is responsible for reading
data from BRAM and passing it to user logic. It is also
responsible for writing the final processed data back to
destination buffer in CPU's RAM. 

Next we describe how these modules are used in
I/O subsystem using pseudo code of the  CPU and FPGA
actions  Figs  6  and  7  respectively.    The  CPU  simply
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copies  the  raw-data  into  one  half  of  ftrmem,  updates
FPGA registers  and  finally  triggers  FPGA.  The  FPGA
meanwhile is waiting for the signal from CPU. As soon as
the FPGA gets the trigger, the read module starts reading
from RAM.  When 8 quad-words are read, the write mod-
ule is activated, which reads data from BRAM and passes
it to user logic for processing. When the processed data is
ready, the RAM write module issues write requests to the
RTCore.  During the operation the read and write modules
always  synchronize  among  themselves  using  the
semaphore bits. 

Fig 6. Pseudo code for CPU operation.

Fig 7. Pseudo code for FPGA operation.

5.3.4 Preliminary results

We  have  implemented a  simple  user  logic  on
FPGA that uses the I/O subsystem.  The essential opera-
tion of user logic involves reading raw data from a source
buffer and copying it back to a destination buffer. It essen-
tially simulates what an ftrmem based AES implementa-
tion would do. 
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Wait until trigger
READ MODULE:
while (read_cntr < src_len)
  if (semaphore (i) == 0)
     issue read request to RTCore
     update src_tag to addr map
     write 8 quad-words to BRAM
     read_cntr += 8
     semaphore(i) = 1
     i++;
   end if
end while

WRITE MODULE:
while (wrt_len < src_len)
  if (semaphore(i) == 1)
     read 8 quad-words from BRAM
     pass data to user logic
     wrt_len += 8
     semaphore(i) = 0
     i++;
  end if
end while

RAM WRITE MODULE:
when user logic is ready to write
issue write requests to RTCore

copy raw data into src_addr
fpga_wrt_appif_val src_addr
fpga_wrt_appif_val src_len

/*writing dest_addr triggers fpga */
fpga_wrt_appif_val dest_addr

done = 0
while (done = 0)
  done ← fpga_rd_appif_val
end while

copy data from dest_addr



Fig 8. Time to write and read data.

Fig. 8 plots the copy time (logarithmic scale) ver-
sus size of data.  The two curves shown are  register based
and ftrmem based  implementations.  The latency for the
ftrmem based implementation are two orders of magnitude
smaller than the register based ones. Since register based
is  comparable to  the  software-based  implementation,  as
shown in  Fig  4,  we can  safely project  that  an  ftrmem
based AES implementation would be approximately about
two orders of magnitude lower latency than the software
approach. This work is still in progress, but the prelimi-
nary results are encouraging. 

Frequency 199 MHz

Bandwidth 796 MB

Table 4. Performance readings of ftrmem

We have also conducted another  experiment to
find the native throughput of ftrmem, without any over-
head.  We were able to get sustained bandwidth of around
800MB/sec. This result was obtained by timing the copy
operation of 1MB, which is size of the source ftrmem, as
described  in  Section  5.3.3.  The  theoretical  maximum
bandwidth is 1.6 GB/sec.  We are able to achieve 50%
one-way of the rated bandwidth. There are three main rea-
sons for this. One, as discussed in Section 5.3.2, there is
only one bus that has to be shared for read requests and
writes. Secondly, we have a pace counter that adds 3 cy-
cles of  overhead for every switch between read and write
states. The other main  reason is that every time the FPGA
requests  a  memory operation, the DMA controller  must
arbitrate whether to grant the request or not. Despite the
overheads we are able to  achieve 50% of  the one-way
maximum bandwidth.

From Fig  8,  it  is  clear  that  the  throughput  of
ftrmem based method is 500 MB/sec. This value was be-

low  the  sustainable  native  bandwidth  of  about  800
MB/sec.  When data  is  larger  than  1MB,  there  are  two
copy operations involved.  One copy from raw data source
to  ftrmem,  and  another  copy  of  processed  data  from
ftrmem to final destination. These copy operations are in
the critical path of execution, therefore utilization further
drops.   There are two ways to overcome this limitation.
One is to remove the bug that prevents the programmer
from  making   multiple  calls  to  fpga_set_ftrmem.
The other is to increase the size of allocated ftrmem.

6. Future Work

Future  work  includes  extending  the  resource
management system to the proposed client server model.
We also plan to implement more FPGA services that user
programs may take advantage of, such as compression.  

Specific to encryption we plan to increase the ef-
ficiency of our encryption algorithm by preprocessing and
saving some key independent computations.  This is com-
monly referred to as the "ram based" approach.  Currently,
all computations are computed on the fly on the FPGA.  

In  order  to more efficiently encrypt larger  data
sets,  greater  than 16B,  we are planning to implement a
version which takes advantage of the FPGA Transfer Re-
gion  of  memory which  was discussed  in  section  5.3.3.
The rate at which we can encrypt data on the whole, from
the resource managers point of view will greatly benefit
from this enhancement as well.  Another way to benefit
the  performance  of  an  ftrmem  based  implementation
would  be  to  remove  the  overhead  of  the  pace  counter
mentioned in 5.3.4.

7. Conclusion

We have shown in this paper the performance,
drawbacks, and possible improvements we can make con-
cerning  FPGA based  encryption.   We  have  also  intro-
duced the preliminary version of an FPGA resource man-
agement system which will aid in making FPGA resources
easily accessible to user applications with no knowledge
of the actual FPGA itself.  
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