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The Cray X1 Architecture

• First all-new vector architecture from Cray since 
the Cray-2 in 1985

• Incorporates experience from vector and MPP 
lines

• An all-new architecture comes with all-new 
challenges

• Compiler is relied upon to obtain maximum 
performance from the new machine



New Hardware Challenges
• New instruction set architecture (ISA)
• Hardware support for 32- and 64-bit operations
• The multistreaming processor (MSP)
• Decoupled scalar and vector operations
• Predicated vector execution
• These and other hardware changes provide the 

bulk of compiler challenges necessary for a 
successful Cray X1 compiler



New Software Challenges
• 8- and 16-bit integer support
• Structure packing and alignment compatible with 

other major vendors
• IEEE floating point support
• OpenMP for C and C++
• Unified Parallel C (UPC)
• These are in addition to features already 

supported on earlier machines



Differences from the Cray SV1

• New instruction set architecture
• Multistreaming processor
• Decoupled vector and scalar 
• Predicated vector execution
• Multi-level cache
• Globally addressable memory
• IEEE floating point



Levels of Parallelism

• The compiler automatically extracts:
• Multiple registers
• Multiple functional unit groups
• Vectorization
• Multistreaming

• The user has to help with:
• Higher-level programming models, such as CoArray 

Fortran, UPC, and OpenMP



Compiler Requirements

• Correctness and stability
• Automatic multistreaming
• Improved automatic vectorization
• Support for parallel programming models
• Support for industry-standard data models



Compiler Front Ends

• Lower source code to an intermediate-level 
representation

• Fortran front end developed originally by Cray 
Research

• C and C++ use a commercial front end, modified 
to support Cray extensions

• Communicate with other components using a 
functional interface



Interprocedural Optimizer

• New component for the Cray X1; replaces older 
language-specific inliners

• Primarily provides support for inlining, including 
cross-file inlining

• Supports procedure cloning
• Provides other optimizations such as tail recursion 

elimination and Fortran alternate entry point 
simplification



PDGCS Optimizer

• Initially developed for earlier vector architectures
• Continually updated to meet performance and 

functional requirements
• Provides core optimization and parallelization 

capabilities for the compiler
• Vectorization, multistreaming happen here
• Also performs ‘scalar’ optimizations



Code Generator

• Written from scratch for the Cray X1
• Performs final lowering of intermediate level text 

into assembly code
• Scheduler reorders intermediate text for overall 

performance
• Uses Elf and Dwarf representations for output



Compiler Challenge:  Support for 
32-bit Operations

• Previous architectures were very 64-bit oriented
• Cray X1 has hardware support for 32-bit 

operations
• Adding compiler support for this was tedious
• Some problems were encountered, mostly dealing 

with mixed-size expressions



Support for 16-bit Operations
• No Cray compiler ever supported 16-bit integers 

before the Cray X1
• No direct hardware support, and limited set of 

helper instructions
• Most of the 8- and 16-bit work is done in software, 

and uses 64-bit loads and stores
• Vectorization of 8- and 16-bit loads is supported
• Fortran maps one and two byte integers to four 

byte integers by default, for performance



IEEE Floating-Point Support
• The Cray T90 and Cray T3E had IEEE floating 

point (on the Cray T90 it was an option)
• Most of the compiler work done for IEEE on those 

platforms was reused
• Created the –Ofpn option for better control over 

floating point optimization
• Higher levels of the –Ofpn option allow the 

compiler greater freedom to optimize floating point 
expressions



32 Vector Registers
• Earlier architectures only had eight
• Each vector register has 64 elements
• This provides a 32x64 = 2,048 element cache for 

vector operations
• The additional vector registers are used as cache 

when possible
• Traditional optimizations were also modified to 

work with vectors, such as invariant hoisting and 
strength reduction



Predicated Vector Execution
• Used for conditionally executed vector code
• The conditional test creates a vector mask result
• That mask result controls what expressions are 

evaluated, on an element by element basis
• Helpful in removing scalar test and branch code, 

and in unrolling vector loops
• A zero vector length can also be used for 

predicated execution in some cases



Decoupled Vector and Scalar Operations

• Synchronization between vector and scalar 
memory operations is a software responsibility on 
the Cray X1

• The challenge is to create the least expensive 
synchronization possible while maintaining 
correctness

• Vector region expansion reduces synchronization 
costs further



Longer Memory Latencies
• Memory keeps getting further away...
• Hardware provides some latency covering
• Scheduling is the primary software method for 

covering latency
• Increasing the basic block size (within reason) by 

various transformations allows the scheduler more 
freedom to push loads backwards

• Software vector pipelining is also very useful in 
some cases; as much as a 30% improvement



Automatic MSP Parallelism

• Single largest compiler development effort for the 
Cray X1

• Starts where Cray SV1 multistreaming left off
• Automatic shared memory parallelism
• The Cray X1 has significant hardware support for 

multistreaming, including:
• Coherent caches
• Synchronization primitives



Multistreaming Constructs
• Multistreaming concentrates on loop nests, 

vectorizing one level and partitioning another 
among the processors

• Repeatability of results was a critical design factor
• Some things not generally thought of as parallel 

multistream well
• For a single loop, can make four two-pipe vector 

processors effectively behave as one eight-pipe 
vector processor



Minimizing Synchronization Overhead

• Even with hardware support, synchronization is 
costly

• Streamed region expansion extends the parallel 
section of code beyond loop boundaries

• Entire procedures can be multistreamed in this 
fashion

• For any synchronization that is still required, the 
least costly method is used



Minimizing Negative Optimization Effects

• Synchronization barriers can degrade 
performance throughout a function, not just in the 
parallel region

• Hard barriers are deferred until very late, allowing 
optimization freedom to move code past the 
synchronization points

• A final phase corrects any data scoping issues 
created by this



Balancing SIMD and MIMD Parallelism

• Balancing vector and multistream parallelism is 
very difficult to do well

• The compiler attempts to use both vector and 
multistream parallelism

• Vector parallelism is more important than 
multistream parallelism for raw performance

• The correct use of loop transformations can 
maximize the performance extracted from each



Inner Vector, Outer Multistreamed

• The most common configuration for a loop nest
• One of the inner loops is vectorized
• One of the outer loops is multistreamed
• Loop transformations can help rewrite loops to 

take the best advantage
• Stand-alone loops are both vectorized and 

multistreamed



Inner Multistreamed, Outer Vector

• One of the outer loops is vectorized, and runs 
redundantly on all processors of the MSP

• An inner loop is partitioned across the processors
• This method allows for good use of the vector 

registers as very fast cache
• For common dgemm matrix multiplications, this 

technique allows us to achieve 99% of theoretical 
peak performance



Giant Applications!
• Application functions and subroutines keep getting 

bigger and more demanding
• As compiler developers, we continue to be 

surprised as limits are exceeded
• 10,000 vector loops in one subroutine
• 1,000,000 unique expressions in one function
• Exponentially increasing application size
• Compiler regioning addresses some of the issues



Conclusion
• The X1 architecture provides significant functional 

and optimization challenges for a compiler
• Trends in application complexity also are a 

challenge for the compiler
• New optimization technology was created to 

address these issues
• Development continues to further solidify the 

abilities of the compiler


