
Accelerated FPGA Based Encryption*

Joseph Fernando, Dennis Dalessandro, Ananth Devulapalli, Kevin Wohlever
Ohio Supercomputer Center - Springfield

{fernando, dennis, ananth, kevin}@osc.edu

Abstract: As the trend for increased accessibility to data increases, encryption
is necessary to protect the integrity and security of that data. Due to the highly
parallel nature of the AES encryption algorithm, an FPGA based approach pro-
vides the potential for up to an order of magnitude increase in performance over
a traditional CPU. Our effort will showcase the capability of FPGA based en-
cryption on the Cray XD1 as well as other FPGA related efforts at OSC's center
for data intensive computing.

Keywords: FPGA, Encryption, MPI, Resource Manager

1. Introduction

Encryption in general and Advanced Encryption
Standard (AES) in particular[1], is an application that is
very friendly for Field Programmable Gate Array (FPGA)
architecture. This is mainly due to the fact that all compu-
tations are based on bit manipulation. AES uses Finite
Field Arithmetic for all of its computations. One of the
characteristics of Finite Field Arithmetic is that addition
and subtraction is done by XOR operations on the two in-
puts and consequently does not produce a ripple carry bit.
This speeds up the computations considerably, making the
AES algorithm a good candidate for FPGAs. Another ad-
vantage is that the computations can be replicated many
times and could be easily parallelized for the Electronic
Code Book (ECB) [1] mode of the AES algorithm.
 The ECB mode of the AES algorithm is used in
the FPGA based implementation. We also demonstrate a
Resource Manager built on top of the Message Passing In-
terface (MPI) [2], which facilitates using multiple FPGAs
in parallel to accomplish a task.

2. Motivation

Many researchers have studied the AES algo-
rithm for both software and hardware implementations [3].
The AES implementation in the OpenSSL [4] software is
extensively used at present. Most implementations of AES

 *Support for this project was provided to the Ohio Supercomputer
Center through the Department of Energy ASC Program.

encryption like OpenSSL are software based, meaning
they run on a CPU. However, CPUs are not efficient in
bit operations like XOR, used extensively in AES. This is
mainly due to the fact that the CPU cannot replicate pro-
cessing units. In environments where encryption is used
for secure file systems and communication, the CPU
would be overloaded easily even at low traffic levels.

Our motivation for this project is to offload mun-
dane encryption computations entirely to the FPGA, there-
by freeing the host processor to other more useful compu-
tations. In addition, we want to leverage the unique
features of FPGAs as well as the Cray XD1 [5] architec-
ture to speed up the AES algorithm.

3. Problem Definition

Performing AES Encryption [1] is a computa-
tionally expensive operation. Often times encryption is
not the main focus of an application, rather it is something
that the application provides as part of its service, an ex-
ample of this is OpenSSL [4]. OpenSSL uses AES en-
cryption to secure the integrity of the data being trans-
ferred. The process of encrypting and decrypting data can
take up a large percentage of the CPU's time. We aim to
alleviate the amount of work done by the CPU by offload-
ing AES encryption to FPGA.

This introduces a new problem. In the Cray XD1
[5], we have a unique system where user applications may
have direct access to reconfigurable hardware (FPGAs).
The problem lies in the fact that there are a limited num-

CUG 2005 Proceedings 1 of 9

ber of FPGAs (six). If a user application needs the FPGA,
it is often the case that it will have ownership of the FPGA
for its entire lifetime. There is nothing to prevent this,
other than the time limit exceeding on a batch job.

As with OpenSSL [4] and its use of encryption,
the user application often times only needs to use FPGA
for a small portion of its overall functionality. The time
that the user application holds ownership of the FPGA
and does nothing with it is wasted time. Other users could
be waiting for access to the FPGA device.

