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ABSTRACT: The Cray X1 architecture presents new challenges to producing 
optimal code, including a decoupled scalar and vector memory architecture, full 
support for predicated vector execution, hardware support for efficient four-
processor shared memory parallelism, and increases in memory latency.  This 
paper describes how these issues were addressed through the development of new 
compiler optimizations, and describes what is done well and what needs 
improvement.  
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1. Introduction 

1.1. The Cray X1 Architecture 
 

The Cray X1 is the first all-new vector architecture to 
be developed by Cray since the Cray-2 in 1985.  Created 
based on experience accumulated over 30 years of 
building vector machines, and experience gained from 
massively parallel machines such as the Cray T3E, the 
Cray X1 is a worthy successor to the original vector line. 

 
Designed to provide vector parallelism, tightly coupled 
shared memory parallelism, and massive globally 
addressable parallelism, this architecture required 
substantial advancements in compiler technology to fully 
exploit its capabilities. 

 

1.2. New Hardware Challenges 
 
Prior to the Cray X1, the most recent Cray vector 

architecture was the Cray SV1 series of computers.  That 
technology was the last in a line that can be traced back to 
the original Cray-1, introduced in 1976.  While very 
successful, the Cray SV1 took its design as far as it could 
go, so it was time for a clean break. 

 
The Cray X1 architecture includes the following new 
characteristics that make it challenging for compilers: 

 
• New Instruction Set Architecture (ISA) 
• Hardware support for 32-bit operations 
• The Multistreaming Processor (MSP) 
• Decoupled scalar and vector operations 
• Predicated vector execution 

 

These changes (and others) from the legacy vector 
architectures provided the bulk of challenges for 
developing a successful Cray X1 compiler. 
 

1.3. New Compiler Challenges 
 
For the Cray X1 to be successful, both hardware and 

software had to be work well from the outset; and the 
compiler in particular had to produce high-performance 
code, correctly, immediately, and flawlessly.  Therefore, 
several new approaches to optimization had to be 
developed. 

 
Since most applications are written in a high-level 
language, the compiler is relied upon to automatically 
exploit hardware innovations.  The change in architecture 
for the Cray X1 provided an opportunity to update the 
user programming model, bringing it in line with models 
provided by other vendors.  This included adding support 
for: 

 
• 8- and 16-bit integers 
• Structure packing and alignment compatible with 

other major vendors 
• IEEE floating point support 
• OpenMP for C and C++ 
• Unified Parallel C (UPC) 
 

These functions are now supported, in addition to 
ongoing support for Cray language extensions and 
programming models such as CoArray Fortran and shmem. 
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2. Cray X1 Hardware Differences from the 
Cray SV1 

2.1. New Instruction Set Architecture 
 
The Cray X1 instruction set was designed from 

scratch and is composed of 32-bit fixed-width instructions.  
Compared to previous Cray vector architectures, some 
major changes for the compiler are: 

 
• New instruction set 
• Globally addressable memory 
• 32 vector registers 
• 8 vector mask registers 
• 64 A and 64 S registers 
• No B, T, or shared registers 
• IEEE floating point (last seen on the Cray T90 

series as an option, and the Cray T3E) 
• Scaled addressing 
• Multistream processor support  
• Atomic memory operations 
 

2.2. Support for 32-bit Data 
 
Hardware support is provided for 32-bit integer and 

floating-point operations.  By contrast, the Cray SV1 
provided limited 32-bit integer support, no 32-bit floating-
point support, and almost everything took 64 bits of 
storage. 

 
Vector registers on the Cray X1 are shared between 32- 
and 64-bit sizes.  Therefore, great care has to be taken to 
avoid mixing a 32-bit data pattern in a vector register with 
a 64-bit pattern without an explicit conversion. 

 

2.3. Multistreaming Processor 
 
The Cray X1 Multi-Chip Module (MCM) consists of 

four closely coupled processors, referred to as Single-
Streaming Processors (SSP).  The four processors in the 
MCM are collectively referred to as a Multistreaming 
Processor (MSP). 

 
Each SSP of an MSP can be controlled through the 
creative use of the msync synchronization instruction.  
Data is communicated primarily through cache memory. 

