
CUG 2005 X1 Tuning for Performance Using Compilation Option 1 of 7

Cray X1 Tuning for Performance Using Compilation Options

Terry Greyzck, Cray Inc.

ABSTRACT: The Cray X1 compilers’ command-line options and source code
directives provide significant user control over program optimization. This paper
describes how common options and directives can influence specific
optimizations, affect compile time, and sometimes cause unexpected side effects.

KEYWORDS: Cray, X1, multistreaming, shared-memory parallelism, vectorization

1. Introduction

1.1. The X1 Compilers

The high level languages supported for the Cray X1

series of computers are Fortran, C and C++. The compilers
for these languages provide a high level of optimization,
while adhering to the appropriate standards.

All Cray X1 compilers share a common optimizer and

code generator. Sharing this technology allows for
consistent optimization capabilities and reliability across
different source code languages.

1.2. Default Optimization

The default command line optimization (that is, no

specified options) extracts vector and multistream levels of
parallelism from the code, in addition to the lower levels of
parallelism found in all compilations. For Fortran, this
default optimization is roughly the same as specifying:

-Oscalar2 –Ovector2 –Ostream2 –Oipa3 –Ofp2

with similar options for C and C++. The default
optimization provides, at a minimum, the following:

• Somewhat aggressive scalar optimization
• Automatic SIMD parallelism (vectorization)
• Automatic MIMD parallelism (multistreaming)
• Automatic limited interprocedural optimization
• Aggressive floating point optimizations

This is clearly a very high level of optimization. There are
also a large number of compiler directives available to
control fine-grain optimization. These directives are
source code annotations that have meaning to the
compiler, and are documented in the appropriate manuals
and optimization guides.

1.3. Tuning Through the Command Line

The default optimization is very aggressive, yet it

strikes a balance between code safety, consistent results
between runs (and consistency as compared to other
vendors), and optimized compile times. If you want
maximum performance when running on the Cray X1, and
you can accept additional compilation time, and slightly
different (albeit correct) floating-point results, then you
should consider introducing command line options to
enhance optimization.

For any given application, the tuning of individual

options may have anywhere from no performance impact,
to a dramatic performance impact. The performance impact
on your application may vary.

(In the examples below, the Fortran option is

presented first, followed by the C and C++ equivalent
options. The options for the C and C++ compilers are
identical unless otherwise specified.)

CUG 2005 X1 Tuning for Performance Using Compilation Option 2 of 7

2. Increasing Automatic Optimization Levels

2.1. -O3

This is the highest level of optimization that can be

specified using the -O option, and is roughly equivalent
to:

Fortran:

-Oscalar3 –Ovector3 –Ostream3

C and C++:

-hscalar3 –hvector3 –hstream3

-O3 is a convenient shortcut to specifying all of these

options individually, as described in the following
sections.

2.2. -Oscalar3; -hscalar3

For the Cray X1 compiler, scalar optimization refers

to all optimizations that do not directly affect
parallelization. However, these optimizations can have a
large impact on parallel code, primarily due to Amdahl’s
law. These optimizations include, but are not limited to:

• Address computation optimizations
• Array syntax simplification
• Branch reduction
• Common subexpression elimination
• Data extraction
• Dead code elimination
• Idiom recognition
• Index range splitting
• Last value capture
• Loop invariant hoisting
• Loop unswitching
• Scalarization
• Short circuit elimination
• Strength reduction
• Structure optimization
• Value propagation

All of these are performed by default. The following
optimizations are also performed with –Oscalar3:

• Conversion of more conditional code to
inline select operations

• Aggressive safe value analysis
• Improved short circuit elimination
• More aggressive instances of the default

optimizations

When the scalar optimization level is raised to
scalar3 , the optimizations become much more aggressive.
Code duplication is more likely to occur, such as with loop
unswitching; and extensive compilation times can occur,
such as with aggressive safe value analysis and short
circuit elimination.

It is safe to specify scalar3 , and language rules are
observed. However, you may see result differences from
those obtained with default optimization levels, due to
floating point reassociation differences.

In terms of performance, scalar3 typically improves

performance ranging from no gain to 15% or more. It is
most useful for codes that contain a lot of conditional
code. It is safe, but it can considerably slow your
compilation time. If compilation time is not a factor for
your application, then Cray recommends that you use
scalar3 .

