
Scientific Libraries for Cray Systems:
Current Features and Future Plans

Mary Beth Hribar, Cray Inc., Chip Freitag, AMD,
Adrian Tate, Cray Inc., and Bracy Elton, Cray Inc.

ABSTRACT: Cray continues to provide support and performance for the basic
scientific computations that Cray's customers require. On the vector-based
systems, LibSci is the scientific library package provided by Cray. On the Cray
XD1 and the Cray XT3 systems, Cray distributes AMD's Core Math Library
(ACML) and a much smaller Opteron LibSci package. This talk will describe the
current and future scientific library support for these Cray systems. In addition,
performance results will be given for LibSci and ACML.

KEYWORDS: LibSci, ACML, Cray X1, Cray X1E, Cray XD1, Cray XT3, scientific
libraries

1. Introduction
Scientific libraries are a component of Cray’s

programming environment software. For each Cray
system, these libraries provide basic numerical functions
that have been highly tuned for that architecture. To
access the best performance of Cray systems, use these
libraries.

For the Cray XD1™ and Cray XT3™ systems, the
AMD Core Math Library (ACML) provides most of the
scientific library support. For convenience, ACML is
included in Cray’s software distribution. On the Cray
X1™ series systems, LibSci® contains the scientific
library routines.

This paper states the features, release schedules and
plans for Cray’s scientific libraries and ACML.

2. Libraries for Cray systems
Currently, Cray offers three different products. The

software differs between these products, including the
scientific libraries. The Cray X1 and Cray X1E systems
contain vector processors. Cray develops the operating
system, compilers and libraries for these systems. The
Cray XT3 and Cray XD1 contain AMD Opteron™
processors. The software for these systems is a
combination of third party software and libraries
developed by Cray.

The features of the scientific libraries vary between
these three Cray products. It is a goal to make the
libraries more consistent across all Cray platforms in the
future.

2.1 Cray X1 series
The Cray X1 system and its upgrade, the Cray X1E

system, combine vector processors with both shared and
distributed memory. These systems are constructed of
nodes within a node interconnection network, each of
which contains four multistreaming processors (MSPs)
and globally addressable shared memory. Each MSP
contains four single-streaming processors (SSPs).

The scientific libraries for the Cray X1 series are
contained in LibSci. LibSci provides Fortran interfaces
for all routines and support for MSP mode, SSP mode,
and 32- and 64-bit data types. The latest release is LibSci
5.4.

2.1.1 Single processor routines
LibSci contains single processor support for:

• Fast Fourier transform (FFT), convolution,
and filtering routines

• Sparse direct solvers
• Basic Linear Algebra Subprograms (BLAS)
• Linear Algebra Package (LAPACK)

routines

2.1.2 Distributed memory parallel routines
LibSci contains multiprocessor support in a

distributed memory environment for:
• FFT routines
• Scalable LAPACK (ScaLAPACK) routines
• Basic Linear Algebra Communication

Subprograms (BLACS)

CUG 2005 Proceedings 1 of 7

2.1.3 Shared memory parallel routines
LibSci also contains four-way shared memory

parallel support across a single node for all Level 3 BLAS
routines and for the Level 2 BLAS routines sgemv,
dgemv, cgemv, and zgemv. This library is implemented
with OpenMP, and including the -lompsci option on
the link line accesses it.

2.1.4 Inlining LibSci
There is a small set of LibSci routines that can be

inlined with the –O inlinelib option. All Level 1
BLAS routines can be inlined as well as some Level 2
BLAS routines (sgemv, dgemv, cgemv, zgemv, sger,
dger, cgerc, cgeru, zgerc, and zgeru).

2.2 Cray XT3
The Cray XT3 is a massively parallel processing

(MPP) system designed to provide the scalability,
performance and reliability to solve the most demanding
high performance computing problems. Cray XT3
systems are based on Red Storm, the system developed
jointly by Cray Inc. and the U.S. Department of Energy's
Sandia National Laboratories.

The Cray XT3 contains single processor nodes in a
high-bandwidth, low-latency 3-D torus interconnect.
Each node includes an AMD Opteron processor, a
dedicated memory and a Cray SeaStar™ communication
chip. The Cray SeaStar chip contains a HyperTransport™
link to the Opteron processor, a Direct Memory Access
(DMA) engine to manage memory accesses, and a router
that connects to the system interconnection network. The
Cray SeaStar chip offloads the communications
processing from the Opteron processor, increasing the
efficiency of the computation and communication within
an application program.