 

2.4. Decoupled Architecture 
 
The vector and scalar portions of each SSP are 

decoupled, as if there are two distinct processors: a scalar 
processor and a vector processor.  Scalar and vector 

instructions can be intermixed, and it is up to the compiler 
to create the proper synchronization between the two. 

 
The decoupling of the vector and scalar parts of the 
machine both simplifies the hardware and allows for more 
aggressive optimization.  In previous vector 
implementations, the hardware provided the necessary 
synchronization.  In order to do so, it had to be extremely 
conservative, as the hardware could not perform the type 
of analysis that a compiler could.  By mo ving the burden 
of the synchronization to the compiler, the number of 
synchronization points can be reduced. 

 

2.5. Predicated Execution 
 
Vector mask registers control nearly all vector 

instructions on the Cray X1.  For every element where the 
mask is true, the vector operation is performed.  For every 
element where the mask is false, the vector operation is 
skipped.  This provides a predicated execution capability 
for vectors, where the results of a conditional test control 
the execution of the statements to follow, rather than 
relying on branching logic to choose between different 
code paths.  The important effect of this is to reduce the 
need for branching code in vectorized code, which greatly 
helps performance. 
 
Additionally, the Cray X1 has a vector length register that 
can be used in some contexts for predicated execution.  If 
the vector length register contains a value of zero, vector 
instructions become no-ops.  This capability is used in 
many contexts, not just conditional code. 

 

2.6. Multi-Level Cache 
 
The presence of a primary and secondary cache is 

new with the Cray X1.  The primary cache is coherent 
among the four processors of the MSP, and the secondary 
cache is coherent among the four MSPs of a node.  This 
assists in providing shared memory parallel (SMP) models, 
such as multistreaming and OpenMP. 

 
The hardware contains various mechanisms to control 
cache behavior, including cache hints for memory 
references and synchronization primitives. 
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2.7. Globally Addressable Memory 
 
Cray X1 memory is globally addressable, in that any 

processor has direct access to the memory of any other 
processor.  Of course the further two processors are from 
each other, the longer it takes to access memory.  
However, the hardware is robust to the point where you 
can actually vectorize memory references with every 
vector element residing on a different node on the machine 
(although for performance reasons, it is a bad idea to do 
this). 

 

3. Levels of Parallelism 
The performance of the Cray X1 comes from 

exploiting parallelism.  Some of the parallelism is provided 
automatically by the hardware, but much depends on the 
compiler to recognize and use it.  The primary levels of 
parallelism include the following, from lowest to highest 
level: 

 
1. Multiple registers 
2. Multiple functional unit groups 
3. Decoupled vectorization 
4. Multistreaming 
5. Higher-level programming models  

 
The compiler is primarily responsible for finding the 
parallelism in levels 1 through 4. 

 

4. Compiler Requirements 

4.1. Correctness and Stability 
 
It is understood that two required attributes of a 

production-quality compiler are correctness and stability.  
In addition to being able to automatically optimize for 
multiple levels of parallelism, the compiler has to produce 
correct answers and keep on producing them as both the 
application and compiler evolves. 

 

4.2. Automatic Multistreaming 
 
Multistreaming was first developed for the Cray SV1 

series of computers.  Although the Cray SV1 had very 
little hardware support for multistreaming, it provided an 
excellent development base for the fundamental 
technologies necessary for multistreaming on the Cray X1. 

 
Multistreaming on the Cray X1 requires the compiler to tie 
together the processing power of the four SSPs in each 
MSP.  The compiler needs to simultaneously extract the 
maximum amount of MIMD parallelis m from a code, while 
insuring correct and repeatable results. 

 
Experience with automatic parallelism showed that most of 
our customers required repeatable results.  Results that, 
while correct, vary from run to run are not acceptable.  
Repeatable results from a multistreamed application were a 
design goal from the start. 

 

4.3. Improved Automatic Vectorization 
 
The Cray X1 architecture has decoupled vector and 

scalar execution, predicated execution, and other features 
that required significant advances to be made in 
vectorization technology, in order to take full advantage of 
its performance potential. 

 

4.4. Support for Parallel Programming Models 
 
OpenMP, including OpenMP for C and C++; CoArray 

Fortran, Unified Parallel C (UPC), shmem, and MPI are all 
programming models that have to be supported.  
Additionally, a Cray parallel model that takes place at the 
multistreaming level (CSD) was required. 

