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ABSTRACT: Cray continues to provide support and performance for the basic 
scientific computations that Cray's customers require. On the vector-based 
systems, LibSci is the scientific library package provided by Cray. On the Cray 
XD1 and the Cray XT3 systems, Cray distributes AMD's Core Math Library 
(ACML) and a much smaller Opteron LibSci package. This talk will describe the 
current and future scientific library support for these Cray systems. In addition, 
performance results will be given for LibSci and ACML. 
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1. Introduction
Scientific libraries are a component of Cray’s 

programming environment software.  For each Cray 
system, these libraries provide basic numerical functions 
that have been highly tuned for that architecture.  To 
access the best performance of Cray systems, use these 
libraries.   

For the Cray XD1™ and Cray XT3™ systems, the 
AMD Core Math Library (ACML) provides most of the 
scientific library support.  For convenience, ACML is 
included in Cray’s software distribution.  On the Cray 
X1™ series systems, LibSci® contains the scientific 
library routines.   

This paper states the features, release schedules and 
plans for Cray’s scientific libraries and ACML.   

2.  Libraries for Cray systems 
Currently, Cray offers three different products.  The 

software differs between these products, including the 
scientific libraries.  The Cray X1 and Cray X1E systems 
contain vector processors.  Cray develops the operating 
system, compilers and libraries for these systems.  The 
Cray XT3 and Cray XD1 contain AMD Opteron™ 
processors.  The software for these systems is a 
combination of third party software and libraries 
developed by Cray. 

The features of the scientific libraries vary between 
these three Cray products.  It is a goal to make the 
libraries more consistent across all Cray platforms in the 
future. 

2.1 Cray X1 series 
The Cray X1 system and its upgrade, the Cray X1E 

system, combine vector processors with both shared and 
distributed memory.  These systems are constructed of 
nodes within a node interconnection network, each of 
which contains four multistreaming processors (MSPs) 
and globally addressable shared memory.  Each MSP 
contains four single-streaming processors (SSPs).   

The scientific libraries for the Cray X1 series are 
contained in LibSci.  LibSci provides Fortran interfaces 
for all routines and support for MSP mode, SSP mode, 
and 32- and 64-bit data types.  The latest release is LibSci 
5.4.  

2.1.1 Single processor routines 
LibSci contains single processor support for:  

• Fast Fourier transform (FFT), convolution, 
and filtering routines 

• Sparse direct solvers 
• Basic Linear Algebra Subprograms (BLAS) 
• Linear Algebra Package (LAPACK) 

routines 

2.1.2 Distributed memory parallel routines 
LibSci contains multiprocessor support in a 

distributed memory environment for:  
• FFT routines 
• Scalable LAPACK (ScaLAPACK) routines 
• Basic Linear Algebra Communication 

Subprograms (BLACS) 
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2.1.3 Shared memory parallel routines 
LibSci also contains four-way shared memory 

parallel support across a single node for all Level 3 BLAS 
routines and for the Level 2 BLAS routines sgemv, 
dgemv, cgemv, and zgemv. This library is implemented 
with OpenMP, and including the -lompsci option on 
the link line accesses it. 

2.1.4 Inlining LibSci 
There is a small set of LibSci routines that can be 

inlined with the –O inlinelib option. All Level 1 
BLAS routines can be inlined as well as some Level 2 
BLAS routines (sgemv, dgemv, cgemv, zgemv, sger, 
dger, cgerc, cgeru, zgerc, and zgeru). 

 

2.2 Cray XT3 
The Cray XT3 is a massively parallel processing 

(MPP) system designed to provide the scalability, 
performance and reliability to solve the most demanding 
high performance computing problems.  Cray XT3 
systems are based on Red Storm, the system developed 
jointly by Cray Inc. and the U.S. Department of Energy's 
Sandia National Laboratories. 

The Cray XT3 contains single processor nodes in a 
high-bandwidth, low-latency 3-D torus interconnect.   
Each node includes an AMD Opteron processor, a 
dedicated memory and a Cray SeaStar™ communication 
chip.  The Cray SeaStar chip contains a HyperTransport™ 
link to the Opteron processor, a Direct Memory Access 
(DMA) engine to manage memory accesses, and a router 
that connects to the system interconnection network.  The 
Cray SeaStar chip offloads the communications 
processing from the Opteron processor, increasing the 
efficiency of the computation and communication within 
an application program. 