There are two types of nodes in the system. Service
nodes perform the functions needed to support users,
administrators, and applications running on compute
nodes. These nodes run a full-featured version of SuSE
LINUX. Compute nodes run a microkernel named
Catamount. Catamount was developed by Sandia
National Laboratories to provide support for application
execution without the overhead of a full operating system
image. Programming environment software, including
scientific libraries, is provided on both types of nodes.

The Cray XT3 programming environment includes
versions of the 64-bit AMD Core Math Library (ACML)
to support the GNU and PGI compilers. The compiler
drivers automatically load and link to the PGI compatible
libacml when the PrgEnv module is loaded. It is not
necessary to load and link manually as described in the
ACML documentation. If a user wishes to link to the 64-
bit GNU compatible library, the user must swap the acml
module with the acml-gnu module.

The Cray XT3 programming environment also
includes a scientific libraries package, Cray XT3 LibSci.

Note that the Cray XT3 LibSci differs from the LibSci for
the Cray X1 series systems. It contains a much smaller
set of library routines. The Cray XT3 1.1 release of Cray
XT3 LibSci will include:

• ScaLAPACK
• BLACS
• SuperLU_DIST

More features are planned for Cray XT3 LibSci. In
future releases, the Cray interface for serial and
distributed memory parallel FFTs will be provided.

2.3 Cray XD1
The Cray XD1 is also an MPP system comprised of

AMD Opteron processors. The Cray XD1 introduces a
new architecture, the Direct Connected Processors, which
employs the RapidArray™ interconnect to provide a high-
bandwidth, low-latency network. The RapidArray
processors connect the Opteron processors to the
RapidArray switching fabric. The RapidArray processors
offload the communication functions from the Opteron
and accelerate them in hardware.

The Cray XD1 operating system is based on the
SuSE Linux Enterprise Server (SLES) distribution. This
operating system supports both 32- and 64-bit
applications. The programming environment software
includes 32- and 64-bit ACML libraries, with versions to
support the GNU and PGI compilers. The OpenMP
ACML is available in 32- and 64- bit versions for use
with the PGI compilers. ScaLAPACK and BLACS are
also provided.

In the 1.1 and 1.2 Cray XD1 software releases, the
module environment does not include modules for
ACML, ScaLAPACK or BLACS. Please link to ACML
according to the guidelines in the AMD’s Core Math
Library User’s Guide, or request that your system
administrator install modules for ACML. The
ScaLAPACK and BLACS libraries are located in the
/usr/local/lib64 directory.

3. ACML
The AMD Core Math Library (ACML) is a package

of numerical routines tuned specifically for the AMD64
platform processors, including the Opteron. This library
provides the basic numerical functions for the Cray XT3
and Cray XD1 systems. ACML contains:

• BLAS
• Sparse Level 1 BLAS
• LAPACK
• ACML FFTs

Also, pre-built ScaLAPACK and BLACS libraries are
included with ACML. Since Cray distributes tuned
ScaLAPACK and BLACS libraries, the ACML versions
of these libraries are not included in Cray’s software
distributions.

CUG 2005 Proceedings 2 of 7

3.1 Fortran and C interfaces to ACML
In addition to the standard Fortran interface to the

library routines, there are C interfaces to the routines in
ACML. To call ACML routines from a C program, the
user must include the header file acml.h. This file
contains prototypes for all C interfaces, as well as
prototypes of the Fortran interfaces. The C programmer
has the choice of calling either the C or the Fortran
interface to the ACML routines.

The C interface differs from the Fortran interface.
To distinguish the Fortran routines from the C routines,
the Fortran routine names are in uppercase and appended
by an underscore. The C interfaces do not include any
workspace arguments. All workspace is allocated locally
within the routines. The scalar arguments in the C
interfaces are passed by value. There is no native
complex data type in C. Routines that operate on
complex data use the data types complex and
doublecomplex defined in acml.h.

Both the Fortran and the C interfaces require that
two-dimensional arrays be stored in column major order.
This is the native order for two-dimensional arrays in
Fortran, but not in C.

More details about calling ACML from C programs
are included in the AMD’s Core Math Library User’s
Guide.