We aim to alleviate this problem by creating a re-
source management infrastructure that will control the FP-
GAs and their associated functionality. This has the added
advantage that the user application does not need to di-
rectly interface with the FPGA device. Through a simple
client-server mechanism the user application can request
services, and exchange the data. This also facilitates par-
allel use of multiple FPGAs. For example, instead of one
FPGA encrypting 12MB of data, we can have 6 FPGAs
encrypt 2MB of data each. MPI [2] over the high perfor-
mance Rapid Array Interconnect [5] is used for this pur-
pose. It is important to note that this FPGA infrastructure
is not limited to AES Encryption, rather any FPGA based
functionality could be made to work with this system, be it
encryption, compression, signal processing, etc.

Another issue is, that a user application may only
access the FPGA that is attached to the host node. Since
FPGA nodes could be used for other jobs, applications
which do not need the FPGA may prevent those that do
from having access. The client-server model we have
chosen allows user applications running anywhere on the
XD1, perhaps even outside of the XD1 to have access to
the FPGA's functionality.

What we have implemented thus far is, a resource
manager which controls the operation of AES encryption
and decryption in the FPGAs. The client-server interface
between this resource manager and user applications is
currently in development. Fig. 1 shows the overview of
the proposed resource manager. Further details on the
current implementation follow in section 5.

4. Technical Resources

The Cray XD1 [5] cluster computing system was
used as the host for this research effort. The goal was to
leverage the unique features of FPGA devices that are
available on the XD1 for AES encryption.

The Cray XD1 that is available at the Ohio Su-
percomputer Center (OSC) is a cluster with 36 Opteron
processors running at 2.2 GHz in three chassis. Each chas-
sis has six Symmetric Multiprocessor Processor (SMP)
units, and each SMP has two Opteron processors. One of
the chassis also contains six FPGA accelerator cards. Each

Fig [1]. FPGA Resource Management System.

accelerator card hosts a Xilinx Virtex II Pro 50 device
with a -7 speed rating. All of the SMPs are connected
through a high speed interconnect known as the Rapid Ar-
ray [5] with an effective bandwidth of nearly 10.5 Gbps
[6]. The FPGAs are connected to the SMP through a
Rapid Array Processor (RAP). Given that the maximum
clock rate for the FPGA is 200MHz and the FPGA is 64
bits wide, the maximum data transfer rate between the
SMP memory subsystem and the FPGA is 12.8 Gbps
(200MHz * 64).

4.1 Software Tools

The XD1 at OSC hosts the Riviera SE mixed lan-
guage HDL design and simulation environment [7]. This
environment supports many hardware design languages
also called HDLs. In particular, Riviera enables mixed
language, VHDL and Verilog simulation. This environ-
ment was extensively used for design, development and
debugging of circuits. The Xilinx ISE 6.3i development
tool set [8] was extensively used to synthesize and map as
well as for the place and route of the circuits developed.

5. Implementation Details

In this section, a high level overview of the re-
source manager is presented. We will also look at one im-
plementation of AES FPGA based encryption as well as
its performance, shortcomings, and our plans for possible
improvement.

5.1 Resource Management

Currently we have implemented the resource
manager and its interactions with the FPGA hosts, as well
as the FPGA hosts interactions with the respective AES
FPGA bin file. The bin file describes the logic that is

CUG 2005 Proceedings 2 of 9

Resource Manager

Clients

FPGA Host FPGA Host

FPGA FPGA

loaded into the FPGA and executed. The resource manag-
er and FPGA hosts are started together as one MPI job.
The maximum number of processes that can run in this job
is the number_of_FPGAs + 1. One should ensure
that the resource manager is allocated to a non-FPGA
node.

When the MPI [2] processes are started, the re-
source manager waits for all the FPGA hosts to check in.
The check in process involves the FPGA host opening the
FPGA device and resetting it. A message is passed to the
resource manager, to in effect, check in. Once all FPGA
hosts have checked in, the resource manager informs the
FPGA host, which bin file to load, in our case AES en-
cryption or decryption.

With the bin files loaded, the resource manager
begins exchanging the data to be worked on by the FP-
GAs. Non-blocking MPI send and receives [2] are used
in order to avoid waiting for a slow FPGA host if such a
situation should arise.

