
CUG 2005 Cray X1 Compiler Challenges (And How We Solved Them) 1 of 10

Cray X1 Compiler Challenges (And How We Solved Them)

Terry Greyzck, Cray Inc.

ABSTRACT: The Cray X1 architecture presents new challenges to producing
optimal code, including a decoupled scalar and vector memory architecture, full
support for predicated vector execution, hardware support for efficient four-
processor shared memory parallelism, and increases in memory latency. This
paper describes how these issues were addressed through the development of new
compiler optimizations, and describes what is done well and what needs
improvement.

KEYWORDS: Cray, X1, optimization, multistreaming, vectorization, SIMD, MIMD

1. Introduction

1.1. The Cray X1 Architecture

The Cray X1 is the first all-new vector architecture to
be developed by Cray since the Cray-2 in 1985. Created
based on experience accumulated over 30 years of
building vector machines, and experience gained from
massively parallel machines such as the Cray T3E, the
Cray X1 is a worthy successor to the original vector line.

Designed to provide vector parallelism, tightly coupled
shared memory parallelism, and massive globally
addressable parallelism, this architecture required
substantial advancements in compiler technology to fully
exploit its capabilities.

1.2. New Hardware Challenges

Prior to the Cray X1, the most recent Cray vector

architecture was the Cray SV1 series of computers. That
technology was the last in a line that can be traced back to
the original Cray-1, introduced in 1976. While very
successful, the Cray SV1 took its design as far as it could
go, so it was time for a clean break.

The Cray X1 architecture includes the following new
characteristics that make it challenging for compilers:

• New Instruction Set Architecture (ISA)
• Hardware support for 32-bit operations
• The Multistreaming Processor (MSP)
• Decoupled scalar and vector operations
• Predicated vector execution

These changes (and others) from the legacy vector
architectures provided the bulk of challenges for
developing a successful Cray X1 compiler.

1.3. New Compiler Challenges

For the Cray X1 to be successful, both hardware and

software had to be work well from the outset; and the
compiler in particular had to produce high-performance
code, correctly, immediately, and flawlessly. Therefore,
several new approaches to optimization had to be
developed.

Since most applications are written in a high-level
language, the compiler is relied upon to automatically
exploit hardware innovations. The change in architecture
for the Cray X1 provided an opportunity to update the
user programming model, bringing it in line with models
provided by other vendors. This included adding support
for:

• 8- and 16-bit integers
• Structure packing and alignment compatible with

other major vendors
• IEEE floating point support
• OpenMP for C and C++
• Unified Parallel C (UPC)

These functions are now supported, in addition to
ongoing support for Cray language extensions and
programming models such as CoArray Fortran and shmem.

CUG 2005 Cray X1 Compiler Challenges (And How We Solved Them) 2 of 10

2. Cray X1 Hardware Differences from the
Cray SV1

2.1. New Instruction Set Architecture

The Cray X1 instruction set was designed from

scratch and is composed of 32-bit fixed-width instructions.
Compared to previous Cray vector architectures, some
major changes for the compiler are:

• New instruction set
• Globally addressable memory
• 32 vector registers
• 8 vector mask registers
• 64 A and 64 S registers
• No B, T, or shared registers
• IEEE floating point (last seen on the Cray T90

series as an option, and the Cray T3E)
• Scaled addressing
• Multistream processor support
• Atomic memory operations

2.2. Support for 32-bit Data

Hardware support is provided for 32-bit integer and

floating-point operations. By contrast, the Cray SV1
provided limited 32-bit integer support, no 32-bit floating-
point support, and almost everything took 64 bits of
storage.

Vector registers on the Cray X1 are shared between 32-
and 64-bit sizes. Therefore, great care has to be taken to
avoid mixing a 32-bit data pattern in a vector register with
a 64-bit pattern without an explicit conversion.

2.3. Multistreaming Processor

The Cray X1 Multi-Chip Module (MCM) consists of

four closely coupled processors, referred to as Single-
Streaming Processors (SSP). The four processors in the
MCM are collectively referred to as a Multistreaming
Processor (MSP).

Each SSP of an MSP can be controlled through the
creative use of the msync synchronization instruction.
Data is communicated primarily through cache memory.

