
May 16, 2005 CUG 2005

Accelerated FPGA Based AES
Encryption

Joseph A. Fernando, Dennis Dalessandro, Ananth
Devulapalli, Kevin Wohlever

{fernando, dennis, ananth, kevin}@osc.edu

Ohio Supercomputer Center (OSC)
Springfield, Ohio 45502

May 16, 2005 CUG 2005

Agenda
• About OSC
• Introduction
• Motivation and Rationale
• Objectives /Scope
• Cray XD1 at OSC
• FPGA Resource Manager

 Distributed AES encryption
 Register based interface for encryption
 Performance metrics

• Other possible I/O methods
• FPGA Transfer Region (FTR) memory based I/O
• Preliminary Results
• Conclusions

 Future work
• Questions and Answers

May 16, 2005 CUG 2005

About OSC

• OSC is a State of Ohio entity
 Administered by Ohio State University

• Main purpose is to provide Supercomputing facilities to state and private
academic/research institution of Ohio

• Maintains a statewide high speed network
• Presently over 80 colleges and campuses are interconnected through a

10 Gbit/s network
• Schools in the future
• Conducts research related High Performance Computing in various

fields
• Main office located in Columbus Ohio with another office in Springfield

Ohio
 Totals about 100 employees

May 16, 2005 CUG 2005

Introduction

• Nodes that do not have FPGAs cannot get services at
present
 Resource Manager (RM)

• To provide FPGA services to other nodes/remote nodes
• to schedule

• AES encryption algorithm is a FPGA friendly algorithm
 Mainly bit manipulation using Finite Field Arithmetic

• Addition and subtraction done by exclusive OR of the two inputs
 Electronic Code Book mode of the AES algorithm can be easily

parallelized
• 128 bit blocks required for 128 bit key
• 10 rounds for 128 bit key

May 16, 2005 CUG 2005

Motivation and Rationale
• Leverage the capabilities of FPGAs to speedup

 Exploit Parallelism
 Replicate processing elements

• AES and other bit manipulation algorithms cannot be
efficiently mapped to general purpose CPUs
 Primitive logic operations cannot be parallelized on CPUs
 Cannot replicate processing units
 atomic data type is byte in CPUs

• Encryption could be computed with low latency and high
throughput by using FPGAs
 Map every round to a different clock cycle or different processing

unit

May 16, 2005 CUG 2005

Objective and Scope
• Develop a RM to provide services to nodes

that do not have FPGAs
 Use RM for scheduling distributed resources
 XD1 nodes as other remote nodes

• RM Specs
 Use multiple FPGA on the XD1
 Encryption and decryption units

• Use the ECB mode of the AES algorithm for higher
throughput

• 128 bit key only

May 16, 2005 CUG 2005

Cray XD1 at OSC

• 3 chassis with 18 Symmetric Multi
Processors (SMP) working at 2.2 GHz

• Each SMP has 2 Opterons
• Each SMP connected to a Rapid Array

Processor for communication and a FPGA
card

• Only 6 FPGAs in a single chassis
• Use Xilinx 2VP50 FPGA devices

May 16, 2005 CUG 2005

Resource Manager

Resource Manager

Clients

FPGA Host FPGA Host

FPGA FPGA

•RM resides on a node that does not have a FPGA
•Use Message Passing Interface (MPI)
• XD1 nodes that do not have FPGAs and remote nodes
can request FPGA services
•Schedules all the FPGAs
•Distributes encryption function to up to six FPGAs

May 16, 2005 CUG 2005

Resource Manager (Cont.)

• Distributed AES Encryption
 Distribute input data at to all the FPGAs
 Use 16 byte aligned buffers to distribute data

• AES uses 128-bit blocks
 Collect the outputs and merge them in the same

order
 Encryption and decryption done the same way
 Key is kept same to make this process easy

May 16, 2005 CUG 2005

Resource Manager (Cont.)

• Register based AES encryption
 Load keys, and use another registers to indicate the keys
 Use registers to input 128-bit (2x64 bit) block of data
 Output is received in another 128-bit (2x64 bit) register
 Use 10 clock cycles to encrypt 128 bit buffer
 Host writes to input buffer and reads from output buffer
 Do not have to poll as the latency of the function call is

adequate for synchronization
 Continue writing data to buffer until the end of file

May 16, 2005 CUG 2005

Resource Manager (Cont.)
• Performance metrics

 Encryption using OpenSSL code on Opteron can
achieve a throughput of 4 MB/s

• Use a RAM based method (Different than method used on
FPGA)

 On a single FPGA using register based Interface 3 MB/s
 Near linear increase of throughput with number of

FPGAs
 Encryption: clock speed 160 MHz 3010 (12 %) slices
 Decryption clock speed 150 MHz 3508 (14%) slices
 Bottleneck is in the I/O system

May 16, 2005 CUG 2005

Alternative I/O capabilities

• QDR RAM based I/O
 Uses the push model

• Host processor dumps data in QDR memory
 Synchronization done by stopping data transfers
 Faster than register based I/O

• No function overhead
• Burst mode usage, depends on the implementation

 Effective bandwidth depends on the processor load
• BRAM based I/O

 Same as above other than using FPGA based Block
RAM

May 16, 2005 CUG 2005

FPGA Transfer Region (FTR)
memory based I/O

• OSC has implemented a preliminary version of a I/O
interface using the FTR memory

• Objective is to use this for general purpose I/O (e.g. AES
encryption)

• Use the Pull model
 FPGA read and writes data from/to host Opteron memory

• Use burst mode to read and write
• Concurrent read and writes
• Performance nearly host processor load independent

 Minimal degradation of effective bandwidth under load

May 16, 2005 CUG 2005

FTR memory (Cont.)

• Implemented a ftrmem_copy program
 Copies a given buffer of a length to a destination (same host)

• Uses semaphores to synchronize read and write
• Use a dual port BRAM as a scratchpad
• Preliminary results are encouraging

 Achieved a 800 MB/sec transfer rate (each way) for copy program
for no load processor

 Achieved a 785 MB/sec transfer rate under fully loaded conditions
(or 2% degradation under load)

 Could achieve 1.6 GB/s if limited to one way communication
• Further tests required to test robustness

May 16, 2005 CUG 2005

Conclusion

• When Algorithms require streaming of data
using FTR memory based I/O could provide
a higher I/O bandwidth and make the I/O
transfer host processor load independent
while ensuring data integrity.

May 16, 2005 CUG 2005

Conclusion (Cont.)

• Future work
 Test and make this I/O subsystem robust
 Integrate with a pipelined AES encryption and

decryption engines (partially done)
 Transfer lossless compressed data (??)
 Develop for other scenarios
 Integrate other algorithms that require high-

speed streaming data
 Just stay tuned

May 16, 2005 CUG 2005

Questions & Answers