3.2 BLAS and LAPACK in ACML
The ACML library contains level 1, level 2 and level

3 BLAS routines, which provide the basic vector and
matrix computations. These are highly tuned for the
Opteron processor. Sparse level 1 BLAS routines are
also provided.

ACML also contains LAPACK, the dense linear
algebra package. Most of the performance of LAPACK
routines benefit from the highly tuned BLAS routines and
are written using block algorithms wherever possible.
The ACML LAPACK routines contain further
optimizations so they differ from the public domain
LAPACK source but maintain the same level of accuracy

Level 2 and level 3 BLAS routines and some
LAPACK routines are available in the OpenMP version
of ACML.

3.3 ACML FFT routines
ACML provides a set of highly tuned FFT routines

with an interface to those routines that is unique to
ACML. Since there is no established standard for FFTs,
this interface is different from the Cray FFT interface.
Codes that call the Cray FFTs will need to rewrite these
FFT calls to match the ACML FFT interface.

For full documentation of the ACML FFT routines,
refer to the AMD Core Math Library User’s Guide. A
few highlights are given here.

There are routines to compute one-dimensional, two-
dimensional and three-dimensional complex-to-complex
FFTs. There is also a routine to compute multiple
complex-to-complex one-dimensional FFTs. The
standard versions compute in place with unit stride and
fixed scale. The expert versions of the routines (routine
names are appended with an “X”) allow for out-of-place
computation with selectable scales. The one-dimensional
and two-dimensional expert FFT interfaces also allow a
non-unit stride. The three-dimensional expert FFT
interface only allows a unit stride.

There are also routines to compute one-dimensional
real-to-complex and complex-to-real FFTs (single and
multiple). These routines compute in place with a unit
stride and fixed scale. Also, the complex data is stored in
an unusual manner that is documented in the user’s guide.
Make a note of this format when using complex results
from the real-to-complex routines or inputting complex
data into the complex-to-real routines.

There are OpenMP versions of the two-dimensional
and three-dimensional complex-to-complex FFT routines
in ACML, in the acml-mp version. There are no
distributed memory parallel FFT routines in ACML.

3.4 Fast and vector math functions in ACML_MV
Optimized libm is available in glibc in the SuSE

SLES9 and SL9.x distributions. Using the fast math
routines in ACML_MV can provide further performance
improvements. These fast routines may sacrifice
accuracy, so the user should determine if the arguments
are suitable to use the fast math routines.

The ACML_MV library also contains vector
intrinsics of some of the libm routines. These intrinsics
can be called in assembly language, or by C compilers
that support XMM register m128 data types (such as gcc).
The PGI compilers do incorporate these vector intrinsics
when producing optimized code. Finally, the
ACML_MV library contains array versions of the libm
routines. These are callable from C or Fortran, and
provide an efficient way to perform the desired
transcendental function on an array of n input values.
The currently supported libm functions in ACML_MV
are log, log10, logf, exp, expf, sin, cos, sincos, pow
(scalar only), and powf (scalar and vector).

3.5 Upcoming features
A release of ACML is scheduled at the end of June to

coincide with ISC 2005. This release will provide a
comprehensive random number generation suite. It will
also provide an FFT plan builder utility to provide more
optimal performance for non power-of-2 FFT sizes.

Further work is also planned for ACML_MV. The
next release will include sinf, cosf, and sincosf. More
routines are planned for the future including the inverse
and hyperbolic trigonometric functions.

CUG 2005 Proceedings 3 of 7

New releases of ACML are planned for
approximately every 6 months.

4. LibSci enhancements
Cray is providing an internally developed set of

numerical routines on each Cray platform. For the
distributed memory parallel routines, it is important to
tune them for the specific interconnect and message
passing libraries of Cray’s systems. Also, Cray supports
its own interface for FFT routines and we plan to offer
this interface on all platforms. These routines must then
be tuned for each Cray system also. Finally, we plan to
add more support for sparse solvers.

4.1 ScaLAPACK and BLACS tuning
At Cray, we are developing techniques to improve

performance of ScaLAPACK on all systems. Most of the
work will apply to all systems, but there are optimizations
that are platform specific. Our ScaLAPACK tuning is
partly joint work with the ScaLAPACK team, namely
Osni Marques and Tony Drummond at NERSC.