2.4. Decoupled Architecture

The vector and scalar portions of each SSP are

decoupled, as if there are two distinct processors: a scalar
processor and a vector processor. Scalar and vector

instructions can be intermixed, and it is up to the compiler
to create the proper synchronization between the two.

The decoupling of the vector and scalar parts of the
machine both simplifies the hardware and allows for more
aggressive optimization. In previous vector
implementations, the hardware provided the necessary
synchronization. In order to do so, it had to be extremely
conservative, as the hardware could not perform the type
of analysis that a compiler could. By mo ving the burden
of the synchronization to the compiler, the number of
synchronization points can be reduced.

2.5. Predicated Execution

Vector mask registers control nearly all vector

instructions on the Cray X1. For every element where the
mask is true, the vector operation is performed. For every
element where the mask is false, the vector operation is
skipped. This provides a predicated execution capability
for vectors, where the results of a conditional test control
the execution of the statements to follow, rather than
relying on branching logic to choose between different
code paths. The important effect of this is to reduce the
need for branching code in vectorized code, which greatly
helps performance.

Additionally, the Cray X1 has a vector length register that
can be used in some contexts for predicated execution. If
the vector length register contains a value of zero, vector
instructions become no-ops. This capability is used in
many contexts, not just conditional code.

2.6. Multi-Level Cache

The presence of a primary and secondary cache is

new with the Cray X1. The primary cache is coherent
among the four processors of the MSP, and the secondary
cache is coherent among the four MSPs of a node. This
assists in providing shared memory parallel (SMP) models,
such as multistreaming and OpenMP.

The hardware contains various mechanisms to control
cache behavior, including cache hints for memory
references and synchronization primitives.

CUG 2005 Cray X1 Compiler Challenges (And How We Solved Them) 3 of 10

2.7. Globally Addressable Memory

Cray X1 memory is globally addressable, in that any

processor has direct access to the memory of any other
processor. Of course the further two processors are from
each other, the longer it takes to access memory.
However, the hardware is robust to the point where you
can actually vectorize memory references with every
vector element residing on a different node on the machine
(although for performance reasons, it is a bad idea to do
this).

3. Levels of Parallelism
The performance of the Cray X1 comes from

exploiting parallelism. Some of the parallelism is provided
automatically by the hardware, but much depends on the
compiler to recognize and use it. The primary levels of
parallelism include the following, from lowest to highest
level:

1. Multiple registers
2. Multiple functional unit groups
3. Decoupled vectorization
4. Multistreaming
5. Higher-level programming models

The compiler is primarily responsible for finding the
parallelism in levels 1 through 4.

4. Compiler Requirements

4.1. Correctness and Stability

It is understood that two required attributes of a

production-quality compiler are correctness and stability.
In addition to being able to automatically optimize for
multiple levels of parallelism, the compiler has to produce
correct answers and keep on producing them as both the
application and compiler evolves.

4.2. Automatic Multistreaming

Multistreaming was first developed for the Cray SV1

series of computers. Although the Cray SV1 had very
little hardware support for multistreaming, it provided an
excellent development base for the fundamental
technologies necessary for multistreaming on the Cray X1.

Multistreaming on the Cray X1 requires the compiler to tie
together the processing power of the four SSPs in each
MSP. The compiler needs to simultaneously extract the
maximum amount of MIMD parallelis m from a code, while
insuring correct and repeatable results.

Experience with automatic parallelism showed that most of
our customers required repeatable results. Results that,
while correct, vary from run to run are not acceptable.
Repeatable results from a multistreamed application were a
design goal from the start.

4.3. Improved Automatic Vectorization

The Cray X1 architecture has decoupled vector and

scalar execution, predicated execution, and other features
that required significant advances to be made in
vectorization technology, in order to take full advantage of
its performance potential.

4.4. Support for Parallel Programming Models

OpenMP, including OpenMP for C and C++; CoArray

Fortran, Unified Parallel C (UPC), shmem, and MPI are all
programming models that have to be supported.
Additionally, a Cray parallel model that takes place at the
multistreaming level (CSD) was required.