 

4.5. Support for Industry-Standard Data Models 
 
The Cray X1 architecture provided an excellent 

opportunity to switch to more industry-standard data 
representations.  This included adding support for not 
only 32-bit operations, but also full IEEE floating point 
support, 8- and 16-bit integer operations, and structure 
alignment rules that better reflect the expectations of our 
customers. 

 
One benefit of this was that it became easier to port 
applications from other platforms to the Cray X1.  
However, porting incurs some conversion cost for 
“legacy” codes that have never run on anything but Cray 
hardware in the past. 

 

5. Base Compiler Technology 

5.1. Front Ends 
 
Compiler front ends parse the source code and lower 

it to an intermediate form, which is then passed on to the 
common optimizer.  Front ends know the minutia about 
language rules and syntax.  Their main task, from an 
optimization standpoint, is to convert source code to a 
lower form that can then be optimized. 

 
For the Cray X1, all front ends adopted the Cray X1 ABI.  
This ABI added 8- and 16-bit integers for Fortran, changed 
alignment and packing rules, plus other features. 
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5.1.1. Fortran 
 
The Fortran front end for the Cray X1 was originally 

developed by Cray Research.  As the Fortran standard 
evolves, the front end is enhanced with new features.  
Fortran 2003 features are currently being added. 

 
Initially developed for Cray vector machines, the front end 
required little additional work specific to the Cray X1, 
beyond adopting the Cray X1 ABI. 

 
Array syntax was formally added to the Fortran language 
with the Fortran 90 specification.  Cray recognized early on 
that the array syntax mapped cleanly on to the vector 
architectures and decided to not lower most of the array 
syntax into loops during the front end phase.  Instead, the 
array syntax is passed, unmodified, into the optimization 
phase.  This allows sophisticated transformations to 
convert the array syntax into the best possible code.  In 
addition, this delayed expansion allows for the 
vectorization of most array syntax even with optimization 
disabled.  This is especially useful for debugging. 

 
Fortran I/O operations are partially lowered by the front 
end, leaving much of the work to later phases of the 
compiler.  This provides optimization opportunities for I/O 
that would not otherwise have been possible. 

 
The Fortran front end also provides the language support 
and initial lowering for three programming models.  The 
final processing of these models is performed in the 
optimization and code generation stages. 

 
CoArray Fortran (CAF) is a language extension that 
provides a clean method of specifying parallelism.  
OpenMP is a shared memory parallelism model, and Cray 
Streaming Directives (CSD) is a new model for the Cray X1 
that allows for user manipulation of multistreaming 
parallelism. 

 

5.1.2. C and C++ 
 
The C and C++ languages share a common front end 

source.  These languages use a commercial front end that 
is used by many hardware vendors and is considered one 
of the best in the industry. 

 
The commercial front end has been adapted to lower its 
internal representation into the representation used by the 
common optimizer, and it has been modified to support 
various language extensions, including Gnu C extensions 
and Cray-specific pragma implementations. 

 
Additionally, the C and C++ front ends also provide the 
language support and initial lowering for the OpenMP 

shared-memory parallel model and the Cray Streaming 
Directives multistreaming programming model. 

 
Finally, the C front end supports the syntax and provides 
the initial lowering for the Unified Parallel C (UPC) 
programming model. 

 

5.1.3. Functional Interface 
 
All of the Cray X1 front ends communicate with the 

optimizer through a functional interface, a completely 
defined set of functions used to communicate program 
information to the optimizer.  This design allows 
asynchronous development of the various front ends and 
optimizers, and nearly eliminates the need for expensive 
joint component integrations. 

 

5.2. Interprocedural Optimization 
 
The interprocedural component of the Cray X1 

compilation system is shared by all compilers.  It provides 
support for inlining (including cross-file inlining), cloning, 
and various optimizations such as tail recursion 
elimination and Fortran alternate entry point simplification. 

 
This component is new with the Cray X1 system and was 
created to replace aging language-dependent inlining 
technology that previously resided in the front ends.  
Experience with previous inlining implementations was 
applied to the new component to provide a much more 
capable product. 

 

5.3. PDGCS Optimizer 
 
The mid-phase optimizer used for the Cray X1 is 

based on the same technology used for earlier Cray vector 
and scalar architectures, and is called PDGCS (Program 
Dependence Graph Compilation System).  As the name 
indicates, the control flow is built into a program 
dependence graph (PDG) rather than traditional basic 
block structures.  This greatly assists in making program 
transformations. 

