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ABSTRACT:  We analyzed the performance of the Cray X1 on two sets of nested loops that were  iterating over triply subscript-
ed arrays and found performance variations from 1.8 to 818 M(64-bit)FLOPS (a 457:1 ratio).  The interaction between the multi-
level cache, vector operations, memory bank conflicts, and “multi-streaming” are the apparent cause for  most of the large speed
variations. We used only two simple computations but varied many parameters such as the order of the loops, the subscripting
style, compilation options, precision, and language.  With the inclusion of 32-bit and 128-bit floating point  arithmetic, the speed
range increased to about 40K to 1, from .04 to almost 1500 MFLOPS.  We found that compiler feedback on loop vectorization
and multistreaming was a poor performance predictor.  We conclude the paper with some observations on estimating and im-
proving Cray X1 application performance. 

KEYWORDS:  Cray X1, performance, vectorization, multistreaming, memory hierarchy

 

1.  Introduction

One of ARSC's large users experienced poor performance on
our X1, Klondike.  The individual was migrating a large code
from the Cray T3E to the X1[1] and sought help increasing
the performance on the loop nest below.  This paper describes
the  analysis  his  request  prompted  and  some  insights  we
gained in optimizing codes for the X1.  

The results are not useful for performance determination, only
for "optimization" and estimating relative performance.  We
think these results are interesting because the simplicity of the
code  provides  insights  for  efficiently  using  the  X1 and  its
compilers.

Many of these insights were "obvious" 20 years ago[2] and
have been forgotten with the move from vector  to single pro-
gram,  multiple  data  processing.   The  complications  of
vector/SPMD processing of the X1 with its multi-level memo-
ry hierarchy and improved  compiler  make some of  the old
rules-of-thumb inappropriate, as we show.  

For example, on the X1, with its high ratio of vector to scalar
processing  speed,  one  might  expect  vectorization  to  be  of
paramount importance.  With these simple test loops, all but
the extremely slowest  were vectorized, which indicates  that
vectorization, though necessary for high performance, is hard-
ly sufficient.

The submitted code fragment is a normalization and the origi-
nal  code  looked  particularly  inefficient  for  the  X1.   We
rewrote  the  original  code   in  four  alternate  forms,  one  of
which executed about two orders of magnitude faster than the
slowest.  This  prompted  the extensive analysis  of  this code
snippet.  

We also  analyzed  a  second  three-loop  nest  with  a  slightly

more complex calculation, part of which vaguely resembles a
PDE integration step.  The performance tests were done on a
single MSP on ARSC's Cray X1, Klondike.

The original code test, like all the tests in the first set, per-
formed the calculation:
        do i=1, n1
            do j=1, n2
               do k=1, n3
                  u3(i,j,k) = x3(i,j,k)/d3(i,j,k) 
                  v3(i,j,k) = y3(i,j,k)/d3(i,j,k) 
                  w3(i,j,k) = z3(i,j,k)/d3(i,j,k) 
               enddo
            enddo
        enddo
The only unusual characteristic of the data is the middle di-
mension of the arrays was set at n2+2, apparently halo cells
for faster calculation on a Cray T3E.  The tests in the first set
involved changing the order of the loops, the style of index-
ing, and the compilation options, but all performed the calcu-
lation above.

For the first set of tests, the dimensions of the arrays were set
at (128, 130, 128) and the data precision at 64-bits so the cal-
culation was performed on a 128 x 128 x 128 cube.  Perfor-
mance on the 72 variations of the calculation varied from 2.1
to 818 MFLOPS (394:1 ratio).  Changing the dimensioning to
operate on a cube of 129 elements on a side, raised the lowest
speed to almost 8 MFLOPS so the speed variation was about
105:1. 