4.5. Support for Industry-Standard Data Models

The Cray X1 architecture provided an excellent

opportunity to switch to more industry-standard data
representations. This included adding support for not
only 32-bit operations, but also full IEEE floating point
support, 8- and 16-bit integer operations, and structure
alignment rules that better reflect the expectations of our
customers.

One benefit of this was that it became easier to port
applications from other platforms to the Cray X1.
However, porting incurs some conversion cost for
“legacy” codes that have never run on anything but Cray
hardware in the past.

5. Base Compiler Technology

5.1. Front Ends

Compiler front ends parse the source code and lower

it to an intermediate form, which is then passed on to the
common optimizer. Front ends know the minutia about
language rules and syntax. Their main task, from an
optimization standpoint, is to convert source code to a
lower form that can then be optimized.

For the Cray X1, all front ends adopted the Cray X1 ABI.
This ABI added 8- and 16-bit integers for Fortran, changed
alignment and packing rules, plus other features.

CUG 2005 Cray X1 Compiler Challenges (And How We Solved Them) 4 of 10

5.1.1. Fortran

The Fortran front end for the Cray X1 was originally

developed by Cray Research. As the Fortran standard
evolves, the front end is enhanced with new features.
Fortran 2003 features are currently being added.

Initially developed for Cray vector machines, the front end
required little additional work specific to the Cray X1,
beyond adopting the Cray X1 ABI.

Array syntax was formally added to the Fortran language
with the Fortran 90 specification. Cray recognized early on
that the array syntax mapped cleanly on to the vector
architectures and decided to not lower most of the array
syntax into loops during the front end phase. Instead, the
array syntax is passed, unmodified, into the optimization
phase. This allows sophisticated transformations to
convert the array syntax into the best possible code. In
addition, this delayed expansion allows for the
vectorization of most array syntax even with optimization
disabled. This is especially useful for debugging.

Fortran I/O operations are partially lowered by the front
end, leaving much of the work to later phases of the
compiler. This provides optimization opportunities for I/O
that would not otherwise have been possible.

The Fortran front end also provides the language support
and initial lowering for three programming models. The
final processing of these models is performed in the
optimization and code generation stages.

CoArray Fortran (CAF) is a language extension that
provides a clean method of specifying parallelism.
OpenMP is a shared memory parallelism model, and Cray
Streaming Directives (CSD) is a new model for the Cray X1
that allows for user manipulation of multistreaming
parallelism.

5.1.2. C and C++

The C and C++ languages share a common front end

source. These languages use a commercial front end that
is used by many hardware vendors and is considered one
of the best in the industry.

The commercial front end has been adapted to lower its
internal representation into the representation used by the
common optimizer, and it has been modified to support
various language extensions, including Gnu C extensions
and Cray-specific pragma implementations.

Additionally, the C and C++ front ends also provide the
language support and initial lowering for the OpenMP

shared-memory parallel model and the Cray Streaming
Directives multistreaming programming model.

Finally, the C front end supports the syntax and provides
the initial lowering for the Unified Parallel C (UPC)
programming model.

5.1.3. Functional Interface

All of the Cray X1 front ends communicate with the

optimizer through a functional interface, a completely
defined set of functions used to communicate program
information to the optimizer. This design allows
asynchronous development of the various front ends and
optimizers, and nearly eliminates the need for expensive
joint component integrations.

5.2. Interprocedural Optimization

The interprocedural component of the Cray X1

compilation system is shared by all compilers. It provides
support for inlining (including cross-file inlining), cloning,
and various optimizations such as tail recursion
elimination and Fortran alternate entry point simplification.

This component is new with the Cray X1 system and was
created to replace aging language-dependent inlining
technology that previously resided in the front ends.
Experience with previous inlining implementations was
applied to the new component to provide a much more
capable product.

5.3. PDGCS Optimizer

The mid-phase optimizer used for the Cray X1 is

based on the same technology used for earlier Cray vector
and scalar architectures, and is called PDGCS (Program
Dependence Graph Compilation System). As the name
indicates, the control flow is built into a program
dependence graph (PDG) rather than traditional basic
block structures. This greatly assists in making program
transformations.

The development of this component started in the early
1990s, and PDGCS has been continuously updated as new
optimizations, technologies, and methodologies have
emerged. It provides the core optimization, parallelization,
and early lowering capabilities for the compiler.