 
The development of this component started in the early 
1990s, and PDGCS has been continuously updated as new 
optimizations, technologies, and methodologies have 
emerged.  It provides the core optimization, parallelization, 
and early lowering capabilities for the compiler. 

 
This component required significant updating for the Cray 
X1 architecture, but most of the vectorization and some of 
the multistreaming work was already in place due to the 
work performed for earlier architectures. 
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The following summaries are a simplification of the actual 
optimizer internal processing.  The most significant phases 
are called out, but there are many other optimizations and 
necessary phases that are not specified here. 

 
1. From the front end interface, a basic block 

representation of control flow is converted into a 
Program Dependence Graph (PDG) format.  This 
assists the entire optimization process by simplifying 
transformations, and it helps developers by 
representing control flow in an intuitive, graphical 
representation. 

 
2. Early optimizations are performed before the loop 

analysis and transformation phase.  Most of these 
optimizations manipulate the intermediate text into a 
form more amenable to later optimizations. 
 

3. Detailed loop nest analysis  is then performed.  This 
includes a range of loop analysis and transformation 
techniques.  The results are loop nests that have been 
modified to remove dependencies, modified for better 
memory usage, and generally rewritten to improve the 
overall performance of the nest.  The loop nests are 
marked as vectorization and multistreaming 
parallelization candidates for later processing. 
 

4. While the intermediate form is still at a high level, the 
code transformations necessary to provide OpenMP 
parallelism are performed.  This includes creating code 
for master and slave functions, and all of the 
associated synchronization logic. 
 

5. The internal representation is then converted to a 
linearized form, where all high-level addressing is 
lowered to a representation that maps closely to what 
the target architecture – in this case the Cray X1 – 
supports.  As this is a dramatic lowering step, great 
care is taken to preserve as much of the original high-
level information as possible as an annotation to the 
newly lowered form.  This allows later phases to 
regenerate much of the dependence information that 
would otherwise have been lost at this stage, leading 
to better overall optimization. 
 

6. The multistream translator lowers loop nests marked 
for multistreaming into their almost-final form.  This 
phase was initially written for the Cray SV1, but was 
greatly expanded and improved for the Cray X1.  
More information on this phase is provided later in 
this paper. 
 

7. The vector translator is the optimization that converts 
loop nests marked for vectorization into a form that 
can map almost directly onto the hardware 
implementation.  An original component of the 
PDGCS optimizer, this has been greatly improved to 

provide optimal performance for the Cray X1 
architecture. 
 

8. The last phase of PDGCS is to perform a great many 
“traditional” optimizations, such as common 
subexpression elimination, strength reduction, loop 
invariant hoisting, and so on.  The primary change to 
this portion of the compiler for the Cray X1 was to 
modify these optimizations to take advantage of the 
greater number of vector registers available, compared 
to older Cray vector implementations. 

 
 

5.4. Code Generation 
 
With an entirely new instruction set, we decided to 

develop a new code generator for the Cray X1 and its 
derivatives.  This new code generator uses knowledge 
gained from earlier implementations and adds support for 
new optimization technologies developed since the old 
code generator was written. 

 
The primary lowering phase of the code generator takes 
the intermediate text produced by PDGCS, which is already 
at a low level, and completes the transformation to 
produce Cray X1 instructions.  It also performs several 
optimizations during this process and completes the final 
lowering of multistreamed functions. 

 
The Cray X1 instructions are then scheduled for the best 
performance.  The scheduling methodology reflects the 
decoupled nature of vector and scalar architecture.  As 
scalar and vector instructions are typically intermixed, this 
is a very complicated process. 

 
After scheduling, the instructions are then tied to specific 
registers.  This phase uses new technology for the Cray 
X1 and handles issues such as register spilling and 
constant regeneration. 

 
For the Cray X1 we decided to use the Elf and Dwarf 
object representation methods rather than continuing to 
use proprietary Cray representations.  This allows for 
better integration with third party applications and allows 
some use of publicly available libraries for producing the 
output files. 

6. Support for a More Standard User 
Interface 

6.1. Support for 32-bit Operations 
 
Adding support for 32-bit operations created 

problems that were not immediately apparent.  The 
previous vector architectures were very 64-bit oriented, so 
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some development was necessary to add 32-bit support to 
the compiler and associated optimizations. 

