
May 16, 2005 CUG 2005

Accelerated FPGA Based AES
Encryption

Joseph A. Fernando, Dennis Dalessandro, Ananth
Devulapalli, Kevin Wohlever

{fernando, dennis, ananth, kevin}@osc.edu

Ohio Supercomputer Center (OSC)
Springfield, Ohio 45502

May 16, 2005 CUG 2005

Agenda
• About OSC
• Introduction
• Motivation and Rationale
• Objectives /Scope
• Cray XD1 at OSC
• FPGA Resource Manager

 Distributed AES encryption
 Register based interface for encryption
 Performance metrics

• Other possible I/O methods
• FPGA Transfer Region (FTR) memory based I/O
• Preliminary Results
• Conclusions

 Future work
• Questions and Answers

May 16, 2005 CUG 2005

About OSC

• OSC is a State of Ohio entity
 Administered by Ohio State University

• Main purpose is to provide Supercomputing facilities to state and private
academic/research institution of Ohio

• Maintains a statewide high speed network
• Presently over 80 colleges and campuses are interconnected through a

10 Gbit/s network
• Schools in the future
• Conducts research related High Performance Computing in various

fields
• Main office located in Columbus Ohio with another office in Springfield

Ohio
 Totals about 100 employees

May 16, 2005 CUG 2005

Introduction

• Nodes that do not have FPGAs cannot get services at
present
 Resource Manager (RM)

• To provide FPGA services to other nodes/remote nodes
• to schedule

• AES encryption algorithm is a FPGA friendly algorithm
 Mainly bit manipulation using Finite Field Arithmetic

• Addition and subtraction done by exclusive OR of the two inputs
 Electronic Code Book mode of the AES algorithm can be easily

parallelized
• 128 bit blocks required for 128 bit key
• 10 rounds for 128 bit key

May 16, 2005 CUG 2005

Motivation and Rationale
• Leverage the capabilities of FPGAs to speedup

 Exploit Parallelism
 Replicate processing elements

• AES and other bit manipulation algorithms cannot be
efficiently mapped to general purpose CPUs
 Primitive logic operations cannot be parallelized on CPUs
 Cannot replicate processing units
 atomic data type is byte in CPUs

• Encryption could be computed with low latency and high
throughput by using FPGAs
 Map every round to a different clock cycle or different processing

unit

May 16, 2005 CUG 2005

Objective and Scope
• Develop a RM to provide services to nodes

that do not have FPGAs
 Use RM for scheduling distributed resources
 XD1 nodes as other remote nodes

• RM Specs
 Use multiple FPGA on the XD1
 Encryption and decryption units

• Use the ECB mode of the AES algorithm for higher
throughput

• 128 bit key only

May 16, 2005 CUG 2005

Cray XD1 at OSC

• 3 chassis with 18 Symmetric Multi
Processors (SMP) working at 2.2 GHz

• Each SMP has 2 Opterons
• Each SMP connected to a Rapid Array

Processor for communication and a FPGA
card

• Only 6 FPGAs in a single chassis
• Use Xilinx 2VP50 FPGA devices

May 16, 2005 CUG 2005

Resource Manager

Resource Manager

Clients

FPGA Host FPGA Host

FPGA FPGA

•RM resides on a node that does not have a FPGA
•Use Message Passing Interface (MPI)
• XD1 nodes that do not have FPGAs and remote nodes
can request FPGA services
•Schedules all the FPGAs
•Distributes encryption function to up to six FPGAs

May 16, 2005 CUG 2005

Resource Manager (Cont.)

• Distributed AES Encryption
 Distribute input data at to all the FPGAs
 Use 16 byte aligned buffers to distribute data

• AES uses 128-bit blocks
 Collect the outputs and merge them in the same

order
 Encryption and decryption done the same way
 Key is kept same to make this process easy

May 16, 2005 CUG 2005

Resource Manager (Cont.)

• Register based AES encryption
 Load keys, and use another registers to indicate the keys
 Use registers to input 128-bit (2x64 bit) block of data
 Output is received in another 128-bit (2x64 bit) register
 Use 10 clock cycles to encrypt 128 bit buffer
 Host writes to input buffer and reads from output buffer
 Do not have to poll as the latency of the function call is

adequate for synchronization
 Continue writing data to buffer until the end of file

May 16, 2005 CUG 2005

Resource Manager (Cont.)
• Performance metrics

 Encryption using OpenSSL code on Opteron can
achieve a throughput of 4 MB/s

• Use a RAM based method (Different than method used on
FPGA)

 On a single FPGA using register based Interface 3 MB/s
 Near linear increase of throughput with number of

FPGAs
 Encryption: clock speed 160 MHz 3010 (12 %) slices
 Decryption clock speed 150 MHz 3508 (14%) slices
 Bottleneck is in the I/O system

May 16, 2005 CUG 2005

Alternative I/O capabilities

• QDR RAM based I/O
 Uses the push model

• Host processor dumps data in QDR memory
 Synchronization done by stopping data transfers
 Faster than register based I/O

• No function overhead
• Burst mode usage, depends on the implementation

 Effective bandwidth depends on the processor load
• BRAM based I/O

 Same as above other than using FPGA based Block
RAM

May 16, 2005 CUG 2005

FPGA Transfer Region (FTR)
memory based I/O

• OSC has implemented a preliminary version of a I/O
interface using the FTR memory

• Objective is to use this for general purpose I/O (e.g. AES
encryption)

• Use the Pull model
 FPGA read and writes data from/to host Opteron memory

• Use burst mode to read and write
• Concurrent read and writes
• Performance nearly host processor load independent

 Minimal degradation of effective bandwidth under load

May 16, 2005 CUG 2005

FTR memory (Cont.)

• Implemented a ftrmem_copy program
 Copies a given buffer of a length to a destination (same host)

• Uses semaphores to synchronize read and write
• Use a dual port BRAM as a scratchpad
• Preliminary results are encouraging

 Achieved a 800 MB/sec transfer rate (each way) for copy program
for no load processor

 Achieved a 785 MB/sec transfer rate under fully loaded conditions
(or 2% degradation under load)

 Could achieve 1.6 GB/s if limited to one way communication
• Further tests required to test robustness

May 16, 2005 CUG 2005

Conclusion

• When Algorithms require streaming of data
using FTR memory based I/O could provide
a higher I/O bandwidth and make the I/O
transfer host processor load independent
while ensuring data integrity.

May 16, 2005 CUG 2005

Conclusion (Cont.)

• Future work
 Test and make this I/O subsystem robust
 Integrate with a pipelined AES encryption and

decryption engines (partially done)
 Transfer lossless compressed data (??)
 Develop for other scenarios
 Integrate other algorithms that require high-

speed streaming data
 Just stay tuned

May 16, 2005 CUG 2005

Questions & Answers