5.1.2 Resource Manager Performance

The performance of the resource manager is also
presented to give an idea to the reader about its capabili-
ties. Note that the following results are valid for both en-
cryption and decryption.

Encryption has the same latency as does decryp-
tion, the difference between the two especially with files
as large as 500MB is statistically insignificant. In other
words there may be a 1 or 2 second difference between
encryption and decryption, but decryption itself can vary
by as much as 1 or 2 seconds between each experiment, as
does encryption.

It seems almost intuitive that utilizing multiple
FPGAs in parallel will increase overall performance, and
for completeness we show this in Figs. 2 and 3. The fig-
ures show the throughput of encryption for varying num-
bers of FPGAs. A 500MB file was used for this experi-
ment. The throughput refers to the rate at which the
Resource Manager is able to encrypt the data. As expect-
ed the throughput is directly proportional to the number of
FPGAs.

As we increase the number of FPGAs the
amount, or portion of the 500MB file that each FPGA
needs to handle decreases. Since the FPGAs are encrypt-
ing less data they complete the task at a lower latency. The
Resource Manager has to send and receive the same
amount of data, irrespective of the number of FPGAs.
This indicates that the Rapid Array Interconnect [5] is not
the the bottleneck.

Fig [2]. Encryption rate for multiple FPGAs work-
ing in parallel.

Fig [3]. Time to encrypt 500MB for multiple FP-
GAs working in parallel.

 Fig. 4, shows the latency for software and FPGA
based implementations of the AES encryption algorithm
[4]. Clearly, a single processor out performs a single
FPGA on large data sets, but we will show in the follow-
ing sections, that the task of encrypting data in multiple
FPGAs is much faster than in a CPU. Due to current limi-
tations of our implementation there is significant overhead
incurred in getting the data from FPGA host application
into the FPGA itself.

CUG 2005 Proceedings 3 of 9

1 2 3 4 5 6

0

2

4

6

8

10

12

14

16

Encryption
Rate

Number of FPGAs

E
n
cr

y
p

ti
o
n
 R

a
te

 (
M

B
/s

)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0

20

40

60

80

100

120

140

160

180

Time to
Encrypt

Number of FPGAs

T
im

e
 (

S
)

Fig [4]. Time to encrypt files of varying size for
both software and FPGA based methods.

Our current implementation however benefits by
encrypting in parallel. As shown in Fig. 4, software
based encryption of 500MB takes around 115 seconds,
while 1 FPGA takes around 175 seconds. However, in
Fig. 3, two FPGAs in parallel only take about 90 seconds
for the same task. If all six FPGAs are used in parallel it
requires approximately 39 seconds, which is considerably
less than the software based version.

5.2 Register-based FPGA AES implementation

In the XD1 [5], the CPU can communicate with
the FPGA in several ways. The XD1 reserves 128MB of
system memory for CPU-FPGA communication[9] [10].
Of the 128MB, currently only 64MB is available for com-
munication, of which 32MB is specifically reserved for in-
teraction with user application registers. The Cray XD1's
FPGA API provides the function
fpga_wrt_appif_val() as well as the function
fpga_read_appif_val() for writing and reading
user application-specific registers. We used this API for
our register-based FPGA implementation.

5.2.1 Implementation

The register based FPGA AES implementation is based
on a push model framework. The CPU takes the initiative
and pushes the data actively to the FPGA, which process-
es the data. Finally the CPU reads back the results.

Fig. 5 lists the pseudo code of our implementa-
tion. AES encryption [1] is designed to operate on 128-bit
chunks of data at a time. In our implementation each en-
cryption operation of a 128-bit chunk involves 10 itera-
tions. Therefore a direct translation of algorithm to FPGA

Fig [5]. Register based FPGA algorithm.

Frequency(MHz) Area in slices

Encryption 160MHz 3010 (12%)

Decryption 150MHZ 3508 (14%)

Table 1. Frequency and resource requirements
of AES modules.

hardware will have a latency of 11 clock cycles, with each
iteration processed in a cycle. For register based encryp-
tion, we followed this approach. Our code was based on
an open-source implementation [11]. Table [1] shows the
core frequency and FPGA resource requirements of the
encryption and decryption modules.