 

6.2. Support for 16-bit Operations 
 
No Cray compiler (even for the Alpha and Sparc) had 

ever supported 16-bit integers, so this was a challenge.  
There is no direct hardware support for small data items on 
the Cray X1, except for an unaligned 64-bit load and byte 
and half word extraction instructions.  This creates 
complicated instruction sequences for accessing these 
small data items, and all operations on them need to be 
performed in software.  Significant effort has gone into 
making these code sequences as fast as possible. 

 
For Fortran, the default compilation mode is to map one 
and two byte integers onto four byte integers, which is 
supported by the hardware.  There is a compilation switch 
to disable this conversion, but the majority of codes 
behave well with the default.  For C and C++, there is no 
such option.  The best we can do is discourage the use of 
char and short data types in performance-critical areas of 
an application. 

 

6.3. IEEE Floating-Point Support 
 
The compiler already had support for 64-bit IEEE 

arithmetic from the earlier Cray T90 processor, where IEEE 
arithmetic was an option.  32-bit IEEE support was new, 
and full support had to be added.  One problem area was 
that two 32-bit NaNs did not equal one 64-bit NaN, which 
made it difficult to implement the debug option that 
initialized all stack variables to the NaN pattern. 

 

7. Vectorization Challenges 

7.1. 32 Vector Registers 
 
After working on architectures that had eight vector 

registers, the jump to 32 vector registers on the Cray X1 
almost seemed like an infinite number to the compiler 
developer.  However, it is still a limited resource, and the 
registers needed to be managed to avoid 
oversubscription. 

 
As each vector register has 64 elements, the register set as 
a whole can be viewed as a 32x64 = 2,048 element cache.  
Outer loop vectorization was modified to take advantage 
of the larger register set, using the vector registers as 
cache, thereby reducing memory bandwidth.  In a loop 
nest, vectorizing an outer loop often leaves the 
opportunity to hoist memory references that are invariant 
with respect to the inner loop.  Such references are loaded 
as a vector in the outer loop, and then reused throughout 

the inner loops.  This is common with matrix 
multiplications and similar constructs. 

 
Some other ways of using the larger vector register set 
were to hoist invariant vector expressions from loops, 
strength reduce vector expressions where possible, and be 
more aggressive about recognizing global vector common 
subexpressions. 

 

7.2. Predicated Execution 
 
One major improvement with the Cray X1 is the 

addition of predicated vector instructions.  Earlier Cray 
vector architectures had one vector mask register, which 
was used by only one merge instruction.  On the Cray X1, 
there are eight vector mask registers, and nearly all vector 
instructions use one of them to support predicated 
execution.  As this was new with the Cray X1, significant 
development was necessary. 

 
The addition of support for multiple vector mask registers 
was actually straightforward.  Using them in the context of 
predicated execution had significant similarity to the 
merge technique of vectorizing conditionals on earlier 
Cray platforms, so much of the vectorization logic was 
adapted for the Cray X1.  The resulting code is actually 
much simpler and easier to read than the older vector 
implementations. 

 
By software convention, vector mask zero is expected to 
contain all true values.  Vector mask zero is typically used 
for vector execution in code that is not controlled by a 
vectorized condition. 

 
A major opportunity with true predicated execution is the 
ability to remove branching logic.  On earlier vector 
platforms, a vectorized condition had to be protected by a 
scalar test and branch, to protect against the case where 
the vector condition is never true.  For most cases on the 
Cray X1, these tests are no longer necessary, as executing 
the vector instructions with a mask of all false values is 
effectively the same as executing no-ops.  However, 
significant compiler analysis was required to determine the 
safety of removing the test; not all conditions can have 
their test removed. 