This component required significant updating for the Cray
X1 architecture, but most of the vectorization and some of
the multistreaming work was already in place due to the
work performed for earlier architectures.

CUG 2005 Cray X1 Compiler Challenges (And How We Solved Them) 5 of 10

The following summaries are a simplification of the actual
optimizer internal processing. The most significant phases
are called out, but there are many other optimizations and
necessary phases that are not specified here.

1. From the front end interface, a basic block

representation of control flow is converted into a
Program Dependence Graph (PDG) format. This
assists the entire optimization process by simplifying
transformations, and it helps developers by
representing control flow in an intuitive, graphical
representation.

2. Early optimizations are performed before the loop

analysis and transformation phase. Most of these
optimizations manipulate the intermediate text into a
form more amenable to later optimizations.

3. Detailed loop nest analysis is then performed. This
includes a range of loop analysis and transformation
techniques. The results are loop nests that have been
modified to remove dependencies, modified for better
memory usage, and generally rewritten to improve the
overall performance of the nest. The loop nests are
marked as vectorization and multistreaming
parallelization candidates for later processing.

4. While the intermediate form is still at a high level, the
code transformations necessary to provide OpenMP
parallelism are performed. This includes creating code
for master and slave functions, and all of the
associated synchronization logic.

5. The internal representation is then converted to a
linearized form, where all high-level addressing is
lowered to a representation that maps closely to what
the target architecture – in this case the Cray X1 –
supports. As this is a dramatic lowering step, great
care is taken to preserve as much of the original high-
level information as possible as an annotation to the
newly lowered form. This allows later phases to
regenerate much of the dependence information that
would otherwise have been lost at this stage, leading
to better overall optimization.

6. The multistream translator lowers loop nests marked
for multistreaming into their almost-final form. This
phase was initially written for the Cray SV1, but was
greatly expanded and improved for the Cray X1.
More information on this phase is provided later in
this paper.

7. The vector translator is the optimization that converts
loop nests marked for vectorization into a form that
can map almost directly onto the hardware
implementation. An original component of the
PDGCS optimizer, this has been greatly improved to

provide optimal performance for the Cray X1
architecture.

8. The last phase of PDGCS is to perform a great many
“traditional” optimizations, such as common
subexpression elimination, strength reduction, loop
invariant hoisting, and so on. The primary change to
this portion of the compiler for the Cray X1 was to
modify these optimizations to take advantage of the
greater number of vector registers available, compared
to older Cray vector implementations.

5.4. Code Generation

With an entirely new instruction set, we decided to

develop a new code generator for the Cray X1 and its
derivatives. This new code generator uses knowledge
gained from earlier implementations and adds support for
new optimization technologies developed since the old
code generator was written.

The primary lowering phase of the code generator takes
the intermediate text produced by PDGCS, which is already
at a low level, and completes the transformation to
produce Cray X1 instructions. It also performs several
optimizations during this process and completes the final
lowering of multistreamed functions.

The Cray X1 instructions are then scheduled for the best
performance. The scheduling methodology reflects the
decoupled nature of vector and scalar architecture. As
scalar and vector instructions are typically intermixed, this
is a very complicated process.

After scheduling, the instructions are then tied to specific
registers. This phase uses new technology for the Cray
X1 and handles issues such as register spilling and
constant regeneration.

For the Cray X1 we decided to use the Elf and Dwarf
object representation methods rather than continuing to
use proprietary Cray representations. This allows for
better integration with third party applications and allows
some use of publicly available libraries for producing the
output files.

6. Support for a More Standard User
Interface

6.1. Support for 32-bit Operations

Adding support for 32-bit operations created

problems that were not immediately apparent. The
previous vector architectures were very 64-bit oriented, so

CUG 2005 Cray X1 Compiler Challenges (And How We Solved Them) 6 of 10

some development was necessary to add 32-bit support to
the compiler and associated optimizations.