 One might argue for a pipeline based approach
instead of the non-pipelined approach that we implement-
ed. However, register-based implementation inherently fa-
vors the non-pipelined version for two main reasons.

First, the delay of the non-pipelined version is not
visible to the CPU, which reads the output immediately af-
ter writing to the registers. The function call overhead is
high enough for the FPGA to process 16B of data, which
is the maximum size of a register [10]. In other words the
host application can immediately read the data back after
it has written the input data. This is because the FPGA
can process the data faster than the host application can
call the next function to read.

Secondly, a pipeline-based implementation
makes sense for an asynchronous implementation where
there is enough data to fill the pipeline. With the register-
based implementation only 16 bytes are dealt with at one
time. Hence there is not enough data to fill in the
pipeline.

5.2.2 Performance of register based AES encryption

We shall now look at some primitive perfor-
mance metrics of our encryption implementation. We will
also show the performance compared to the software
based version.

CUG 2005 Proceedings 4 of 9

0 100 200 300 400 500

0

20

40

60

80

100

120

140

160

180

FPGA

Software

Size (MB)

T
im

e
 (

S
)

foreach 16B of data
 fpga_wrt_appif_val 16B raw-data
 16B enc-data ← fpga_rd_appif_val
end foreach

Time (μ secs)

fpga_wrt_appif_val 0.37

fpga_rd_appif_val 1.49

Table 2. Timings of communication primitives.

Time (μ secs)

FPGA Encryption time 3.74

FPGA Decryption time 3.79

Table 3. Timings of encryption and decryption
modules when operated on 16 bytes of data.

Table 2 lists the timings of the communication
primitives that are used in the FPGA implementation. We
observe that the function fpga_rd_appif_val is ap-
proximately 5 times slower than
fpga_wrt_appif_val. Since both encryption and
decryption involve two function calls for writing and read-
ing registers, their timings in Table 3 can be easily ex-
plained in terms of latency of primitive operations.

5.3 Improving FPGA performance

As the numbers in Table 3 indicate, it would take
around 4 microseconds to process 16 bytes of data. That
translates to a throughput of about 4MB/sec. The commu-
nication overhead further decreases this to 3MB/sec as
shown previously in Fig 2, we see this by examining the
slope of the graph.

The drawback of the register based FPGA imple-
mentation is the high overhead of function calls. This can
be resolved if we tackle the problem by using a pull mod-
el. In the pull model, the FPGA takes the initiative to pull
the raw data from the source, process it, and finally store
the results in the destination.

To implement this, we have used the API call
fpga_set_ftrmem [9] to allocate shared memory
space for communication between the FPGA and CPU.
On the FPGA, we need to design an I/O subsystem that is
capable of communicating with the FPGA transfer region
(ftrmem) in the host. The following sections explain the
issues that are involved in the design of the I/O subsys-
tem.

5.3.1 Motivation for I/O subsystem

The I/O subsystem is motivated by I/O bound ap-
plications where data needs to be streamed continuously,
for example, encryption and compression. These types of
applications are also compute intensive. The reconfigura-

bility of FPGAs facilitates pipe-lining, which enables the
compute engine to consume data as fast as the I/O sub-
system can supply. As a result the bottleneck lies with I/O.

Any custom core needs to interface with the out-
side world through the RTClient on the XD1. Currently,
the Cray XD1 is supplied with a interface for communicat-
ing with the Rapid Array Processor (RAP). The I/O sub-
system of the XD1 relies on hyper transport [11] technolo-
gy. One important advantage of hyper transport is "burst
communication" mode where a maximum of 8 quad-
words (eight 64-bit words) can be transferred in a single
request. Any I/O subsystem design should leverage this
feature. To our knowledge, currently there is no Intellec-
tual Property (IP) core that can be used freely by XD1
users. Our goal is to design an efficient general purpose
I/O interface to the RTCore.

5.3.2 I/O subsystem design issues

Some of the issues that influenced the design of the I/O
sub system are discussed next.