4.1.1 General algorithmic improvements to ScaLAPACK
 We are investigating ways to improve the efficiency

of the solvers in ScaLAPACK. Our approach is to
rewrite certain parallel algorithms to remove
redundancies and to overlap computational phases with
communication phases. As part of this work, new
communication routines will be added to the BLACS.

We decided to start with one of the most heavily used
ScaLAPACK routines, pzgetrf, which computes the
LU factorization of a matrix. Our aim is to improve the
concurrency of the required process of exchanging matrix
rows for numerical stability. To support such changes to
the LU factorization algorithm, we must have the ability
to address memory or query for a result on another
processor with that remote processor being only partially
involved. That partial involvement, and the removal of
the need to handshake between processors is key to
making the modified algorithm perform more efficiently
than the original.

We defined a new BLACS routine, blacs_spin,
which causes a processor to spin until some condition has
been satisfied on a remote processor. The remote
processor is not explicitly involved in this interaction, and
can continue executing its program without being
affected. This is tremendously useful when the algorithm
contains some kind of inherent serial sections or
redundancy. It is now possible for previously idle
processors to query for results and to proceed
independently once those results are obtained.

We now examine the steps of the original algorithm
and the modified algorithm. Both algorithms advance the
factorization in block steps, each adding one block
column (panel) and block row to the factorization. The
original routine pzgetrf proceeds as follows:

1. Compute the factor entries for the current panel.
This proceeds column by column and requires
row interchanges in which the current diagonal
entry is replaced by the largest entry in the same
column. The swap or pivot information is saved.

2. Broadcast the pivot information to all process
columns

3. All processors perform the pivoting row
interchanges, possibly requiring interchanges
with other processors

4. Broadcast the entries of the diagonal block of the
LU factorization to all process columns.

5. All processors modify their data for later block
columns accordingly.

Using the new BLACS routine we can allow steps 2 and 3
to proceed concurrently with step 1. Processors in other
process columns check for new pivot information on the
process that contains it, without the latter processor being
involved. That is, while processors in one process
column execute step 1, processors without block panel
data check for pivot updates using blacs_spin.
When blacs_spin returns a pivot, the processor
performs a row swap.

Our revised scheme has better concurrency, but
increases the number of messages while retaining the
same volume of remote memory access. We can make a
further improvement by introducing a threshold pivoting
scheme commonly used in sparse factorization methods.
Rather than exchanging the diagonal entry with the
largest column entry, we exchange with some suitably
large entry. If any suitably large entry is found on the
processor that holds the diagonal, we perform the
interchange locally, thereby reducing interprocessor row
swaps. “Suitably large” is defined by a user-specified
threshold, allowing the user to make a compromise
between efficiency and numerical stability appropriate for
their application. This new scheme is being developed
currently for the Cray XT3 and Cray X1 series systems.

Initial performance results indicate that the modified
algorithm performs better than the original on the Cray
X1 series systems. As the problem size increase, the
improvement increases. More tests are needed with
threshold pivoting, and with larger problems and
processor grids.

The parallel LU factorization routines, psgetrf,
pdgetrf, pcgetrf, pzgetrf, will contain performance
improvements in the next software release for the Cray
X1 series, scheduled for December 2005.

4.1.2 Platform specific improvements
In addition, we optimize for each of the architectures

that we support. This includes:
• Cray XD1: decoupling block size from

distribution block size, tuning BLACS for
the RapidArray interconnect

CUG 2005 Proceedings 4 of 7

• Cray X1 series: using Co-Array Fortran in
communication intensive areas

• Cray XT3: decoupling block size and
tuning for the Cray XT3 MPI
implementation, using shmem low-latency
message passing

4.2 Cray FFT development
The Cray FFTs continue to be tuned for the Cray X1

series, and work has begun to port the Cray FFT interface
to the Cray XD1 and Cray XT3 systems.

4.2.1 New features for Cray X1 series
Many new features and performance enhancements

have been added to the FFTs in the last three releases of
the Programming Environment (PE) software.

In the PE 5.2 software release (April 2004),
distributed memory parallel FFT routines were added to
LibSci. The interface for these parallel routines is
consistent with the parallel FFT routines offered on Cray
T3E systems.

