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About OSC

• OSC is a State of Ohio entity
 Administered by Ohio State University

• Main purpose is to provide Supercomputing facilities to state and private
academic/research institution of Ohio

• Maintains a statewide high speed network
• Presently over 80 colleges and campuses are interconnected through a

10 Gbit/s network
• Schools in the future
• Conducts research related High Performance  Computing in various

fields
• Main office located in Columbus Ohio with another office in Springfield

Ohio
 Totals about 100 employees
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Introduction

• Nodes that do not have FPGAs cannot get services at
present
 Resource Manager (RM)

• To provide FPGA services to other nodes/remote nodes
• to schedule

• AES encryption algorithm is a FPGA friendly algorithm
 Mainly bit manipulation using Finite Field Arithmetic

• Addition and subtraction done by exclusive OR of the two inputs
 Electronic Code Book mode of the AES algorithm can be easily

parallelized
• 128 bit blocks required for 128 bit key
• 10 rounds for 128 bit key
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Motivation and Rationale
• Leverage the capabilities of FPGAs to speedup

 Exploit Parallelism
 Replicate processing elements

• AES and other bit manipulation algorithms cannot be
efficiently mapped to general purpose CPUs
 Primitive logic operations cannot be parallelized on CPUs
 Cannot replicate processing units
 atomic data type is byte in CPUs

• Encryption could be computed with low latency and high
throughput by using FPGAs
 Map every round to a different clock cycle or different processing

unit
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Objective and Scope
• Develop a RM to provide services to nodes

that do not have FPGAs
 Use RM for scheduling distributed resources
 XD1 nodes as other remote nodes

• RM Specs
 Use multiple FPGA on the XD1
 Encryption and decryption units

• Use the ECB mode of the AES algorithm for higher
throughput

• 128 bit key only
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Cray XD1 at OSC

• 3 chassis with 18 Symmetric Multi
Processors (SMP) working at 2.2 GHz

• Each SMP has 2 Opterons
• Each SMP connected to a Rapid Array

Processor for communication and a FPGA
card

• Only 6 FPGAs in a single chassis
• Use Xilinx 2VP50 FPGA devices
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Resource Manager
 

Resource Manager 

Clients 

FPGA Host FPGA Host 

FPGA FPGA 

•RM resides on a node that does not have a FPGA
•Use Message Passing Interface (MPI)
• XD1 nodes that do not have FPGAs and remote nodes
can request FPGA services
•Schedules all the FPGAs
•Distributes encryption function to up to six FPGAs
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Resource Manager (Cont.)

• Distributed AES Encryption
 Distribute input data at to all the FPGAs
 Use 16 byte aligned buffers to distribute data

• AES uses 128-bit blocks
 Collect the outputs and merge them in the same

order
 Encryption and decryption done the same way
 Key is kept same to make this process easy
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Resource Manager (Cont.)

• Register based AES encryption
 Load keys, and use another registers to indicate the keys
 Use registers to input 128-bit (2x64 bit) block of data
 Output is received in another 128-bit (2x64 bit) register
 Use 10 clock cycles to encrypt 128 bit buffer
 Host writes to input buffer and reads from output buffer
 Do not have to poll as the latency of the function call is

adequate for synchronization
 Continue writing data to buffer until the end of file
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Resource Manager (Cont.)
• Performance metrics

 Encryption using OpenSSL code on Opteron can
achieve a throughput of 4 MB/s

• Use a RAM based method (Different than method used on
FPGA)

 On a single FPGA using register based Interface 3 MB/s
 Near linear increase of throughput with number of

FPGAs
 Encryption: clock speed 160 MHz 3010 (12 %) slices
 Decryption clock speed  150 MHz 3508 (14%) slices
  Bottleneck is in the I/O system



May 16, 2005 CUG 2005

Alternative I/O capabilities

• QDR RAM based I/O
 Uses the push model

• Host processor dumps data in QDR memory
 Synchronization done by stopping data transfers
 Faster than register based I/O

• No function overhead
• Burst mode usage, depends on the implementation

 Effective bandwidth depends on the processor load
• BRAM based I/O

 Same as above other than using FPGA based Block
RAM
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FPGA Transfer Region (FTR)
memory based I/O

• OSC has implemented a preliminary version of a I/O
interface using the FTR memory

• Objective is to use this for general purpose I/O (e.g. AES
encryption)

• Use the Pull model
 FPGA read and writes data from/to host Opteron memory

• Use burst mode to read and write
• Concurrent read and writes
• Performance nearly host processor load independent

 Minimal degradation of effective bandwidth under load
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FTR memory (Cont.)

• Implemented a ftrmem_copy program
 Copies a given buffer of a length to a destination (same host)

• Uses semaphores to synchronize read and write
• Use a dual port BRAM as a scratchpad
• Preliminary results are encouraging

 Achieved a 800 MB/sec transfer rate (each way) for copy program
for no load processor

 Achieved a 785 MB/sec transfer rate under fully loaded conditions
(or 2% degradation under load)

 Could achieve 1.6 GB/s if limited to one way communication
• Further tests required to test robustness
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Conclusion

• When Algorithms require streaming of data
using FTR memory based I/O could provide
a higher I/O bandwidth and make the I/O
transfer host processor load independent
while ensuring data integrity.
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Conclusion (Cont.)

• Future work
 Test and make this I/O subsystem robust
 Integrate with a pipelined AES encryption and

decryption engines (partially done)
 Transfer lossless compressed data (??)
 Develop for other scenarios
 Integrate other algorithms that require high-

speed streaming data
 Just stay tuned
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Questions & Answers