• Hyper transport packets have 8 quad-words in a Burst
Communication (BC). BC is further augmented by the
RTCore, by allowing up to 32 outstanding BC re-
quests. Therefore, the user logic can issue 32 BC re-
quests in consecutive clock cycles and get 256 (32 x 8)
quad-words in subsequent clock cycles. Any design
should make an efficient use of this facility.

• The RTCore is designed such that user logic address
requests and written data, share the same pins. In the
XD1 these are the ureq lines [10]. This constrains the
design to schedule read address requests, write address
requests and written data on the same lines.

• Though one can theoretically issue 32 read requests,
the 32 read responses need not be in the same order as
the requests were issued. The HT guarantees that data
within a burst packet, that is 8 quad-words, will be in-
order. The RTCore does not guarantee order between
the 32 packets. The user logic is responsible for order-
ing the responses.

• The Opteron is based on little-endian architecture. As
a result communication of data from a byte-aligned
buffer will be interpreted in different manner by the
FPGA since the communication order is big-endian.
The API provided by Cray constrains us to take into
consideration this issue while designing our cores. As
an example take the function call fpga_wrt_ap-
pif_val [9], which takes an unsigned long as the
argument for the data to be written. If one needs to

CUG 2005 Proceedings 5 of 9

pass a character buffer as an argument, a simple cast to
unsigned long is not sufficient. The bytes within the
buffer need to be also reordered.

• When data is read from the RAM of the CPU, the data
that arrives is not necessarily in order. To get the data
back in the correct order we need to buffer the data
within the FPGA. Currently the XD1 uses the Xilinx
Virtex II Pro FPGA [10] as accelerator modules,
which have hardcore on-chip RAM modules that can
be configured as RAM for scratch-pad purposes. Typi-
cally, writes to RAM are registered, meaning the RAM
controller needs to lock the memory region as the state
of the bits is changed. This means that data is written
one clock cycle after registering the address, but
reads from RAM are usually unregistered, and data is
available in the same cycle that the address is request-
ed. However, on the BRAM modules of the Xilinx
Vertex, the reads are also registered. This means that
the data is available only after one clock cycle and has
to be factored into the I/O subsystem design.

• The Cray XD1 Programming Guide [9] mentions that
one cannot allocate more than 2MB in each call to the
function fpga_set_ftrmem. This call is used to
allocate space in an application buffer that the FPGA
can then access. During our development we found
that a single process cannot call that function more
than twice. The reason is the XD1 is still considered a
beta level system, and the system software and
firmware are not throughly tested. As a result, for the
time being, we are constrained to 2MB of memory
space for our applications.

5.3.3 Overview I/O subsystem Design

In this section we give an overview of the I/O
subsystem design. The main modules of the design and
their interactions with each other are described.

• Ftrmem: Due to the constrains of the current API im-
plementation, one cannot allocate more than 2MB of
an FPGA transfer region (ftrmem). This 2MB is parti-
tioned into 1MB each for loading the raw data by CPU
and storing processed data by FPGA.

• Control Registers: On FPGA fabric we have five 64-
bit registers configured for control and status reporting
purposes. These registers are used for communicating
with the FPGA. The virtual addresses of the data
source and destination for the processed data needs to
be communicated to the FPGA. These registers are
used to trigger the FPGA logic.

• BRAM: As mentioned in the previous section, the
user logic can issue up to 32 outstanding requests, but
the packets corresponding to the requests do not neces-
sarily arrive in order. Therefore, we need a scratch-pad
to store the packets in order. The BRAM is made up
of 32 x 64-byte entries. The BRAM is dual-ported for
concurrent reading and writing. Previously, we de-
scribed some issues with registered reads and our ap-
proach, another feature of BRAM is that the data
widths of read port and write port are independent of
each other. Therefore, it is possible to configure one
BRAM with a 64-bit write port and a 128-bit read
port. This fact can be exploited in the case of AES en-
cryption [1] where 128-bits are processed at a time.