The second set of tests performed this calculation 
   do i=2, n1-1
      do j=2, n2-1
         do k=2, n3-1
            u3(i,j,k) = (v3(i,j,k)*((x3(i+1,j,k) -                     &

           - x3(i-1,j,k)) + (x3(i,j+1,k)-x3(i,j-1,k))  &
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            + (x3(i,j,k+1)-x3(i,j,k-1)))                       &
                         +  w3(i,j,k)**y3(i,j,k) ) * sin(z3(i,j,k)) 
            z3(i,j,k) = w3(i,j,k)**y3(i,j,k) 
            if (i==j .or. j==k) then
               u3(i,j,k) = 1.0
            endif
         enddo
      enddo
   enddo
The dozens of coding variations of this second calculation on
the interior of an n1 x n2 x n3 cube produced speeds on the
X1 from 6 to 537 MFLOPS.  This second snippet in a dozen
variations  was  also  run  on  an  IBM  P655+/P690+  system,
where the speed varied from 11 to 57 MFLOPS, only 6% of
the variation of the Cray X1.

In the next section we will describe the code and data set vari-
ations and some of our motivations for trying them. Section 3
will describe the analysis methodology and present important
performance results and a pointer to the complete results and
to our thousands of separate raw timing data. We will also de-
scribe the compilers’ feedback on their  optimization of the
various forms.  Section 4 summarizes the results, describing
the user-level information available and how well it predicts
performance and makes a few style suggestions for applica-
tion programmers.

2. Test and Code Variations

The “cube” being operated on was parameterized as n1 x n2 x
n3 so the dimensions of the arrays in the first tests were (n1,
n2+2, n3).   In the second set  of  tests,  because  differencing
uses adjacent values, the arrays were dimensioned (n1, n2, n3)
and the operations were conceptually performed only on the
interior points, a (n1-2) x (n2-2) x (n3-2) cube.  The MFLOPS
rates presented here are based on user operation counts, not
hardware reported values.

   2.1 Indexing

The submitted code used 1-dimensional indexing and precom-
puted the values in the array index.  
         index(i,j,k) = i+(j-1)*n1+(k-1)*n1*(n2+2)
(The innermost loop was 
         do k=1, n3
               ind = index(i, j, k)
               u3(ind) = x3(ind)/d3(ind) 
               v3(ind) = y3(ind)/d3(ind) 
               w3(ind) = z3(ind)/d3(ind) 
         enddo
for the 1-dimensional code variation.)

Though single subscripting may improve performance on old
machines by replacing index calculations by index look-ups, it
tends to reduce the cache’s effectiveness on modern systems.
By  substituting  the  calculation  for  the  table  lookup,  we
thought the number of memory references would be reduced
and the compiler would be more likely to vectorize or multi-
stream the entire loop nest.  

Using triply dimensioned arrays, the entire index calculation
should be obvious  and should allow the compiler  complete
optimization freedom. 

Because  Fortran  stores  arrays  with  the  first  index  varying
most rapidly, sometimes called column-major order, the stride
of the vectors through memory is large as written above. In
many situations this will allow use of only one datum from
each cache line before it is removed from cache.  For C cod-
ing, ordering the loops as shown is desirable.  We ran tests
with the structure shown in Section 1 and with the loop order
changed.  We refer to the order shown in the sample above as
ijk  order  and  that  with  the first  and  third  statements  inter-
changed as kji order. 

   2.2  Inter-loop Dependencies and Compiler Directives

With any loop structure, the compiler may not be able to de-
termine if  there is  a  hazardous recurrence that  might  cause
vectorization  or  multi-streaming to produce  wrong answers.
We ran all of our test loops both without and with compiler
directives (Fortran) or pragmas (C) to ignore vector dependen-
cies.  

   2.3 Full Arrays

As noted, the middle dimension of the arrays in the first set of
tests is 2 elements longer than the computation.  We wondered
if computing on the entire array, doing the extra percent of so
of calculations, by setting the middle loop statement to

do j=1,n2+2
would  improve  vectorization  by  operating  on  contiguous
blocks of memory.  We tested this hypothesis with negative
results. This variation was only tried on the Fortran tests on
the first loop structure.

    2.4   Inlineable Code

Good coding practice dictates using small blocks of code.  In
the context of these tests, this means coding the computation
as  a  separate  function  or  subroutine.   For  these  loops,  we
chose values of n1, n2 and n3 from 128 to 517 so the number
of floating point operations ranged from about 6M to 415M.
With such large iteration counts, it might seem that coding the
loop inline, instead of making an external function or subrou-
tine call would provide little benefit.  Prefetching of vectors
and possible additional knowledge the compiler may use from
the calling context encouraged us to try the functions both in
the same file, so they are readily inlineable, and in a separate
file.