 
Another mode of predicated execution on the Cray X1 can 
be obtained by using zero for the vector length.  Vector 
instructions executed with a zero vector length, regardless 
of the vector mask, are effectively no-ops.  This capability 
is used to remove scalar branches in search loops and 
conditions that are vectorized using compression 
techniques.  This is done with safety analysis very similar 
to what is used for vector masks.  This addition of a ‘true’ 
zero vector length also allows for simpler vector unrolling, 
and for full unrolling of some loops even when the trip 
count is not fully known at compilation time. 
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One significant challenge introduced with vector mask 
predicated execution is hiding the latency that results from 
the mask creation.  In an ideal world, the vector mask 
would be calculated and then used for all vector 
instructions controlled by that condition.  Although this 
works, it is not the fastest solution for most codes.  The 
fast solution is to execute the first several vector loads 
controlled by the condition as if they appeared in straight 
line code – with an all-true mask.  This speculative 
technique avoids having to wait for the vector mask to be 
computed before issuing the vector loads and is used 
heavily by the compiler.  This requires significant 
additional analysis to determine the safety of what 
amounts to hoisting the loads out of the conditional 
expression.  The compiler actually does a very good job at 
determining the safety, but the safe_address compiler 
directive was added for those cases that could not be 
determined safe at compilation time. 

 

7.3. Decoupled Vector and Scalar Operations 
 
The decoupling of vector and scalar operations shifts 

the burden of correct synchronization from the hardware 
in the older Cray vector machines to the compiler on the 
Cray X1.  From a compiler standpoint, if everything is 
done correctly, the resulting code is faster than if 
hardware was responsible for the synchronization.  
However, get just a little bit wrong and incorrect answers 
can result. 

 
Cray decided to err on the side of correct answers.  
(Forgive us, high performance fanatics.) 

 
The primary challenge here is to add the minimum 
synchronization necessary between scalar and vector 
memory references.  This is accomplished using the lsync 
instruction.  Performed by the code generator, the 
insertion of synchronization is delayed as long as 
possible.  First, lsync instructions are placed at every 
point where vector and scalar memory references may 
require them.  This guarantees functional correctness but 
is not particularly fast.  The code generator then analyzes 
the generated instruction stream, and removes the lsync 
instructions that are not required for correctness.  This 
compiler analysis uses information such as dependency 
information, alias analysis, and other tools to minimize the 
number of scalar/vector synchronizations necessary. 

 
Additional work being performed in this area is aimed at 
reducing synchronization needs by expanding the region 
of vectorized code beyond loop nests, and using vector 
memory instructions with a vector length of one to 
process what was formerly scalar memory references.  This 
reduces or eliminates the necessity of scalar/vector 
memory synchronization within that expanded vector 

region.  This vector region expansion work is mature for 
reduction operations and continues for other constructs. 

 

7.4. Longer Memory Latencies 
 
It is a universal problem in high performance 

computing that the speed of memory access does not 
improve apace with processor speed.  The net effect of 
this is that new generations of machines must contend 
with much longer apparent memory latencies.  This is also 
the case with the Cray X1. 

 
For this architecture, the solution is always the same:  
move the memory operation far enough back in the 
instruction stream so that, by the time it is needed for a 
computation, it is ready.  This is known as covering 
latency.  Many methods are used to accomplish this.  
Some are direct and some enabling.  The hardware 
supports this by allowing many vector loads to be in 
progress simultaneously. 

 
The most common direct latency covering optimization is 
scheduling, and the Cray X1 compiler has a new vector 
scheduler tuned specifically for the architecture.  Within 
the limitations of the code it is presented with, it moves 
vector loads back as far as it can. 

 
A second direct latency-covering optimization is vector 
pipelining.  Although pipelining is common for scalar 
architectures, pipelining is new for the vector Cray line.  
Historically, any loop that could be pipelined in a scalar 
architecture would be pipelined by the hardware on  a 
vector platform.  Today however, the latencies have 
grown so large that you sometimes need both hardware 
(vector) and software pipelining to hide them.  For many 
loops, vector pipelining has achieved performance 
improvements of 30% or more. 

 
There are also indirect optimizations that reorganize the 
code, making it easier for the direct latency hiding 
optimizations to do their job.  They all work the same way, 
by increasing the size of the basic block  – a piece of code 
that has no branches.  Some of these optimizations include 
the rewriting of conditions into inline select operations, 
the total unrolling (unwinding) of loops, and others. 

8. Multistreaming 

8.1. Automatic Parallelism 
 
The development of automatic multistreaming 

technology for the Cray X1 was the single largest 
undertaking for that architecture’s compiler.  This is no 
less than automatic shared memory parallelism, in some 
ways beyond what can be achieved with OpenMP.  It had 
to be fast, correct, and consistent.  From a compiler 
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developer’s standpoint, the most daunting aspect of this 
is that automatic multistreaming would be the default 
optimization level on the Cray X1. 