6.2. Support for 16-bit Operations

No Cray compiler (even for the Alpha and Sparc) had

ever supported 16-bit integers, so this was a challenge.
There is no direct hardware support for small data items on
the Cray X1, except for an unaligned 64-bit load and byte
and half word extraction instructions. This creates
complicated instruction sequences for accessing these
small data items, and all operations on them need to be
performed in software. Significant effort has gone into
making these code sequences as fast as possible.

For Fortran, the default compilation mode is to map one
and two byte integers onto four byte integers, which is
supported by the hardware. There is a compilation switch
to disable this conversion, but the majority of codes
behave well with the default. For C and C++, there is no
such option. The best we can do is discourage the use of
char and short data types in performance-critical areas of
an application.

6.3. IEEE Floating-Point Support

The compiler already had support for 64-bit IEEE

arithmetic from the earlier Cray T90 processor, where IEEE
arithmetic was an option. 32-bit IEEE support was new,
and full support had to be added. One problem area was
that two 32-bit NaNs did not equal one 64-bit NaN, which
made it difficult to implement the debug option that
initialized all stack variables to the NaN pattern.

7. Vectorization Challenges

7.1. 32 Vector Registers

After working on architectures that had eight vector

registers, the jump to 32 vector registers on the Cray X1
almost seemed like an infinite number to the compiler
developer. However, it is still a limited resource, and the
registers needed to be managed to avoid
oversubscription.

As each vector register has 64 elements, the register set as
a whole can be viewed as a 32x64 = 2,048 element cache.
Outer loop vectorization was modified to take advantage
of the larger register set, using the vector registers as
cache, thereby reducing memory bandwidth. In a loop
nest, vectorizing an outer loop often leaves the
opportunity to hoist memory references that are invariant
with respect to the inner loop. Such references are loaded
as a vector in the outer loop, and then reused throughout

the inner loops. This is common with matrix
multiplications and similar constructs.

Some other ways of using the larger vector register set
were to hoist invariant vector expressions from loops,
strength reduce vector expressions where possible, and be
more aggressive about recognizing global vector common
subexpressions.

7.2. Predicated Execution

One major improvement with the Cray X1 is the

addition of predicated vector instructions. Earlier Cray
vector architectures had one vector mask register, which
was used by only one merge instruction. On the Cray X1,
there are eight vector mask registers, and nearly all vector
instructions use one of them to support predicated
execution. As this was new with the Cray X1, significant
development was necessary.

The addition of support for multiple vector mask registers
was actually straightforward. Using them in the context of
predicated execution had significant similarity to the
merge technique of vectorizing conditionals on earlier
Cray platforms, so much of the vectorization logic was
adapted for the Cray X1. The resulting code is actually
much simpler and easier to read than the older vector
implementations.

By software convention, vector mask zero is expected to
contain all true values. Vector mask zero is typically used
for vector execution in code that is not controlled by a
vectorized condition.

A major opportunity with true predicated execution is the
ability to remove branching logic. On earlier vector
platforms, a vectorized condition had to be protected by a
scalar test and branch, to protect against the case where
the vector condition is never true. For most cases on the
Cray X1, these tests are no longer necessary, as executing
the vector instructions with a mask of all false values is
effectively the same as executing no-ops. However,
significant compiler analysis was required to determine the
safety of removing the test; not all conditions can have
their test removed.

Another mode of predicated execution on the Cray X1 can
be obtained by using zero for the vector length. Vector
instructions executed with a zero vector length, regardless
of the vector mask, are effectively no-ops. This capability
is used to remove scalar branches in search loops and
conditions that are vectorized using compression
techniques. This is done with safety analysis very similar
to what is used for vector masks. This addition of a ‘true’
zero vector length also allows for simpler vector unrolling,
and for full unrolling of some loops even when the trip
count is not fully known at compilation time.

CUG 2005 Cray X1 Compiler Challenges (And How We Solved Them) 7 of 10

One significant challenge introduced with vector mask
predicated execution is hiding the latency that results from
the mask creation. In an ideal world, the vector mask
would be calculated and then used for all vector
instructions controlled by that condition. Although this
works, it is not the fastest solution for most codes. The
fast solution is to execute the first several vector loads
controlled by the condition as if they appeared in straight
line code – with an all-true mask. This speculative
technique avoids having to wait for the vector mask to be
computed before issuing the vector loads and is used
heavily by the compiler. This requires significant
additional analysis to determine the safety of what
amounts to hoisting the loads out of the conditional
expression. The compiler actually does a very good job at
determining the safety, but the safe_address compiler
directive was added for those cases that could not be
determined safe at compilation time.