2.3. -Ovector3; -hvector3

Automatic vectorization is controlled by the vector

option. By default, it is fairly aggressive; however, if the
level is increased to vector3 , it looks for additional
opportunities.

For example, at vector3 more detailed (and time-

consuming) dependency analysis is performed as the
compiler tries to find more parallelism. This includes
complex dependency testing and more aggressive array
privatization analysis.

Another example is that at vector3, the compiler more

aggressively generates ‘safe’ code to allow speculative
loading of unsafe memory references; typically, these are
memory references that may generate a trap if removed
from their original context. When this rewrite is performed,
it generally allows the elimination of some branching code
that is generated by the vectorization process.

The use of vector3 allows for more and improved

vectorization in some codes, the most notable being for C
and C++, due to their inherent ambiguities. It is safe to
use vector3 , as it does not unreasonably impact
compilation time, and it can significantly improve
performance. Cray encourages its use, whether directly or
though the –O3 option.

2.4. -Ostream3; -hstream3

Automatic multistreaming is controlled by the stream

option. By default, automatic multistreaming is extremely
aggressive, and the difference between default
optimization and stream3 is minimal. Primarily, stream3
allows more aggressive multistreaming of bit matrix
multiply (BMM) operations.

CUG 2005 X1 Tuning for Performance Using Compilation Option 3 of 7

The use of stream3 does not generally yield better

application performance. The default multistreaming level
is sufficient, as there really is not much else to do at a
higher level of streaming. If your code does not use BMM
operations, the use of stream3 , while not beneficial, has
no negative impact.

2.5. -Ofp3; -hfp3

The fp3 option gives the compiler more freedom to

optimize floating-point operations. Language standards
such as the IEEE floating point standard place severe
restrictions on how floating-point expressions can be
optimized. Under the default (that is, fp2), the compiler is
allowed some leeway where performance is critical, so a
default compilation is not strictly IEEE compliant.
Optimizations such as rewriting floating-point divisions
into multiplications by a reciprocal and reassociation of
floating-point operands are supported.

However, when fp3 is specified, the compiler is

permitted to perform significantly more aggressive
floating-point optimizations. At fp3, the compiler is
permitted to perform the following optimizations and make
the following additional assumptions:

• Assume floating-point comparisons are safe, and

will not trap.
• Generate inline code for natural log,

exponentiation, and power functions. These
inline versions, although as much as 300% faster
than library routines, are not quite as precise.
However, for most codes the accuracy is more
than sufficient.

• Allow more aggressive rewriting of power
functions, where a floating-point value is raised
to a constant power.

If your application consists primarily of integer

operations, this option will not improve its performance.
However, for most floating-point intensive applications,
this option should be considered if any of the following
are true:

• The application has some tolerance for

deviations from the IEEE standard.
• The application uses exp, log, or ** (pow in C

and C++) intrinsics.

The performance gained with this option ranges from

no gain, to 30% (or more) for codes dominated by exp, log,
or ** intrinsics in performance-critical areas. Cray
encourages the use of fp3 for most codes.

2.6. –Oipa3; -hipa3

The ipa option controls the level of interprocedural

optimization. Currently, this consists primarily of inlining
(including cross-file inlining) and some other performance
enhancements such as tail recursion optimization.

The default interprocedural optimization is ipa3,

which inlines to a depth of one for Fortran and three for C
and C++ (as long as the resulting code contains no calls).
This is the optimal level of inlining for most codes and
should not be changed without good cause.

The levels associated with the ipa option are not

reflective of any degree of optimization; in other words,
ipa4 will not necessarily produce faster code, and ipa5
(which should be avoided) actually can produce slower
code. Check the appropriate documentation for a
complete description of these levels, but in general, this
option can be left at ipa3.

2.7. –Oclone1

This is a Fortran option. The clone1 option

duplicates procedures when they are called with constant
arguments that are not expanded inline. This allows
optimization within the cloned procedure to take
advantage of the constant values, and can lead to better
performing code. The primary drawbacks to this option
are the increased compile time and larger code size.

The benefit of this option depends on the application.