• Semaphore: The BRAM acts as a store where data
from the CPU's RAM, is written and is read by user-
logic on the FPGA fabric. Therefore, we have a pro-
ducer-consumer synchronization problem which we
solve using a 32-bit binary semaphore. Each bit of
semaphore acts as a guard for each entry within the
BRAM. This BRAM with 32 entries, is analogous to
a 2KB cache with 32 cache-lines of 64 bytes each. The
semaphore bits are analogous to valid bits for a cache
line.

• Source-tag to Address mapping: When the FPGA
fabric issues a read request, it gets a 5-bit source tag.
Finally, when the response arrives, it has a source tag
associated with it, but the I/O subsystem needs to
know the BRAM address where the data has to be
stored. Source-tag to address mapping provides this
service.

• Read module: This module, as its name signifies,
reads the raw data from the RAM into the BRAM. It
synchronizes with the write module using semaphores.
When the read module issues a read request for an ad-
dress, it gets a source tag. This source tag is matched
with the 8 least significant bits of the read address,
then the source-tag and address map is updated. When
the response arrives with the source tag, it is used to
lookup the destination address in the BRAM.

• Write module: This module is responsible for reading
data from BRAM and passing it to user logic. It is also
responsible for writing the final processed data back to
destination buffer in CPU's RAM.

Next we describe how these modules are used in
I/O subsystem using pseudo code of the CPU and FPGA
actions Figs 6 and 7 respectively. The CPU simply

CUG 2005 Proceedings 6 of 9

copies the raw-data into one half of ftrmem, updates
FPGA registers and finally triggers FPGA. The FPGA
meanwhile is waiting for the signal from CPU. As soon as
the FPGA gets the trigger, the read module starts reading
from RAM. When 8 quad-words are read, the write mod-
ule is activated, which reads data from BRAM and passes
it to user logic for processing. When the processed data is
ready, the RAM write module issues write requests to the
RTCore. During the operation the read and write modules
always synchronize among themselves using the
semaphore bits.

Fig 6. Pseudo code for CPU operation.

Fig 7. Pseudo code for FPGA operation.

5.3.4 Preliminary results

We have implemented a simple user logic on
FPGA that uses the I/O subsystem. The essential opera-
tion of user logic involves reading raw data from a source
buffer and copying it back to a destination buffer. It essen-
tially simulates what an ftrmem based AES implementa-
tion would do.

CUG 2005 Proceedings 7 of 9

Wait until trigger
READ MODULE:
while (read_cntr < src_len)
 if (semaphore (i) == 0)
 issue read request to RTCore
 update src_tag to addr map
 write 8 quad-words to BRAM
 read_cntr += 8
 semaphore(i) = 1
 i++;
 end if
end while

WRITE MODULE:
while (wrt_len < src_len)
 if (semaphore(i) == 1)
 read 8 quad-words from BRAM
 pass data to user logic
 wrt_len += 8
 semaphore(i) = 0
 i++;
 end if
end while

RAM WRITE MODULE:
when user logic is ready to write
issue write requests to RTCore

copy raw data into src_addr
fpga_wrt_appif_val src_addr
fpga_wrt_appif_val src_len

/*writing dest_addr triggers fpga */
fpga_wrt_appif_val dest_addr

done = 0
while (done = 0)
 done ← fpga_rd_appif_val
end while

copy data from dest_addr

Fig 8. Time to write and read data.

Fig. 8 plots the copy time (logarithmic scale) ver-
sus size of data. The two curves shown are register based
and ftrmem based implementations. The latency for the
ftrmem based implementation are two orders of magnitude
smaller than the register based ones. Since register based
is comparable to the software-based implementation, as
shown in Fig 4, we can safely project that an ftrmem
based AES implementation would be approximately about
two orders of magnitude lower latency than the software
approach. This work is still in progress, but the prelimi-
nary results are encouraging.