7.3. Decoupled Vector and Scalar Operations

The decoupling of vector and scalar operations shifts

the burden of correct synchronization from the hardware
in the older Cray vector machines to the compiler on the
Cray X1. From a compiler standpoint, if everything is
done correctly, the resulting code is faster than if
hardware was responsible for the synchronization.
However, get just a little bit wrong and incorrect answers
can result.

Cray decided to err on the side of correct answers.
(Forgive us, high performance fanatics.)

The primary challenge here is to add the minimum
synchronization necessary between scalar and vector
memory references. This is accomplished using the lsync
instruction. Performed by the code generator, the
insertion of synchronization is delayed as long as
possible. First, lsync instructions are placed at every
point where vector and scalar memory references may
require them. This guarantees functional correctness but
is not particularly fast. The code generator then analyzes
the generated instruction stream, and removes the lsync
instructions that are not required for correctness. This
compiler analysis uses information such as dependency
information, alias analysis, and other tools to minimize the
number of scalar/vector synchronizations necessary.

Additional work being performed in this area is aimed at
reducing synchronization needs by expanding the region
of vectorized code beyond loop nests, and using vector
memory instructions with a vector length of one to
process what was formerly scalar memory references. This
reduces or eliminates the necessity of scalar/vector
memory synchronization within that expanded vector

region. This vector region expansion work is mature for
reduction operations and continues for other constructs.

7.4. Longer Memory Latencies

It is a universal problem in high performance

computing that the speed of memory access does not
improve apace with processor speed. The net effect of
this is that new generations of machines must contend
with much longer apparent memory latencies. This is also
the case with the Cray X1.

For this architecture, the solution is always the same:
move the memory operation far enough back in the
instruction stream so that, by the time it is needed for a
computation, it is ready. This is known as covering
latency. Many methods are used to accomplish this.
Some are direct and some enabling. The hardware
supports this by allowing many vector loads to be in
progress simultaneously.

The most common direct latency covering optimization is
scheduling, and the Cray X1 compiler has a new vector
scheduler tuned specifically for the architecture. Within
the limitations of the code it is presented with, it moves
vector loads back as far as it can.

A second direct latency-covering optimization is vector
pipelining. Although pipelining is common for scalar
architectures, pipelining is new for the vector Cray line.
Historically, any loop that could be pipelined in a scalar
architecture would be pipelined by the hardware on a
vector platform. Today however, the latencies have
grown so large that you sometimes need both hardware
(vector) and software pipelining to hide them. For many
loops, vector pipelining has achieved performance
improvements of 30% or more.

There are also indirect optimizations that reorganize the
code, making it easier for the direct latency hiding
optimizations to do their job. They all work the same way,
by increasing the size of the basic block – a piece of code
that has no branches. Some of these optimizations include
the rewriting of conditions into inline select operations,
the total unrolling (unwinding) of loops, and others.

8. Multistreaming

8.1. Automatic Parallelism

The development of automatic multistreaming

technology for the Cray X1 was the single largest
undertaking for that architecture’s compiler. This is no
less than automatic shared memory parallelism, in some
ways beyond what can be achieved with OpenMP. It had
to be fast, correct, and consistent. From a compiler

CUG 2005 Cray X1 Compiler Challenges (And How We Solved Them) 8 of 10

developer’s standpoint, the most daunting aspect of this
is that automatic multistreaming would be the default
optimization level on the Cray X1.

This was a long development project. Early
multistreaming was first introduced for the Cray SV1 line,
as much to develop the technology as to provide higher
performance. For the Cray SV1, multistreaming was only
available only via an option and was not enabled by
default.

Cray X1 multistreaming started where Cray SV1
multistreaming left off. In some ways, it was easier on the
Cray X1, as there were hardware primitives to assist in
synchronization, and the caches appear coherent to each
of the processors. However, the expectations were much
higher for the Cray X1 than they ever were for the Cray
SV1.