The default is clone0, that is, to not clone at all.

2.8. –Oaggress; -haggress

Some individual procedures or functions can become

too large, due either to a huge amount of code or too
aggressive inlining. In these cases, the compiler uses a
technique called regioning to logically break the function
into smaller parts. The primary impact of this is to control
the amount of resources the compiler requires to optimize
the function without in turn affecting application
performance.

The aggress option tells the compiler to not perform

this regioning action. It essentially tells the compiler to
consider all functions as atomic, unbreakable pieces of
code and to use all the compilation time and memory
necessary to optimize it.

Most codes are not large enough to require regioning,

so this option has no effect on them. On codes that do
require regioning, this option may provide a slight
performance advantage at the price of a potentially

CUG 2005 X1 Tuning for Performance Using Compilation Option 4 of 7

dramatically longer compile time. When optimizing your
application, you can use the aggress option initially, and
selectively remove it if the compile time penalty becomes
too severe.

3. Options That Decrease Performance

3.1. –Ooverindex; -hoverindex

The overindex option is designed for use with very

old codes that have loop nests that have been collapsed
by hand. (Modern optimizing compilers automatically
collapse loop nests.) Although C and C++ have rules that
are somewhat relaxed, it is generally expected that array
references will be within the declared boundaries of the
array.

When a loop is collapsed by hand, illegal code is

introduced into an application – at least one dimension of
a multidimensional array will be indexed with a value that
is outside its declared range (overindexed). The compiler
optimizes based on the constraints of the language
standards, so if a code violates those standards, incorrect
optimization can result. Although C and C++ have rules
that are somewhat relaxed when compared to Fortran, it is
generally expected that array references will be within the
declared boundaries of the array.

The overindex option allows you to compile these old

codes at the cost of lost optimization. If this option is
specified, the primary effect is that range analysis cannot
be used to determine the maximum legal trip count for
loops. This in turn can lead to poor selection of loops to
optimize, less accurate dependence information, and most
importantly, the introduction of unnecessary control flow
and loop overhead.

A case in point: the Perfect benchmark suite that is

used at Cray contains 13 codes, with 4,613 vectorizable
loops. If overindex is specified, 1,243 (or 27%) will run
significantly slower, due to additional loop overhead and
branch logic. Clearly, this option is undesirable and
should not be used.

If it has been empirically determined that an

application requires this option to run correctly, it almost
certainly illegally over-indexes an array. The best solution
in this case is to correct the source code to comply with
language standards.

3.2. -Ofp0, -Ofp1; -hfp0, -hfp1

In the same manner that using fp3 can increase the

performance of floating point intensive applications,
decreasing the level of this option can have a negative
impact on overall application performance.

Unless the application is intolerant of minor floating

point variations between hardware platforms, including
variations allowed by the language standards, these
options should not be used.

3.3. -Oipa5; -hipa5

This option states to inline everything, everywhere,

to an unbounded call chain depth, regardless of the size of
the resulting code.

Not only can this option lead to unacceptable compile

times, it can result in a significant decrease in
performance.

Forget you ever heard of this option. It is used for in-

house stress testing of the compiler. It should never be
used for performance enhancement.

-Oipa5/-hipa5 should never be used, period.

3.4. –eh

This is a Fortran option. By default, the compiler

converts 8- and 16-bit integer variables to 32-bit integer
variables for performance reasons.

The Cray X1 hardware provides support for 32- and

64-bit variables. The implementation of 8- and 16-bit data
types is achieved through software. Because of this,
these small data types are considerably slower than their
32- and 64-bit counterparts. If your code contains explicit
8- or 16-bit integer variables but does not absolutely
depend on 8- and 16-bit storage for correct results, do not
use this option.

3.5. –e0; -hzero

These options initialize stack variables to zero at

execution time, every time a procedure or function is
called. None of the supported Cray language standards
require this, and it is primarily useful as a debugging tool.

These options should not be used except to debug an

application.

3.6. –ev

This is a Fortran option. It states to place all stack-

based user variables in static storage, as if a save attribute
were placed on the variable declaration. This prevents the
compiler from performing some optimizations, such as the
best possible dead code elimination, last value capture
optimizations, and so on.