   2.5 Language & Compiler

There is much folklore or urban-legend level information say-
ing that C is superior to Fortran or vice versa.  We decided to
explore the performance differences between Fortran and C.
We coded the loops in C using subscripts, not pointers. For
the C tests the entire program was coded in C—no interlan-
guage procedural calls were made. 

   2.6 Compile Statement “Optimization” Level

We ran the tests after recompiling with the compiler optimiza-
tion flags  set  to  ask for  highly  optimized  and  “aggressive”
speedup: –O3,aggress (Fortran) or –h aggress, -O3 (C).  We
chose these two options because we observe that most users
do not experiment extensively with compiler flags, but use ei-
ther what come for free, the defaults, or try the simple flags

2



that ask for extensive and aggressive optimization.

   2.7 Arithmetic and Data Precision

The  original  tests  were  run  in  64-bit  mode because  that  is
most commonly used on Cray X1 applications.  We decided to
run tests using 32-bit and 128-bit data by declaring kind = 4 or
kind = 16.  Because the X1 has 32-bit floating point hardware,
unlike many earlier Crays, we expected it to run about twice
as fast as the kind = 8 runs.   The Cray does not have 128-bit
floating point hardware, so extensive software is used to sup-
port  the  greater  precision  and  we  expected  it  to  run  much
more slowly.

   2.8 Memory Bank Conflicts

As our last  test  parameter, we varied the array dimensions.
Vectors with strides that are powers of 2 often load and store
slowly because of memory bank conflicts and low cache uti-
lization.  The severity of code slowdown due to memory bank
conflicts  depends on many factors  and  compilers  can often
mitigate it by interchanging loop order as described in section
2.2.   The way we experimented with bank conflicts for our
test  code  was to change the first  and last  array dimensions
from 128 to non-power-of-2 values. 

Changing the dimensioning of the arrays, reduced the number
of performance bands, indicating its importance.

   2.9 Summary of Test Variations

The set of options compared is:
1. Singly or triply subscripted arrays.
    a. For  singly  subscripted  arrays:  index  computed  or
looked up in a table
2. Add  compiler  directives  (Fortran)  or  pragmas  (C)
telling the compiler there are no inter-iteration dependencies.
3. For the first set of tests: computing on the full n1 x
(n2+2) x n3 memory block or only on the significant n1 x n2 x
n3 portion.  MFLOPS rates for these tests assumed 3*(n1 * n2
* n3) computations.
4. Placing the function code in the same file as the call-
ing routine (so it’s inlineable) or in a separate file.
5. Writing the entire code in Fortran or in C,
6. Compiling with default or aggressive optimizations.
7. Varying the data precision: kind = 4, 8 or 16.
8. Adjusting the sizes of the arrays.  Eight values were
tested: 128, 129, 131, 144, 256, 319, 473, 517, though only the
smallest sizes, 128 and 129 were used extensively.

In nearly all cases several tests were run to help verify that the
timings were reasonable.  The duplicate runs also give us a
measure of execution time variability.  Loop execution time
“standard deviations” were generally  on the order  of  a  few
percent and never exceeded 15% for those cases where many
timing runs were made.  (“Standard deviations” were provided
by Excel’s stdev function.)

3. Selected Details and Observations

Details of the runs, including much of the raw data, are avail-
able on the web at [3].  We noted a number of characteristics
of  the  program that  affected  performance.  In  all  cases  we
were studying the code, compilation and results as an applica-

tion programmer.  We did not consult assembly language list-
ings. We did use the listing option for the compiler to indicate
how it has treated each loop. 

We timed our test loops with:
      Start timer
      Call subroutine (Fortran)  
or     testNo = function (args) (C)

Stop timer
Call checkRoutine

The checkRoutine was inserted to guarantee that the compiler
could not fuse loops or optimize across tests.  It verified that
the computations were correct and reset the values in the ar-
rays.   The speeds were computed assuming 3 floating opera-
tions per iteration for the simple loop test and 20 for the more
complicated code.  The code of each subroutine was the nec-
essary declarations followed by the code shown in Section 1
or that code plus compiler directives/pragmas.  The values of
n1, n2 and n3 were parameters in Fortran and defined values
in C.