There are two types of nodes in the system.  Service 
nodes perform the functions needed to support users, 
administrators, and applications running on compute 
nodes. These nodes run a full-featured version of SuSE 
LINUX.  Compute nodes run a microkernel named 
Catamount. Catamount was developed by Sandia 
National Laboratories to provide support for application 
execution without the overhead of a full operating system 
image.  Programming environment software, including 
scientific libraries, is provided on both types of nodes. 

The Cray XT3 programming environment includes 
versions of the 64-bit AMD Core Math Library (ACML) 
to support the GNU and PGI compilers. The compiler 
drivers automatically load and link to the PGI compatible 
libacml when the PrgEnv module is loaded. It is not 
necessary to load and link manually as described in the 
ACML documentation.  If a user wishes to link to the 64-
bit GNU compatible library, the user must swap the acml 
module with the acml-gnu module.   

The Cray XT3 programming environment also 
includes a scientific libraries package, Cray XT3 LibSci.  

Note that the Cray XT3 LibSci differs from the LibSci for 
the Cray X1 series systems.  It contains a much smaller 
set of library routines.  The Cray XT3 1.1 release of Cray 
XT3 LibSci will include: 

• ScaLAPACK 
• BLACS 
• SuperLU_DIST  

More features are planned for Cray XT3 LibSci.  In 
future releases, the Cray interface for serial and 
distributed memory parallel FFTs will be provided. 

 

2.3 Cray XD1 
The Cray XD1 is also an MPP system comprised of 

AMD Opteron processors.  The Cray XD1 introduces a 
new architecture, the Direct Connected Processors, which 
employs the RapidArray™ interconnect to provide a high-
bandwidth, low-latency network.  The RapidArray 
processors connect the Opteron processors to the 
RapidArray switching fabric.  The RapidArray processors 
offload the communication functions from the Opteron 
and accelerate them in hardware. 

The Cray XD1 operating system is based on the 
SuSE Linux Enterprise Server (SLES) distribution.  This 
operating system supports both 32- and 64-bit 
applications.  The programming environment software 
includes 32- and 64-bit ACML libraries, with versions to 
support the GNU and PGI compilers.  The OpenMP 
ACML is available in 32- and 64- bit versions for use 
with the PGI compilers.  ScaLAPACK and BLACS are 
also provided. 

In the 1.1 and 1.2 Cray XD1 software releases, the 
module environment does not include modules for 
ACML, ScaLAPACK or BLACS.  Please link to ACML 
according to the guidelines in the AMD’s Core Math 
Library User’s Guide, or request that your system 
administrator install modules for ACML.  The 
ScaLAPACK and BLACS libraries are located in the 
/usr/local/lib64 directory. 

3. ACML 
The AMD Core Math Library (ACML) is a package 

of numerical routines tuned specifically for the AMD64 
platform processors, including the Opteron.  This library 
provides the basic numerical functions for the Cray XT3 
and Cray XD1 systems. ACML contains: 

• BLAS 
• Sparse Level 1 BLAS 
• LAPACK 
• ACML FFTs 

Also, pre-built ScaLAPACK and BLACS libraries are 
included with ACML.  Since Cray distributes tuned 
ScaLAPACK and BLACS libraries, the ACML versions 
of these libraries are not included in Cray’s software 
distributions. 
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3.1 Fortran and C interfaces to ACML 
In addition to the standard Fortran interface to the 

library routines, there are C interfaces to the routines in 
ACML.  To call ACML routines from a C program, the 
user must include the header file acml.h.  This file 
contains prototypes for all C interfaces, as well as 
prototypes of the Fortran interfaces.  The C programmer 
has the choice of calling either the C or the Fortran 
interface to the ACML routines. 

The C interface differs from the Fortran interface.   
To distinguish the Fortran routines from the C routines, 
the Fortran routine names are in uppercase and appended 
by an underscore.  The C interfaces do not include any 
workspace arguments.  All workspace is allocated locally 
within the routines.  The scalar arguments in the C 
interfaces are passed by value.  There is no native 
complex data type in C.  Routines that operate on 
complex data use the data types complex and 
doublecomplex defined in acml.h. 