 
This was a long development project.  Early 
multistreaming was first introduced for the Cray SV1 line, 
as much to develop the technology as to provide higher 
performance.  For the Cray SV1, multistreaming was only 
available only via an option and was not enabled by 
default. 

 
Cray X1 multistreaming started where Cray SV1 
multistreaming left off.  In some ways, it was easier on the 
Cray X1, as there were hardware primitives to assist in 
synchronization, and the caches appear coherent to each 
of the processors.  However, the expectations were much 
higher for the Cray X1 than they ever were for the Cray 
SV1. 

 

8.2. Multistreaming Constructs 
 
At the heart of multistreaming is the selection of the 

constructs that will run in parallel.  Like vectorization, the 
primary focus is on loop nests.  Most of the same 
transformations that are performed for vectorization also 
apply to multistreaming. 

 
Because of the fast hardware synchronization on the Cray 
X1, a larger variety of loops can be profitably parallelized 
than with most other architectures.  These include update 
loops, conditional last value captures, and others.  
Additionally, fast synchronization allows multistreamed 
reductions to return the same answer – every time.  This 
repeatability in some ways makes the multistreamed 
processor with four two-pipe vector processors appear to 
work like an eight-pipe vector processor.  While not a true 
eight-pipe vector processor, it still achieves automatic 
multi-processor parallelism that is as reliable and 
repeatable as vectorization. 

 
 
 
 
 

8.3. Minimizing Synchronization Overhead 
 
While the Cray X1 has additional hardware support 

for multistreaming processor synchronization, the costs 
associated with it are still significant and need to be 
minimized.  The primary method employed by the compiler 
is to expand the region of multistreaming beyond 
individual loops and loop nests, running as much code as 
possible on all four SSPs of the MSP. 

 
This streamed region expansion is accomplished by 
running serial code redundantly on each SSP.  This allows 

each SSP to fetch its own data and make its own 
calculations without waiting for an individual processor to 
complete and broadcast its results. 

 
During the phase of compilation that determines which 
loops to vectorize and which to multistream, the compiler 
determines how many of the non-parallel loops in the nest 
can be run redundantly and what lightweight 
synchronization, if any, is required. 

 
A later optimization takes this further and attempts to run 
the purely non-parallel sections of code redundantly to 
avoid synchronization costs.  Because of these efforts, 
entire subroutines occasionally can be run fully 
multistreamed with no synchronization, except at the entry 
and exit points. 

 
Other methods of reducing synchronization overhead are 
also used, including two independent execution streams, 
one for processor zero and one for processors one, two, 
and three.  Other methods of synchronization are also 
available, and only the least costly method necessary for 
correctness is used. 

 

8.4. Minimizing Negative Optimization Effects 
 
With earlier automatic parallelization implementations, 

the addition of synchronization barriers and scoping 
boundaries had severe negative effects on other 
optimizations.  The effect of automatically parallelizing a 
loop nest could degrade the performance of other parts of 
the same function, primarily by preventing the code 
motion necessary for general purpose optimization. 

 
Given a clean slate for the multistreaming implementation, 
the solution to this challenge for the Cray X1 was to 
introduce weak markers to indicate the boundaries of the 
multistreamed area.  These weak markers contain 
information on what absolutely could not be moved 
across them (generally a very small list), allowing all other 
data to be free to move across these barriers. 

 
This allows for optimization in multistreamed code to be 
nearly as good as in single processor code.  However, it is 
somewhat controversial in that the free code motion can 
actually result in an inconsistent program during some 
phases of optimization by violating data scoping rules.  A 
late phase corrects any data scoping problems introduced 
by optimization.  Overall, this has been a very successful 
implementation. 

 

9. Balancing SIMD and MIMD Parallelism 

9.1. Multiple Levels of Parallelism 
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One of the most challenging and labor-intensive 
aspects of optimizing for the Cray X1 series is to balance 
vector parallelism with multistream parallelism.  While 
vectorization can achieve greater than an order of 
magnitude performance improvement, multistreaming is 
limited by the number of processors and can achieve a 
maximum speedup of four.  Clearly, this means that it is 
more important to pursue vector parallelism than 
multistreaming.  However, since we have both, the 
compiler attempts to use all of the resources of the 
machine for maximum performance.  This means that loop 
nests are both vectorized and multistreamed where 
possible. 