Tables 1 and 2 show the aggressively compiled loop speeds
on the 72 simple test loops for 64-bit data.  The performance
falls into eight bands, with large gaps between them. With the
parameters set at 128, there were:

1.  22 Fortran and 4 C cases with speeds between 742 and 819
MFLOPS
2.    3 Fortran and 1 C cases between 555 and 596 MFLOPS
3.    8 Fortran and 4 C cases between 149 and 169 MFLOPS
4.    3 Fortran and 3 C cases between 55 and 82 MFLOPS (the
Fortran ones were between 62 and 65 MFLOPS)
5.    4 Fortran and 1 C cases between 23.7 and 24 MFLOPS
6.    8 Fortran and 5 C cases between 6.6 and 6.9 MFLOPS 
7.    No Fortran and 3 C cases at 4.9 MFLOPS
8.    No Fortran and 3 C cases at 2.1 MFLOPS
Only half as many C cases were run as Fortran.  All the For-
tran loops  vectorized and all  but  the  six  in  the  two lowest
bands vectorized for C.  (Complete test results are available at
[3].)

   3.1  Indexing

Nine of the 22 Fortran and half of the C cases in Band 1 (high-
est performance) used a single subscript, the rest used triply
subscripted arrays.  On the flip side, in Fortran 13 of 16 triply-
subscripted cases were in the top band and the last three in
band 4. In C, there were triply subscripted array cases in every
band except number 5. The compiler’s feedback showed more
vectorization and multistreaming with computed subscripts in-
stead of a table lookup. All the triply subscripted array loops
vectorized  and  multistreamed;  some  of  the  others  did  not.
Though vectorization was necessary for top speed, it was not
sufficient, and was not a good predictor of top performance.

   3.2  Compiler Directive Use

The IVDEP compiler directive seemed to have little effect on
the simple loops with Fortran cases scattered in every band
except the second, nearly always running at about the same
speed as the equivalent case without  the directive.  For the
more complex second set of tests, the directives significantly
improved both the vectorization/multistreaming and the per-

3



formance.

In C, pragmas had a positive affect.  No case in the lowest two
bands  used  IVDEP pragmas.   The  cases  with  the  pragmas
were relatively evenly scattered in the top six bands.
 
   3.3 Computing on Full Array

No significant speed or vectorization differences were found
when we changed the middle index of the simple code snippet
to run over the entire array. 

   3.4  Inlineable Functions 

While  the  Fortran  compiler’s  vectorization  notes  were
changed by making the functions inlinable, the performance
differences were small, typically only a few percent.  

In C, all the fastest cases, those in bands 1 and 2 and half of
those in 3, in-lined the function code.  For the slowest tests, all
those in bands 7 and 8, the function code was in a separate file
and was not in-lined by the compiler.

   3.5 Language Choice:  Fortran or C

For  these  simple  loops,  Fortran  is  clearly  superior  overall.
Use of pragmas and putting function code in the same file as
the calling routine is required for performance parity.  Further,
as  noted  below,  aggressive  optimization  was  important  for
good C performance, but made little difference in Fortran.  On
6 loops, including two of the triply subscripted ones, the C
compiler  did  not  vectorize  the  code.   These  loops  had  the
longest  execution  times  and  were  the  tests  in  performance
bands 7 and 8.

   3.6 Compiler Options

For  the  Fortran  loops,  inserting  the  compiler  optimization
flags  –O3,aggress  had  no  affect  on  vectorization  or  multi-
streaming as shown by the compiler’s indication of loop han-
dling.   The  speedup  with  optimization  averaged  7%  and
ranged from a 10% slowdown to a 75% speedup.  The one
loop that  showed significant  slowdown also had large  vari-
ability in speed.  The “standard deviation” was 5% on the five
–O3,aggress runs.  The only other loop with a slowdown of
more than 2%, ran 6% slower and had a standard deviation of
6.4%.   Both  of  these  loops  were  vectorized  and  multi-
streamed and ran at about 585 MFLOPS.

