
Cray X1 Tuning for Performance
Using Compilation Options

Terry Greyzck, Cray Inc. CUG 2005

Introduction

• Fortran, C, and C++ compilers
• Common optimizer and code generator
• Fortran and C can have different command line

options for historical reasons
• Careful use of compilation options can improve

application performance significantly

Default Optimizations
• Automatic parallelization at multiple levels:

• Automatic SIMD parallelism (vectorization)
• Automatic MIMD parallelism (multistreaming)
• Scheduling, register allocation, decoupled vector

and scalar
• Aggressive performance enhancements:

• Automatic limited interprocedural analysis
• Aggressive floating point optimizations
• Somewhat aggressive scalar optimization

Tuning Through the Command Line

• Default optimization is roughly equivalent to:
-Oscalar2 –Ovector2 –Ostream2 –Oipa3 –Ofp2

• C and C++ use different options:
-hscalar2 –hvector2 –hstream2 –hipa3 –hfp2

• These options, and others, can be modified to
improve performance for most applications

Increasing Optimization: -Oscalar3
• C and C++ option: -hscalar3
• Scalar optimization refers to transformations not

directly related to parallelization
• Can affect the speed of parallel code (Amdahl’s

Law)
• New optimizations are performed at this level, and

more aggressive versions of the default ones
• Safe, but possible differences due to reassociation
• From no gain, to 15% or more

Increasing Optimization: -Ovector3

• C and C++ option: -hvector3
• More extensive dependency analysis
• More aggressive array privatization analysis
• Speculative loading of unsafe memory references
• Safe to use

Increasing Optimization: -O3

• Using –O3 is shorthand for:
• Fortran:

-Oscalar3 –Ovector3 –Ostream3
• C and C++:

-hscalar3 –hvector3 –hstream3

• Other options need to be specified individually

Increasing Optimization: -Ofp3
• C and C++ option: -hfp3
• Higher levels of fp give the compiler more freedom

to optimize floating point expressions
• Floating Point (fp) optimization control
• Inline code for natural log, exponentiation, and

power functions
• Use if the application has some tolerance for

floating point differences

-Oaggress
• C and C++ option: -haggress
• Tells the compiler to avoid regioning procedures

and functions
• Most functions are not regioned in the first place
• Disabling regioning for large functions can

dramatically increase the compilation time
• Performance gain is minimal; this option is

generally not beneficial

Decreasing Performance: -Ooverindex
• C and C++ option: -hoverindex
• Useful for hand-collapsed loops and similar codes

of questionable legality
• Serious negative performance impact
• For the Perfect suite, 1,243 of 4,613 vectorized

loops (27%) are hurt by this option
• Shuts down much of scheduling and memory

ordering optimizations
• It is better to correct the code to comply with the

language standard

Decreasing Performance: -Ofp0,-Ofp1

• C and C++ options: -hfp0, -hfp1
• Lower levels restrict the optimization of floating

point expressions
• Correspondingly lower performance can result
• These options should be avoided if possible

Decreasing Performance: -Oipa5

• C and C++ option: -hipa5
• Inlines everything, everywhere
• Can dramatically increase compilation time and

executable size
• Can actually decrease overall performance
• This option should never be used
• The default (-Oipa3) is best for most codes

Other Options to Avoid

-eL, -ew-Oshortcircuit2

-hzeroinc-Ozeroinc-hnounroll-Ounroll0

-hnovsearch-Onovsearch-hnorecurrence-Onorecurrence

-hnointerchange-Onointerchange-hnoinfinitevl-Onoinfinitevl

-hnofusion-Ofusion[0,1]-hzero-e0

-hnointrinsics-ev

-htolerant-eh

C and C++FortranC and C++Fortran

Voiding Your Warranty: -hivdep

• Only available for C and C++
• Places an implicit ivdep directive (ignore vector

dependencies) on every loop in the code
• Holdover from an earlier compiler
• Can lead to incorrect and slower results!
• Never use it. Ever.

Providing Information: -Ossp

• C and C++ option: -hssp
• Disables multistreaming
• Use on a case by case basis; if there is little MIMD

(multistream) parallelism, then running in SSP
mode may make better overall use of machine
resources

• Gnu utilities are a good example of applications
that do not parallelize well

Choosing Between MSP and SSP

• How do you decide when to use –Ossp?
• One method: Run the application twice, once built

with default options, and once built with –Ossp.
Time both of them, and pick the fastest

• If the times are close, keep in mind that running in
SSP mode frees up the other three processors of
the MSP for other applications to use

Providing Information: -hrestrict=f

• This option is available to C and C++
• Gives pointers which are function parameters

roughly the same aliasing attributes that Fortran
dummy arguments have

• Misuse can result in incorrect programs
• Many codes are written in restrained and compiler-

friendly manners, and can use this option

Recommended Command Line
• The simplest command line options with the greatest

impact:
Fortran: -O3 –Ofp3
C and C++: -O3 –hfp3

• Cray command lines are kept as short and simple as
possible

• Avoid options that decrease performance
• Floating point sensitive codes may have to remove the fp3

option
• If increased compilation time is a problem, the -O3 option

may also need to be removed