In the PE 5.3 software release (December 2004), the
distributed memory parallel FFT routines were modified
to accept additional work array arguments. This change
provides the option to manage memory that would
otherwise be handled internally. Also, special complex-
to-complex butterflies were added for some composite
radices, e.g., 6, 10, 12, 15, and 20, and higher powers of
2, e.g., 16. Together, they reduce the number of floating-
point and memory operations, thus generally improving
the performance of the FFTs. Improvements are seen in
the complex-to-complex routines as well as the complex-
to-complex phase of multidimensional real-to-complex or
complex-to-real transforms. Furthermore, performance of
multiple 1-D and multidimensional FFTs is generally
improved with more effective use of the cache.

In the PE 5.4 software release (March 2005),
complex-to-complex FFT butterflies for radices 7, 11, and
13 were implemented. Applications that previously
involved complex-to-complex FFTs with FFT lengths
containing products of powers of these radices will run
faster than with previous releases. This also includes the
convolution routine CCNVLF, which effects a complex
convolution via the Fourier transform.

4.2.2 Performance on Cray X1 series
Many performance enhancements to the FFTs have

been introduced in LibSci between the PE 5.2 and PE 5.4
software releases. Included here are graphs of selected
complex-to-complex FFT routines, comparing the
performance of PE 5.2 to PE 5.4. The ratio of time to
compute FFTs for PE 5.4 to the time for PE 5.2 is plotted
against problem size. A value below one indicates a
performance improvement. These results are for single
precision routines with 64-bit default data types, using
leading dimensions yielding strides that are odd multiples
of four.

The tests were run on a single MSP of a Cray X1
system using Cray LibSci FFTs in PE 5.2 and in PE 5.4.
The ISYS parameter was 0 in all cases, and the FFT
lengths shown contain only factors that are powers of 2,
3, and 5. Figures 1-4 depict an overall improvement with
the most improvement for three-dimensional FFTs. The
plots are somewhat jagged as some FFT lengths take
advantage of the new butterflies more than other lengths.

 0

 0.5

 1

 1.5

 2

 1 4 16 64 256 1024 4096
PE

5.
4

tim
e/

PE
5.

2
tim

e
N (=N=M)

Forward MSP
Inverse MSP

Figure 1. Improvement of 64-bit CCFFTM (MSP mode) on
Cray X1, given by ratio of PE 5.4 time to PE 5.2 time.

 0

 0.5

 1

 1.5

 2

 1 4 16 64 256 1024 4096

PE
5.

4
tim

e/
PE

5.
2

tim
e

N (=N1=N2)

Forward MSP
Inverse MSP

Figure 2. Improvement of 64-bit CCFFT2D (MSP mode) on
Cray X1, given by ratio of PE 5.4 time to PE 5.2 time.

CUG 2005 Proceedings 5 of 7

 0

 0.5

 1

 1.5

 2

 2 4 8 16 32 64 128 256 512

P
E

5.
4

tim
e/

P
E

5.
2

tim
e

N (=N1=N2=N3)

Forward MSP
Inverse MSP

Figure 3. Improvement of 64-bit CCFFT3D (MSP mode) on
Cray X1, given by ratio of PE 5.4 time to PE 5.2 time.

 0

 0.5

 1

 1.5

 2

 2 4 8 16 32 64 128 256 512

PE
5.

4
tim

e/
PE

5.
2

tim
e

N (=N1=N2=N3)

Forward MSP
Inverse MSP

Figure 4. Improvement of 64-bit SCFFT3D (MSP mode) on
Cray X1, given by ratio of PE 5.4 time to PE 5.2 time.

4.2.3 Cray FFT interface on Cray XT3 and Cray XD1
We plan to provide the Cray FFT interfaces on the

Cray XT3 and Cray XD1 systems in future software
releases. It is our goal to have a consistent FFT interface
across all Cray platforms. And, we wish to add to the
FFT functionality that is provided in ACML. The ACML
FFTs do not provide a complete set of real-to-complex,
complex-to-real FFTs or distributed memory parallel
routines. And, the ACML complex 3-D FFT routine
CFFT3D does not allow leading dimension parameters.

The initial port of the Cray FFT interfaces to the
Opteron processor is complete. It is our intent to
incorporate ACML FFTs in the Cray FFTs where it is
possible and makes sense to do so. We have yet to
determine whether ACML implementations will replace
or augment Cray FFT implementations. In either case it is
necessary to meet with AMD and Numerical Algorithms
Group (NAG) to learn more about the ACML FFT
implementation, and to suggest further features to extend
the applicability of the ACML FFTs to Cray FFTs.