Both the Fortran and the C interfaces require that 
two-dimensional arrays be stored in column major order.  
This is the native order for two-dimensional arrays in 
Fortran, but not in C.   

More details about calling ACML from C programs 
are included in the AMD’s Core Math Library User’s 
Guide.  
 

3.2 BLAS and LAPACK in ACML 
The ACML library contains level 1, level 2 and level 

3 BLAS routines, which provide the basic vector and 
matrix computations.  These are highly tuned for the 
Opteron processor.  Sparse level 1 BLAS routines are 
also provided. 

ACML also contains LAPACK, the dense linear 
algebra package.  Most of the performance of LAPACK 
routines benefit from the highly tuned BLAS routines and 
are written using block algorithms wherever possible.  
The ACML LAPACK routines contain further 
optimizations so they differ from the public domain 
LAPACK source but maintain the same level of accuracy 

Level 2 and level 3 BLAS routines and some 
LAPACK routines are available in the OpenMP version 
of ACML.   

 

3.3 ACML FFT routines 
ACML provides a set of highly tuned FFT routines 

with an interface to those routines that is unique to 
ACML.  Since there is no established standard for FFTs, 
this interface is different from the Cray FFT interface.  
Codes that call the Cray FFTs will need to rewrite these 
FFT calls to match the ACML FFT interface. 

For full documentation of the ACML FFT routines, 
refer to the AMD Core Math Library User’s Guide.  A 
few highlights are given here. 

There are routines to compute one-dimensional, two-
dimensional and three-dimensional complex-to-complex 
FFTs.  There is also a routine to compute multiple 
complex-to-complex one-dimensional FFTs.  The 
standard versions compute in place with unit stride and 
fixed scale.  The expert versions of the routines (routine 
names are appended with an “X”) allow for out-of-place 
computation with selectable scales.  The one-dimensional 
and two-dimensional expert FFT interfaces also allow a 
non-unit stride.  The three-dimensional expert FFT 
interface only allows a unit stride. 

There are also routines to compute one-dimensional 
real-to-complex and complex-to-real FFTs (single and 
multiple).  These routines compute in place with a unit 
stride and fixed scale.  Also, the complex data is stored in 
an unusual manner that is documented in the user’s guide.  
Make a note of this format when using complex results 
from the real-to-complex routines or inputting complex 
data into the complex-to-real routines.  

There are OpenMP versions of the two-dimensional 
and three-dimensional complex-to-complex FFT routines 
in ACML, in the acml-mp version.  There are no 
distributed memory parallel FFT routines in ACML. 

  

3.4 Fast and vector math functions in ACML_MV 
Optimized libm is available in glibc in the SuSE 

SLES9 and SL9.x distributions.  Using the fast math 
routines in ACML_MV can provide further performance 
improvements.  These fast routines may sacrifice 
accuracy, so the user should determine if the arguments 
are suitable to use the fast math routines. 

The ACML_MV library also contains vector 
intrinsics of some of the libm routines.  These intrinsics 
can be called in assembly language, or by C compilers 
that support XMM register m128 data types (such as gcc).  
The PGI compilers do incorporate these vector intrinsics 
when producing optimized code.  Finally, the 
ACML_MV library contains array versions of the libm 
routines.  These are callable from C or Fortran, and 
provide an efficient way to perform the desired 
transcendental function on an array of  n input values.  
The currently supported libm functions in ACML_MV 
are log, log10, logf, exp, expf, sin, cos, sincos, pow 
(scalar only), and powf (scalar and vector). 
 

3.5 Upcoming features 
A release of ACML is scheduled at the end of June to 

coincide with ISC 2005.  This release will provide a 
comprehensive random number generation suite.  It will 
also provide an FFT plan builder utility to provide more 
optimal performance for non power-of-2 FFT sizes.   

Further work is also planned for ACML_MV.  The 
next release will include sinf, cosf, and sincosf.  More 
routines are planned for the future including the inverse 
and hyperbolic trigonometric functions. 
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New releases of ACML are planned for 
approximately every 6 months. 