CUG 2005 X1 Tuning for Performance Using Compilation Option 5 of 7

Some very old codes may require this option if they
have not been updated in the last twenty years or so, as
some very old hardware did not support stacks. If you
have one of these applications, it should be updated to
allow stack storage, and this option will no longer be
necessary.

Although the compiler recognizes this option and

does what it can to prevent it from degrading performance
too much, the option still decreases performance and
should be avoided.

3.7. –Oshortcircuit2

This is a Fortran option. It tells the compiler to

evaluate logical and and or operations much how C
processes && and || operations, that is, avoiding the
evaluation of the second expression if the first is true or
false, respectively.

At first glance, this is a good idea. However, it

introduces additional tests and jumps which compromise
optimization. This is especially true with vectorized code,
where the additional conditional logic can dramatically
slow down a loop.

The compiler actually has optimizations that try to

reverse this short circuiting when proved safe; it will even
rewrite expressions to make them safe, in order to remove
the conditional code. So, it does not make sense to turn
on an option to generate slower code, and which the
compiler will try to undo.

The default is to short circuit only function calls,

which are expensive.

3.8. Other Options

There are other options that decrease performance,

but they are uncommon enough they are simply listed
here, without going into detail. If you use these options,
you should carefully evaluate whether they are actually
necessary.

Fortran C and C++

 -htolerant
 -hnointrinsics
-eL
-ew
-Ofusion0, -Ofusion1 -hnofusion
-Onoinfinitevl -hnoinfinitevl
-Onointerchange -hnointerchange
-Onorecurrence -hnoreduction
-Onovsearch -hnovsearch

Fortran C and C++
-Ounroll0 -hnounroll
-Ozeroinc -hzeroinc

4. Options That Void Your Warranty

4.1. –hivdep

This C and C++ option creates an ivdep compiler

directive on every loop in the source. It is a holdover from
an earlier compiler, can lead to incorrect results, and may
actually decrease performance by limiting parallelization to
innermost loops.

It should not be used under any circumstances.

5. Providing More Information to the
Compiler

5.1. –Ossp; –hssp

This option instructs the compiler to not perform

automatic multistreaming, and to produce code for a
single-streaming processor (ssp) of a multistreaming
processor (msp).

On first examination, this may appear to be an option

that is guaranteed to reduce performance. However, if
carefully used, it can increase performance from an overall
throughput standpoint, even if it decreases performance
on the individual application.

When compiling for multistreaming (the default), if

any part of an application is multistreamed, then the entire
executable is tagged as a multistream application.
Normally, this is the desired result. However, if an
application has little stream-level parallelism, as can
happen with Gnu utilities and similar codes, then it is
better to disable multistreaming altogether.

By compiling an entire application with the ssp option,

no multistreaming will be performed, and the resulting
executable will run on only one processor of a
multis treaming processor. This allows for four concurrent
copies of the application (or other single-streamed
executables) to be run.

Compare this to a version of the application that is

only slightly multistreamed: when the multistreamed
portion of the application is executed, all four processors
are in use. Conversely, when the single-streamed portion
of that same code is executed, only one processor is in
use, and the other three stand idle. But if you use –hssp

CUG 2005 X1 Tuning for Performance Using Compilation Option 6 of 7

on the same code, one processor is used and the other
three are free to run other SSP jobs.

In general, most applications should not run in ssp

mode. If there is any doubt, the application can be built in
both msp and ssp modes, and the performances compared
to determine whether the ssp option should be used.

5.2. –hrestrict=f

This C and C++ option marks pointers which are

function parameters with the restrict attribute. This gives
C and C++ pointers roughly the same aliasing attributes
that Fortran dummy arguments have.

Unlike –hivdep, which should never be used, this

option can be useful for well-behaved codes. Many
structured codes use pointers in a very restrained and
compiler-friendly manner, which allows for the use of this
option. The performance benefit from this option can
range from no gain to huge gains thanks to additional
vectorization and multistreaming. However, if the
–hrestrict=f option is used improperly, incorrect results
can occur. It is up to the developer to decide when it is
legal to use.