8.2. Multistreaming Constructs

At the heart of multistreaming is the selection of the

constructs that will run in parallel. Like vectorization, the
primary focus is on loop nests. Most of the same
transformations that are performed for vectorization also
apply to multistreaming.

Because of the fast hardware synchronization on the Cray
X1, a larger variety of loops can be profitably parallelized
than with most other architectures. These include update
loops, conditional last value captures, and others.
Additionally, fast synchronization allows multistreamed
reductions to return the same answer – every time. This
repeatability in some ways makes the multistreamed
processor with four two-pipe vector processors appear to
work like an eight-pipe vector processor. While not a true
eight-pipe vector processor, it still achieves automatic
multi-processor parallelism that is as reliable and
repeatable as vectorization.

8.3. Minimizing Synchronization Overhead

While the Cray X1 has additional hardware support

for multistreaming processor synchronization, the costs
associated with it are still significant and need to be
minimized. The primary method employed by the compiler
is to expand the region of multistreaming beyond
individual loops and loop nests, running as much code as
possible on all four SSPs of the MSP.

This streamed region expansion is accomplished by
running serial code redundantly on each SSP. This allows

each SSP to fetch its own data and make its own
calculations without waiting for an individual processor to
complete and broadcast its results.

During the phase of compilation that determines which
loops to vectorize and which to multistream, the compiler
determines how many of the non-parallel loops in the nest
can be run redundantly and what lightweight
synchronization, if any, is required.

A later optimization takes this further and attempts to run
the purely non-parallel sections of code redundantly to
avoid synchronization costs. Because of these efforts,
entire subroutines occasionally can be run fully
multistreamed with no synchronization, except at the entry
and exit points.

Other methods of reducing synchronization overhead are
also used, including two independent execution streams,
one for processor zero and one for processors one, two,
and three. Other methods of synchronization are also
available, and only the least costly method necessary for
correctness is used.

8.4. Minimizing Negative Optimization Effects

With earlier automatic parallelization implementations,

the addition of synchronization barriers and scoping
boundaries had severe negative effects on other
optimizations. The effect of automatically parallelizing a
loop nest could degrade the performance of other parts of
the same function, primarily by preventing the code
motion necessary for general purpose optimization.

Given a clean slate for the multistreaming implementation,
the solution to this challenge for the Cray X1 was to
introduce weak markers to indicate the boundaries of the
multistreamed area. These weak markers contain
information on what absolutely could not be moved
across them (generally a very small list), allowing all other
data to be free to move across these barriers.

This allows for optimization in multistreamed code to be
nearly as good as in single processor code. However, it is
somewhat controversial in that the free code motion can
actually result in an inconsistent program during some
phases of optimization by violating data scoping rules. A
late phase corrects any data scoping problems introduced
by optimization. Overall, this has been a very successful
implementation.

9. Balancing SIMD and MIMD Parallelism

9.1. Multiple Levels of Parallelism

CUG 2005 Cray X1 Compiler Challenges (And How We Solved Them) 9 of 10

One of the most challenging and labor-intensive
aspects of optimizing for the Cray X1 series is to balance
vector parallelism with multistream parallelism. While
vectorization can achieve greater than an order of
magnitude performance improvement, multistreaming is
limited by the number of processors and can achieve a
maximum speedup of four. Clearly, this means that it is
more important to pursue vector parallelism than
multistreaming. However, since we have both, the
compiler attempts to use all of the resources of the
machine for maximum performance. This means that loop
nests are both vectorized and multistreamed where
possible.

9.2. Inner Vector, Outer Multistreamed

The preferred use of multiple levels of parallelism is to

have a loop nest that consists of two or more loops,
vectorize one of the inner loops, and multistream one of
the outer loops. This method exploits multi-level
parallelism, and it works very well, when applicable.
However, it is not a universal solution as there may be
only one loop, or the trip count of the inner loop may be
small. In many of these cases, loop transformations such
as loop interchange can be beneficial, but sometimes other
methods must be considered.