 

9.2. Inner Vector, Outer Multistreamed 
 
The preferred use of multiple levels of parallelism is to 

have a loop nest that consists of two or more loops, 
vectorize one of the inner loops, and multistream one of 
the outer loops.  This method exploits multi-level 
parallelism, and it works very well, when applicable.  
However, it is not a universal solution as there may be 
only one loop, or the trip count of the inner loop may be 
small.  In many of these cases, loop transformations such 
as loop interchange can be beneficial, but sometimes other 
methods must be considered. 

 

9.3. Inner Multistreamed, Outer Vector 
 
The Cray X1 compiler has the ability to run a 

vectorized outer loop redundantly, containing an inner 
multistreamed, partitioned loop nest.  This is useful when 
the 32 vector registers of each processor of the Cray X1 
can be used as an extremely fast cache: the vector 
registers are loaded redundantly in the outer loop and 
then reused many times in the inner, partitioned loops.  
This can greatly reduce bandwidth requirements and 
improve latency issues.  One example of where this is 
effective is for common dgemm matrix multiplications, 
where this technique allows the code to achieve 99% of 
peak performance.  The compiler uses this technique, 
when profitable. 

9.4. Small Trip Counts 
 
If a loop has a very small number of trips, say 100 or 

fewer, it is clearly better to simply vectorize it rather than 
multistream and vectorize it.  The compiler uses range 
analysis to generate estimated and guaranteed maximum 
ranges for the loop trip count and incorporates that 
knowledge into its parallelization decision making process. 

10. Giant Applications! 
The applications that are run on Cray computers have 

evolved over the years from fairly small, home-grown 

programs, to applications that include millions of lines of 
code – and are getting larger all the time.  These 
applications require a compiler that both conforms to 
language standards for ease of porting, and is 
exceptionally reliable.  In addition, top performance is a 
requirement for the Cray X1.  Any one of these 
requirements is difficult to achieve, but attaining language 
conformance, absolute functional correctness, and extreme 
performance is a challenge. 

 

10.1.   10,000 Vector Loops in One Subroutine 
 
One case in point is an application that ran into a 

compiler limit of 10,000 vector loops in one subroutine.  
That limit of 10,000 was considered essentially infinite 
from a compiler standpoint, but a real application managed 
to exceed it without much effort. 

 
Ten thousand vector loops in one subroutine is a lot.  The 
limit has been extended to 2,000,000,000.  We hope that 
that limit will hold us for a while. 

 

10.2.   1,000,000 Unique Expressions 
 
A recent application managed to create over one 

million unique one-operand expressions in a single 
subroutine.  This is another limit the compiler never 
expected to see. 

 

10.3.   Exponentially Increasing Application Size 
 
An emerging trend in application development is the 

automatic generation of high-level Fortran code – quite a 
challenge for a compiler that was designed for hand-
written code in mind.  This can lead to an expansion in the 
size of applications that cannot be achieved by hand 
coding alone.  One popular application has a growth 
curve, in lines of automatically generated Fortran, which 
nearly doubles in size every six months.  That will test the 
limits of any compiler. 

11. Conclusion 
The production of a compiler that is robust, reliable, 

stable, and creates the fastest possible code is a challenge 
for any architecture.  For the Cray X1, new hardware made 
this even more difficult.  Additionally, trends in increasing 
application size and complexity also create their own 
problems. 

 
The Cray X1 series of compilers recognizes these 
challenges, and strives to meet all of them.  Developments 
in the academic world, and innovative, Cray-developed 
solutions were necessary to meet the requirements of the 
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Cray X1.  Continuing development further solidifies the 
abilities of the compilation environment. 
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Reference Materials 
The following Cray reference manuals are useful for 

obtaining further information: 
 
• S-2315-54:  Optimizing Applications on Cray X1 

Series Systems  
• S-3901-54: Cray Fortran Compiler Commands and 

Directives Reference Manual 
• S-2179-54:  Cray C and C++ Reference Manual 
 

In addition, the following links are useful: 
 
www.co-array.org CoArray Fortran 
www.openmp.org OpenMP 
upc.gwu.edu  Unified Parallel C 
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