The amount of work required to provide highly tuned
performance of the Cray FFTs on Cray XT3 and Cray
XD1 systems is still being determined.

4.3 Sparse solvers
Cray plans to make SuperLU our standard direct

linear equation solver on all platforms. We are in
discussions with NERSC to develop a common interface
for the presently three separate machine model versions
of SuperLU.

Optimized sparse level 1 BLAS are provided on all
Cray platforms, either as part of LibSci or in ACML. We
plan to support optimized sparse matrix-vector
multiplication routines on all platforms, in ways that
enable users of PETSc or Trilinos to take full advantage
of Cray hardware.

Supporting sparse eigensolutions through ARPACK /
PARPACK is possible, if we learn that this would be
important to our users.

5. Summary
Cray offers a set of scientific library routines on each

Cray platform. Our goal is to make these libraries more
consistent between systems. Features planned for future
Cray XD1 and Cray XT3 software releases will provide
an FFT interface and a library module environment that
are consistent with other Cray systems.

AMD’s Core Math Library (ACML) provides highly
tuned scientific libraries for Opteron processors, and it is
included in the Cray XD1 and Cray XT3 software
distributions. Cray and AMD are working together to
ensure that ACML contains the performance and features
required by Cray’s customers.

Cray continues to improve algorithms and
implementations for their scientific libraries.
Collaborations with universities and government labs
provide assistance with this work, and more joint projects
are encouraged.

Acknowledgments
The authors would like to acknowledge all of those

who contributed to this paper and to thank AMD for their
support in providing a presentation at CUG. Tim
Wilkens at AMD provided performance information for
ACML. We thank Preeta Raman at AMD for
coordinating discussions between Cray and AMD. We
acknowledge the following members of the Cray
Scientific Libraries Group: Chao Yang who optimizes
the BLAS, LAPACK, sparse solvers and the linpack
benchmark, Neal Gaarder who tunes libm, and John
Lewis who provides technical assistance in all areas of
linear algebra and who develops sparse routines. We also
acknowledge Ursula Kallio, the technical writer for
Cray’s scientific libraries and Catherine Knutson, the
integrator and tester of Cray’s libraries.

About the Authors
Mary Beth Hribar is the manager of the Cray

Scientific Libraries Group. She can be reached at Cray

CUG 2005 Proceedings 6 of 7

Inc., 411 First Ave S, Suite 600, Seattle WA 98104. Her
email address is marybeth@cray.com.

Chip Freitag is the project manager for the math
libraries at AMD. He can be reached at AMD, 5204 E.
Ben White Blvd, MS 621, Austin TX 78741. His email
address is chip.freitag@amd.com.

Adrian Tate is a member of the Cray Scientific
Libraries Group. He is the project lead for ScaLAPACK
tuning. He can be reached at Cray Inc., 411 First Ave S,
Suite 600, Seattle WA 98104. His email address is
adrian@cray.com.

Bracy Elton is a member of the Cray Scientific
Libraries Group. He is the project lead for FFT
development and tuning. He can be reached at Cray Inc.,
411 First Ave S, Suite 600, Seattle WA 98104. His email
address is elton@cray.com.

CUG 2005 Proceedings 7 of 7

mailto:marybeth@cray.com
mailto:chip.freitag@amd.com
mailto:adrian@cray.com

	2.1 Cray X1 series
	2.1.1 Single processor routines
	2.1.2 Distributed memory parallel routines
	2.1.3 Shared memory parallel routines
	2.1.4 Inlining LibSci

	Cray XT3
	2.3 Cray XD1
	3.1 Fortran and C interfaces to ACML
	3.2 BLAS and LAPACK in ACML
	ACML FFT routines
	Fast and vector math functions in ACML_MV
	Upcoming features
	4.1 ScaLAPACK and BLACS tuning
	4.1.1 General algorithmic improvements to ScaLAPACK
	4.1.2 Platform specific improvements

	4.2 Cray FFT development
	4.2.1 New features for Cray X1 series
	4.2.2 Performance on Cray X1 series
	4.2.3 Cray FFT interface on Cray XT3 and Cray XD1

	4.3 Sparse solvers
	Acknowledgments
	About the Authors