For the C loops, inserting the optimization flags –h aggress,
-O3  had  considerable  impact  on  vectorization  and  multi-
streaming.  While half the loops showed no speedup, the oth-
ers changed drastically so the average speedup was 30 times.
One loop increased in speed by a factor  of 286.  The Cray
documentation  indicates  that  –O3  increases  vectorization
when pointers are used.  This code used no pointers—the C
functions were written with one or three subscripts. 

The major factor in the speed difference seems to be the de-
fault compilation showed no multi-streaming.  All the loops
that ran significantly faster with aggressive optimization were
ones the compiler multi-streamed.

   3.7  Data Precision

Contrary to expectation, reducing the floating point precision
to 32-bits did not double the speed.  Many of the test cases
showed no speed increase.  The average speed increase was
about 50%.  The 32-bit speeds ranged from 62% to 235% of
those with 64-bit data.

Using 128-bit floating point requires software arithmetic that
is much slower on the X1 than its standard 64-bit operations.
On the first set of loops, where the computations are very sim-
ple,  the  128-bit  arithmetic  ran  at  about  20% of  the  64-bit
speed for arrays  dimensioned  128, and about 9% for array di-
mensions of 129.  For the more computationally complicated
second set of loops, the 128-bit speed was typically about 1%
of that for 64-bit. 

   3.8 Memory Bank Conflicts

Efficient  use  of  the  memory  on  the  X1  [1]  requires  using
many of its banks by avoiding dimensions that are a multiple
of 16.  Increasing the values of the parameters to 129 from
128 meaning the  arrays  were  dimensioned (129, 131, 129),
smoothed performance considerably.  The performance bands
blurred  so  only  six  were  obvious.   The  bottom one  disap-
peared and the top two merged.  The remaining lowest perfor-
mance band had only a single test loop.

With parameters at 129 and using aggressive optimization, the
slowest Fortran loop ran at 113 MFLOPS.  Oddly, the fastest
loops slowed by a few percent.  The speed variability (ratio of
best to worst) was reduced from 122 to 7.  

In  C, with  aggressive  optimization,  the ratio  of  the best  to
worst speed was reduced from 390 to 105.

   3.9 Comparison to an “Ordinary” Supercomputer

We ran the first set of tests on Iceberg, our IBM P655+/P690+
system.  IBM’s speed variation was 3.2% (array dimensions =
129) or 4.3% (array dimensions = 128) of Cray’s.  The total
speed variation for the Fortran code on the IBM system was
11 to 57 MFLOPS with the speeds falling into two or three
bands.

4.  Summary of Results

Neither  the  code  structure  nor  the  compiler’s  optimization
notes allow one to easily predict the code segment’s perfor-
mance.  The lack of clear correlation is especially noticeable
for operation on a cube of 128 elements per side.  For the av-
erage programmer we believe that timing code segments is re-
quired to understand performance on the X1.

For programmers working on numeric-intensive applications
we suggest the following coding guidelines (some have been
known for decades[2]):
1.  Focus on vectorizing code hot-spots
2.  Structure arrays or order loops so that the innermost loop
index corresponds to the first subscript in multi-dimensioned
Fortran arrays or the last subscript in C arrays.
3.  Avoid multiple-of-16 subscript ranges
4.  Use Fortran 
5.  In C use aggressive optimization and, when correct, use
pragmas to encourage vectorization and multistreaming.
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6.  Check the performance directly; don’t rely on static analy-
ses.  (Trust only profiling--don’t believe in vectorization.)

5. References

[1]   www.cray.com/products/systems/x1/  and   http://www.
cray.com/craydoc/manuals/S-2315-52/html-S-2315-52/x4666.
html

[2]  Higbie, L., Vectorization and Conversion of Fortran Pro-
grams  for  the  CRAY-1  (CFT)  Compiler,  Publication  No.
2240207, Cray Research, Inc., Mendota Heights, Minnesota,
June 1979.  Several subsequent publications have elaborated
and refined this work.

[3] www.arsc.edu/~higbie/<exact location to be determined>

[4] Experience with the Full CCSM (PDF), J. B. Drake, P. H.
Worley, I. Carpenter, M. Cordery, in Proceedings of the 46th
Cray  User  Group  Conference,  Knoxville,  TN,  May  17-21,
2004,  available  at  http://www.csm.ornl.gov/evaluation/
PHOENIX/index.html.  There are several other reports refer-
enced at this web site.  Most deal with scalability and with
complete applications.

