
Cray X1 Compiler Challenges
(And How We Solved Them)

Terry Greyzck, Cray Inc. CUG 2005

The Cray X1 Architecture

• First all-new vector architecture from Cray since
the Cray-2 in 1985

• Incorporates experience from vector and MPP
lines

• An all-new architecture comes with all-new
challenges

• Compiler is relied upon to obtain maximum
performance from the new machine

New Hardware Challenges
• New instruction set architecture (ISA)
• Hardware support for 32- and 64-bit operations
• The multistreaming processor (MSP)
• Decoupled scalar and vector operations
• Predicated vector execution
• These and other hardware changes provide the

bulk of compiler challenges necessary for a
successful Cray X1 compiler

New Software Challenges
• 8- and 16-bit integer support
• Structure packing and alignment compatible with

other major vendors
• IEEE floating point support
• OpenMP for C and C++
• Unified Parallel C (UPC)
• These are in addition to features already

supported on earlier machines

Differences from the Cray SV1

• New instruction set architecture
• Multistreaming processor
• Decoupled vector and scalar
• Predicated vector execution
• Multi-level cache
• Globally addressable memory
• IEEE floating point

Levels of Parallelism

• The compiler automatically extracts:
• Multiple registers
• Multiple functional unit groups
• Vectorization
• Multistreaming

• The user has to help with:
• Higher-level programming models, such as CoArray

Fortran, UPC, and OpenMP

Compiler Requirements

• Correctness and stability
• Automatic multistreaming
• Improved automatic vectorization
• Support for parallel programming models
• Support for industry-standard data models

Compiler Front Ends

• Lower source code to an intermediate-level
representation

• Fortran front end developed originally by Cray
Research

• C and C++ use a commercial front end, modified
to support Cray extensions

• Communicate with other components using a
functional interface

Interprocedural Optimizer

• New component for the Cray X1; replaces older
language-specific inliners

• Primarily provides support for inlining, including
cross-file inlining

• Supports procedure cloning
• Provides other optimizations such as tail recursion

elimination and Fortran alternate entry point
simplification

PDGCS Optimizer

• Initially developed for earlier vector architectures
• Continually updated to meet performance and

functional requirements
• Provides core optimization and parallelization

capabilities for the compiler
• Vectorization, multistreaming happen here
• Also performs ‘scalar’ optimizations

Code Generator

• Written from scratch for the Cray X1
• Performs final lowering of intermediate level text

into assembly code
• Scheduler reorders intermediate text for overall

performance
• Uses Elf and Dwarf representations for output

Compiler Challenge: Support for
32-bit Operations

• Previous architectures were very 64-bit oriented
• Cray X1 has hardware support for 32-bit

operations
• Adding compiler support for this was tedious
• Some problems were encountered, mostly dealing

with mixed-size expressions

Support for 16-bit Operations
• No Cray compiler ever supported 16-bit integers

before the Cray X1
• No direct hardware support, and limited set of

helper instructions
• Most of the 8- and 16-bit work is done in software,

and uses 64-bit loads and stores
• Vectorization of 8- and 16-bit loads is supported
• Fortran maps one and two byte integers to four

byte integers by default, for performance

IEEE Floating-Point Support
• The Cray T90 and Cray T3E had IEEE floating

point (on the Cray T90 it was an option)
• Most of the compiler work done for IEEE on those

platforms was reused
• Created the –Ofpn option for better control over

floating point optimization
• Higher levels of the –Ofpn option allow the

compiler greater freedom to optimize floating point
expressions

32 Vector Registers
• Earlier architectures only had eight
• Each vector register has 64 elements
• This provides a 32x64 = 2,048 element cache for

vector operations
• The additional vector registers are used as cache

when possible
• Traditional optimizations were also modified to

work with vectors, such as invariant hoisting and
strength reduction

Predicated Vector Execution
• Used for conditionally executed vector code
• The conditional test creates a vector mask result
• That mask result controls what expressions are

evaluated, on an element by element basis
• Helpful in removing scalar test and branch code,

and in unrolling vector loops
• A zero vector length can also be used for

predicated execution in some cases

Decoupled Vector and Scalar Operations

• Synchronization between vector and scalar
memory operations is a software responsibility on
the Cray X1

• The challenge is to create the least expensive
synchronization possible while maintaining
correctness

• Vector region expansion reduces synchronization
costs further

Longer Memory Latencies
• Memory keeps getting further away...
• Hardware provides some latency covering
• Scheduling is the primary software method for

covering latency
• Increasing the basic block size (within reason) by

various transformations allows the scheduler more
freedom to push loads backwards

• Software vector pipelining is also very useful in
some cases; as much as a 30% improvement

Automatic MSP Parallelism

• Single largest compiler development effort for the
Cray X1

• Starts where Cray SV1 multistreaming left off
• Automatic shared memory parallelism
• The Cray X1 has significant hardware support for

multistreaming, including:
• Coherent caches
• Synchronization primitives

Multistreaming Constructs
• Multistreaming concentrates on loop nests,

vectorizing one level and partitioning another
among the processors

• Repeatability of results was a critical design factor
• Some things not generally thought of as parallel

multistream well
• For a single loop, can make four two-pipe vector

processors effectively behave as one eight-pipe
vector processor

Minimizing Synchronization Overhead

• Even with hardware support, synchronization is
costly

• Streamed region expansion extends the parallel
section of code beyond loop boundaries

• Entire procedures can be multistreamed in this
fashion

• For any synchronization that is still required, the
least costly method is used

Minimizing Negative Optimization Effects

• Synchronization barriers can degrade
performance throughout a function, not just in the
parallel region

• Hard barriers are deferred until very late, allowing
optimization freedom to move code past the
synchronization points

• A final phase corrects any data scoping issues
created by this

Balancing SIMD and MIMD Parallelism

• Balancing vector and multistream parallelism is
very difficult to do well

• The compiler attempts to use both vector and
multistream parallelism

• Vector parallelism is more important than
multistream parallelism for raw performance

• The correct use of loop transformations can
maximize the performance extracted from each

Inner Vector, Outer Multistreamed

• The most common configuration for a loop nest
• One of the inner loops is vectorized
• One of the outer loops is multistreamed
• Loop transformations can help rewrite loops to

take the best advantage
• Stand-alone loops are both vectorized and

multistreamed

Inner Multistreamed, Outer Vector

• One of the outer loops is vectorized, and runs
redundantly on all processors of the MSP

• An inner loop is partitioned across the processors
• This method allows for good use of the vector

registers as very fast cache
• For common dgemm matrix multiplications, this

technique allows us to achieve 99% of theoretical
peak performance

Giant Applications!
• Application functions and subroutines keep getting

bigger and more demanding
• As compiler developers, we continue to be

surprised as limits are exceeded
• 10,000 vector loops in one subroutine
• 1,000,000 unique expressions in one function
• Exponentially increasing application size
• Compiler regioning addresses some of the issues

Conclusion
• The X1 architecture provides significant functional

and optimization challenges for a compiler
• Trends in application complexity also are a

challenge for the compiler
• New optimization technology was created to

address these issues
• Development continues to further solidify the

abilities of the compiler