5.3. –Onopattern; -hnopattern

 By default, the compiler looks for code constructs that
can map onto selected libsci routines, which have
traditionally mapped to common idioms such as matrix
multiplications. In the past, these hand-optimized libsci
routines were substantially faster than compiler-generated
code. With compiler optimization improvements over the
years, the compiler now typically produces code that is as
good or actually exceeds the performance of the library
routines. Accordingly, the number of patterns the
compiler matches is now quite small. What it does match,
however, are constructs that are still faster if the libsci
version is used for a typical application.

 Although generally not recommended, the nopattern
option can tell the compiler to generate inline code for
everything. The applicability of this directive can be
determined if you compare builds and runs with and
without it.

6. Recommended Command Line Options for
Performance

6.1. The Command Line

All the options that decrease performance should be

avoided. For the simplest command line that has the
greatest impact, the following is recommended:

Fortran:

-O3 –Ofp3

C and C++:

-O3 –hfp3

The use of the O3 is an easy way to specify scalar3 ,

vector3 , and stream3 . Although stream3 does not
provide much of a performance boost, scalar3 and
vector3 can result in significant performance
enhancements. These options are generally safe to use as
well.

The fp3 option is useful for codes with significant

floating-point operations. It can lead to slightly different
results than the default fp2, due to differences in
reassociation, or in the case of the inlined math functions,
different algorithms. This difference is acceptable for most
applications.

If the application is intolerant of slight floating-point

differences, you may need to remove the fp3 option. If the
compilation time is unacceptable, you may need to remove
the O3 option.

6.2. Why These Options Are Not Default

The recommended options are not performed at

default for different reasons. The O3 option is not the
default because of the additional compilation time that can
it can incur, and because of the potential for larger
executables due to code duplication. The fp3 option is not
the default because the potential for floating point
differences, although generally acceptable, is simply too
aggressive to apply automatically.

6.3. Why Not the aggress Option?

Some application developers use other optimization

flags on a regular basis. Options that decrease

CUG 2005 X1 Tuning for Performance Using Compilation Option 7 of 7

performance significantly are specified above, but one flag
that is commonly used is the aggress flag.

The use of aggress is not generally recommended, as

the potential for improved performance is slim, but the
potential for dramatically increased compilation time is
large. In terms of a cost/benefit analysis, the return is
poor.

6.4. Compilation Time

The primary contributors to the overall compilation

time are inlining and multistreaming, controlled by the ipa
and stream options, respectively. Although it is not
recommended to turn either option off, if compilation time
is a problem, consider first compiling with ipa0 to disable
inlining. If it is still a problem, add stream0 . Both of these
options will create overall performance degradations for
typical code, however, so these actions are not
recommended.

7. Conclusion
The default optimization level provided by the Cray

X1 compilers exploits multiple levels of parallelism,
including SIMD and MIMD parallelism. Although this
default level of optimization provides very good
performance for most codes, this performance can
potentially be improved by using additional compiler flags.

Conversely, some compiler flags can cause significant

performance degradation and should be avoided. A
general recommendation for compiler options for maximum
performance is:

Fortran:

-O3 –Ofp3

C and C++:

-O3 –hfp3

 This combination strikes a balance between maximum
performance and application safety.

Acknowledgements
Thanks to all who reviewed this document, and who

provided information for it.

Reference Materials
Consult the following Cray reference manuals for

further information:

• S-2315-54: Optimizing Applications on Cray X1
Series Systems

• S-3901-54: Cray Fortran Compiler Commands and
Directives Reference Manual

• S-2179-54: Cray C and C++ Reference Manual

About the Author

 Terry Greyzck is a graduate of Michigan State
University, and has worked for Cray Inc. for 20 years. He
started by providing field support at the Livermore
Department of Energy laboratories, and eventually
migrated to compiler optimization work, with an occasional
management stint thrown in for good measure.

Terry’s first vector translator was written for the Cray

Ada compiler. From there, the next step was to develop
vector translation, multistreaming technology, and late-
stage optimizations for the current Cray X1 common
optimizer, which is used for Fortran, C, and C++.

Terry currently works out of the Cray Inc. office in

Mendota Heights, Minnesota. He can be reached at:

Terry Greyzck, Cray Inc.
1340 Mendota Heights Road
Mendota Heights, MN 55120
(651) 605-8979
 tdg@cray.com