6.        Contact and Biographical Information

Lee Higbie is a Vector Specialist at the Arctic Region Super-
computing Center of the University of Alaska, Fairbanks.  He
can be reached at higbie@arsc.edu or 907-450-8688.  He has
been working in supercomputing for more than three decades.

Tom Baring is a Vector Specialist at the Arctic Region Super-
computing Center of the University of Alaska, Fairbanks.  He
can be reached at baring@arsc.edu or 907-450-8619.  He has
worked on Crays for almost a decade, with a focus on usabili-
ty and high performance.

Ed Kornkven is a Vector Specialist at the Arctic Region Su-
percomputing Center of the University of Alaska, Fairbanks.
He can be reached  at  kornkven@arsc.edu or 907-450-8669.
His professional interests include programming models, lan-
guages and compilers for high performance computing.

5



Array
Dimen-
sions

IVDEP
Compil-
er Di-

rective?

1-D In-
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Inlinable
Func-
tions?

n2+2 It-
erations?

Com-
piler

Execu-
tion

Time, ms

User
MFLOPS

Compiler Optimization Info

Inline In Fnctn
3 no - kji yes yes ftn 7.7 818.1  Vp M M C V
1 no Com kji no no ftn 7.7 816.7   M C V
1 yes Com kji no yes ftn 7.7 815.4   M C V
1 no Com kji yes yes ftn 7.7 813.9  Vp M M C V
3 yes - kji no no ftn 7.8 810.1   M C V
1 no Com kji yes no ftn 7.8 809.5  Vp M M C V
3 no - kji yes no ftn 7.8 807.3  Vp M M C V
3 yes - kji yes yes ftn 7.8 806.9  Vp M M C V
1 yes Com kji yes yes ftn 7.8 804.9  Vp M M C V
1 yes Com kji no no ftn 7.8 804.0   M C V
1 yes Com kji yes no ftn 7.8 803.6  Vp M M C V
3 no - kji no no ftn 7.9 800.3   M C V
3 no - ijk no yes ftn 7.9 799.1   MV C C
3 yes - kji no yes ftn 7.9 797.9   C C MV
3 yes - kji yes no ftn 7.9 796.6  Vp M M C V
3 yes - ijk no yes ftn 7.9 792.4   MV C C
3 no - kji no yes ftn 8.0 790.7   C C MV
1 no Com kji no yes ftn 8.0 789.2   C C MV
3 no - ijk yes no ftn 8.0 783.1 r V M Vm C Mr
3 no - ijk no no ftn 8.1 780.6   Vm C Mr
3 no - ijk yes yes ftn 8.1 778.9 r V M Vm C Mr
1 no Com ijk no yes ftn 8.5 742.6    Vm M r
1 no Com ijk yes yes ftn 10.7 585.5 r V M Vm M r
1 no Com ijk yes no ftn 10.8 584.7 r V M Vm M r
1 no Com ijk no no ftn 11.3 555.6   Vm M r
1 no TLU kji yes yes ftn 37.4 168.0  Vw Vp   Vw
1 yes TLU kji yes yes ftn 37.5 167.6  Vw Vp  Vw
1 yes TLU kji no no ftn 37.7 167.0    Vw
1 no TLU kji no yes ftn 37.7 166.7    Vw
1 yes TLU kji yes no ftn 37.9 166.0  Vw Vp  Vw
1 no TLU kji no no ftn 38.0 165.7    Vw
1 yes TLU kji no yes ftn 38.4 163.7    Vw
1 no TLU kji yes no ftn 39.5 159.3  Vw Vp   Vw
3 yes - ijk yes no ftn 97.4 64.6 Vw Vp M M C Vw
3 yes - ijk yes yes ftn 100.8 62.4 Vw Vp M M C Vw
3 yes - ijk no no ftn 101.1 62.2   M C Vw
1 yes Com ijk yes yes ftn 261.8 24.0 Vw Vp M M  Vw
1 yes Com ijk no no ftn 263.0 23.9   M Vw
1 yes Com ijk no yes ftn 263.2 23.9   M Vw
1 yes Com ijk yes no ftn 264.0 23.8 Vw Vp M M  Vw
1 yes TLU ijk yes yes ftn 927.7 6.8  Vw Vp   Vw
1 no TLU ijk yes yes ftn 927.9 6.8  Vw Vp  Vw
1 no TLU ijk no yes ftn 928.3 6.8    Vw
1 no TLU ijk no no ftn 928.8 6.8    Vw
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User
MFLOPS