9.3. Inner Multistreamed, Outer Vector

The Cray X1 compiler has the ability to run a

vectorized outer loop redundantly, containing an inner
multistreamed, partitioned loop nest. This is useful when
the 32 vector registers of each processor of the Cray X1
can be used as an extremely fast cache: the vector
registers are loaded redundantly in the outer loop and
then reused many times in the inner, partitioned loops.
This can greatly reduce bandwidth requirements and
improve latency issues. One example of where this is
effective is for common dgemm matrix multiplications,
where this technique allows the code to achieve 99% of
peak performance. The compiler uses this technique,
when profitable.

9.4. Small Trip Counts

If a loop has a very small number of trips, say 100 or

fewer, it is clearly better to simply vectorize it rather than
multistream and vectorize it. The compiler uses range
analysis to generate estimated and guaranteed maximum
ranges for the loop trip count and incorporates that
knowledge into its parallelization decision making process.

10. Giant Applications!
The applications that are run on Cray computers have

evolved over the years from fairly small, home-grown

programs, to applications that include millions of lines of
code – and are getting larger all the time. These
applications require a compiler that both conforms to
language standards for ease of porting, and is
exceptionally reliable. In addition, top performance is a
requirement for the Cray X1. Any one of these
requirements is difficult to achieve, but attaining language
conformance, absolute functional correctness, and extreme
performance is a challenge.

10.1. 10,000 Vector Loops in One Subroutine

One case in point is an application that ran into a

compiler limit of 10,000 vector loops in one subroutine.
That limit of 10,000 was considered essentially infinite
from a compiler standpoint, but a real application managed
to exceed it without much effort.

Ten thousand vector loops in one subroutine is a lot. The
limit has been extended to 2,000,000,000. We hope that
that limit will hold us for a while.

10.2. 1,000,000 Unique Expressions

A recent application managed to create over one

million unique one-operand expressions in a single
subroutine. This is another limit the compiler never
expected to see.

10.3. Exponentially Increasing Application Size

An emerging trend in application development is the

automatic generation of high-level Fortran code – quite a
challenge for a compiler that was designed for hand-
written code in mind. This can lead to an expansion in the
size of applications that cannot be achieved by hand
coding alone. One popular application has a growth
curve, in lines of automatically generated Fortran, which
nearly doubles in size every six months. That will test the
limits of any compiler.

11. Conclusion
The production of a compiler that is robust, reliable,

stable, and creates the fastest possible code is a challenge
for any architecture. For the Cray X1, new hardware made
this even more difficult. Additionally, trends in increasing
application size and complexity also create their own
problems.

The Cray X1 series of compilers recognizes these
challenges, and strives to meet all of them. Developments
in the academic world, and innovative, Cray-developed
solutions were necessary to meet the requirements of the

CUG 2005 Cray X1 Compiler Challenges (And How We Solved Them) 10 of 10

Cray X1. Continuing development further solidifies the
abilities of the compilation environment.

Acknowledgements
Sincere thanks to all who reviewed this document,

and who provided information for it. Thank you to Cray
for allowing my colleagues and me to work for twenty
years on what continue to be the fastest and most
innovative computing systems in the world. There is
always another challenge to conquer.

Reference Materials
The following Cray reference manuals are useful for

obtaining further information:

• S-2315-54: Optimizing Applications on Cray X1

Series Systems
• S-3901-54: Cray Fortran Compiler Commands and

Directives Reference Manual
• S-2179-54: Cray C and C++ Reference Manual

In addition, the following links are useful:

www.co-array.org CoArray Fortran
www.openmp.org OpenMP
upc.gwu.edu Unified Parallel C

About the Author

 Terry Greyzck is a graduate of Michigan State
University, and has worked for Cray Inc. for 20 years. He
started by providing field support at the Livermore
Department of Energy laboratories, and eventually
migrated to compiler optimization work, with an occasional
management stint thrown in for good measure.

Terry’s first vector translator was written for the Cray Ada
compiler. From there, the next step was to develop vector
translation, multistreaming technology, and late-stage
optimizations for the current Cray X1 common optimizer,
which is used for Fortran, C, and C++.

Terry currently works out of the Cray Inc. office in
Mendota Heights, Minnesota. He can be reached at:

Terry Greyzck, Cray Inc.
1340 Mendota Heights Road
Mendota Heights, MN 55120
(651) 605-8979
tdg@cray.com.