Frequency 199 MHz

Bandwidth 796 MB

Table 4. Performance readings of ftrmem

We have also conducted another experiment to
find the native throughput of ftrmem, without any over-
head. We were able to get sustained bandwidth of around
800MB/sec. This result was obtained by timing the copy
operation of 1MB, which is size of the source ftrmem, as
described in Section 5.3.3. The theoretical maximum
bandwidth is 1.6 GB/sec. We are able to achieve 50%
one-way of the rated bandwidth. There are three main rea-
sons for this. One, as discussed in Section 5.3.2, there is
only one bus that has to be shared for read requests and
writes. Secondly, we have a pace counter that adds 3 cy-
cles of overhead for every switch between read and write
states. The other main reason is that every time the FPGA
requests a memory operation, the DMA controller must
arbitrate whether to grant the request or not. Despite the
overheads we are able to achieve 50% of the one-way
maximum bandwidth.

From Fig 8, it is clear that the throughput of
ftrmem based method is 500 MB/sec. This value was be-

low the sustainable native bandwidth of about 800
MB/sec. When data is larger than 1MB, there are two
copy operations involved. One copy from raw data source
to ftrmem, and another copy of processed data from
ftrmem to final destination. These copy operations are in
the critical path of execution, therefore utilization further
drops. There are two ways to overcome this limitation.
One is to remove the bug that prevents the programmer
from making multiple calls to fpga_set_ftrmem.
The other is to increase the size of allocated ftrmem.

6. Future Work

Future work includes extending the resource
management system to the proposed client server model.
We also plan to implement more FPGA services that user
programs may take advantage of, such as compression.

Specific to encryption we plan to increase the ef-
ficiency of our encryption algorithm by preprocessing and
saving some key independent computations. This is com-
monly referred to as the "ram based" approach. Currently,
all computations are computed on the fly on the FPGA.

In order to more efficiently encrypt larger data
sets, greater than 16B, we are planning to implement a
version which takes advantage of the FPGA Transfer Re-
gion of memory which was discussed in section 5.3.3.
The rate at which we can encrypt data on the whole, from
the resource managers point of view will greatly benefit
from this enhancement as well. Another way to benefit
the performance of an ftrmem based implementation
would be to remove the overhead of the pace counter
mentioned in 5.3.4.

7. Conclusion

We have shown in this paper the performance,
drawbacks, and possible improvements we can make con-
cerning FPGA based encryption. We have also intro-
duced the preliminary version of an FPGA resource man-
agement system which will aid in making FPGA resources
easily accessible to user applications with no knowledge
of the actual FPGA itself.

8. References

[1] J. Daemen, V. Rijmen, AES Proposal: Rijndael, Ver
2, 1999.

[2] E. Swankoski, R. Brooks, V. Narayanan, M.
Kandemir, M. Irwin, A Parallel Architecture for
Secure FPGA Symmetric Encryption, In
Proceedings of the 18th International Parallel and

CUG 2005 Proceedings 8 of 9

0 100 200 300 400 500

0

1

10

100

1000

Register

FTR Mem

Size (MB)

T
im

e
 (

S
)

Distributed Processing Symposium, 2004.

[3] The OpenSSL Project, OpenSSL: The Open Source
toolkit for SSL/TLS , http://www.openssl.org, 2005.

[4] Cray Inc., Cray XD1 System Overview, Ver 1.1,
2004.

[5] The Message Passing Interface (MPI) Standard,
http://www-unix.mcs.anl.gov/mpi/, 2005.

[6] Dennis Dalessandro, Why use RDMA?,
http://www.osc.edu/~/dennis/rdma/rdma.html, 2004.

[7] Aldec Inc., Riviera Overview,
http://www.aldec.com/products/riviera/, 2005.

[8] Xilinx Inc., XST User Guide.
http://www.xilinx.com/support/sw_manuals/xilinx6/downl
oad/xst.zip

[9] Cray Inc., Cray XD1 Programming, Ver 1.2, 2005.
[10] Cray Inc., Cray XD1 FPGA Development, Ver 1.1,
2004.

[11] Open Cores, http://www.opencores.org.

[12] HyperTransport Consortium,
http://www.hypertransport.org

CUG 2005 Proceedings 9 of 9