Compiler Optimization Info

1 yes TLU ijk yes no ftn 928.9 6.8  Vw Vp  Vw
1 yes TLU ijk no no ftn 929.1 6.8    Vw
1 no TLU ijk yes no ftn 929.1 6.8  Vw Vp  Vw
1 yes TLU ijk no yes ftn 943.2 6.7    Vw

Table 1.  Performance on Fortran Loops.  This table shows the loop structure, compiler’s analysis output, and the performance.
“Useful MFLOPS” is the computed million-floating-operations/sec rate based on the “useful” work, the number of operations in
the original code segment.  Each row of the table represents the average of several runs.  The time variation from run to run was
small.  These runs are all for n1 = n2 = n3 = 128 and with –O3,aggress compilation option.

Optm Info Key: C - Collapsed  m - streamed but not partitioned
  M - Multistreamed r - unrolled 
 V - Vectorized    w - unwound
When a loop is collapsed, it is combined with its containing loop in one higher iteration-count loop.  An unrolled loop is one that
is rewritten to execute several iterations of the loop code for each loop iteration.  The loop index is incremented by N and the
body of the loop is expanded to operate on N iterations: I, I+1, …I+N-1, say.

7



Array
Dimen-
sions

IVDEP
pragma

?

1-D In-
dex Gen-
eration

Loop
Order

Inlinable
Func-
tions?

n2+2 It-
erations?

Com-
piler

Execution
Time, ms

User
MFLOPS

C to
Fortran
Speed
Ratio

Compiler Optimization
Info

 (in function)

3no - ijk yes no c 7.8 810.7 1.00  M C Vr

3yes - ijk yes no c 7.8 807.0 1.01 M C Vw

1no Com ijk yes no c 7.8 804.1 0.99 M C Vr

1yes Com ijk yes no c 7.9 797.7 0.99  M C Vw

3no - kji yes no c 10.6 595.1 0.76 Vm C Mr

1no TLU ijk yes no c 37.4 168.2 1.06    Vwr

1yes TLU ijk yes no c 37.5 168.0 1.01  Vw

3yes - ijk no no c 41.6 151.4 0.19  Vw

1yes Com ijk no no c 42.0 149.9 0.19    Vw

1yes TLU ijk no no c 77.0 81.7 0.49  Vw

3yes - kji yes no c 100.0 62.9 0.97 M C Vw

1no Com kji yes no c 113.8 55.3 0.09 V M r

1yes Com kji yes no c 265.3 23.7 1.00 M C Vw

1yes Com kji no no c 917.8 6.9 0.29    Vw

3yes - kji no no c 918.6 6.8 0.11  Vw

1yes TLU kji yes no c 931.9 6.8 1.00  Vw

1no TLU kji yes no c 932.5 6.7 1.00  Vwr

1yes TLU kji no no c 933.3 6.7 1.00    Vw

1no TLU ijk no no c 1281.0 4.9 0.03  r

1no Com ijk no no c 1281.6 4.9 0.01  C r

3no - ijk no no c 1281.6 4.9 0.01  C r

3no - kji no no c 3016.9 2.1 0.00    r

1no Com kji no no c 3017.6 2.1 0.00   r

1no TLU kji no no c 3030.4 2.1 0.31    r

Table 2.  Performance of C loops.  In addition to the computation speed, the ratio of the C code performance to the Fortran per-
formance is shown.  Here the C kji loops are compared to the Fortran ijk loops.  This means that we are comparing code blocks
that access memory in the same order.  These are all for n1 = n2 = n3 = 128 and with –O3 –h aggress compilation option.

(See explanation of some codes in Table 1.)
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