4. LibSci enhancements 
Cray is providing an internally developed set of 

numerical routines on each Cray platform.  For the 
distributed memory parallel routines, it is important to 
tune them for the specific interconnect and message 
passing libraries of Cray’s systems.  Also, Cray supports 
its own interface for FFT routines and we plan to offer 
this interface on all platforms.  These routines must then 
be tuned for each Cray system also.  Finally, we plan to 
add more support for sparse solvers. 

4.1 ScaLAPACK and BLACS tuning 
At Cray, we are developing techniques to improve 

performance of ScaLAPACK on all systems.  Most of the 
work will apply to all systems, but there are optimizations 
that are platform specific.  Our ScaLAPACK tuning is 
partly joint work with the ScaLAPACK team, namely 
Osni Marques and Tony Drummond at NERSC. 

4.1.1 General algorithmic improvements to ScaLAPACK 
 We are investigating ways to improve the efficiency 

of the solvers in ScaLAPACK.  Our approach is to 
rewrite certain parallel algorithms to remove 
redundancies and to overlap computational phases with 
communication phases.  As part of this work, new 
communication routines will be added to the BLACS. 

We decided to start with one of the most heavily used 
ScaLAPACK routines, pzgetrf, which computes the 
LU factorization of a matrix.  Our aim is to improve the 
concurrency of the required process of exchanging matrix 
rows for numerical stability.  To support such changes to 
the LU factorization algorithm, we must have the ability 
to address memory or query for a result on another 
processor with that remote processor being only partially 
involved. That partial involvement, and the removal of 
the need to handshake between processors is key to 
making the modified algorithm perform more efficiently 
than the original.     

We defined a new BLACS routine, blacs_spin, 
which causes a processor to spin until some condition has 
been satisfied on a remote processor. The remote 
processor is not explicitly involved in this interaction, and 
can continue executing its program without being 
affected. This is tremendously useful when the algorithm 
contains some kind of inherent serial sections or 
redundancy.  It is now possible for previously idle 
processors to query for results and to proceed 
independently once those results are obtained. 

We now examine the steps of the original algorithm 
and the modified algorithm.  Both algorithms advance the 
factorization in block steps, each adding one block 
column (panel) and block row to the factorization.  The 
original routine pzgetrf proceeds as follows: 
 

1. Compute the factor entries for the current panel.  
This proceeds column by column and requires 
row interchanges in which the current diagonal 
entry is replaced by the largest entry in the same 
column.  The swap or pivot information is saved. 

2. Broadcast the pivot information to all process 
columns 

3. All processors perform the pivoting row 
interchanges, possibly requiring interchanges 
with other processors 

4. Broadcast the entries of the diagonal block of the 
LU factorization to all process columns. 

5. All processors modify their data for later block 
columns accordingly. 

 
Using the new BLACS routine we can allow steps 2 and 3 
to proceed concurrently with step 1.  Processors in other 
process columns check for new pivot information on the 
process that contains it, without the latter processor being 
involved.   That is, while processors in one process 
column execute step 1, processors without block panel 
data check for pivot updates using blacs_spin.  
When blacs_spin returns a pivot, the processor 
performs a row swap. 

Our revised scheme has better concurrency, but 
increases the number of messages while retaining the 
same volume of remote memory access.  We can make a 
further improvement by introducing a threshold pivoting 
scheme commonly used in sparse factorization methods.  
Rather than exchanging the diagonal entry with the 
largest column entry, we exchange with some suitably 
large entry.  If any suitably large entry is found on the 
processor that holds the diagonal, we perform the 
interchange locally, thereby reducing interprocessor row 
swaps.  “Suitably large” is defined by a user-specified 
threshold, allowing the user to make a compromise 
between efficiency and numerical stability appropriate for 
their application. This new scheme is being developed 
currently for the Cray XT3 and Cray X1 series systems.  

Initial performance results indicate that the modified 
algorithm performs better than the original on the Cray 
X1 series systems.  As the problem size increase, the 
improvement increases.  More tests are needed with 
threshold pivoting, and with larger problems and 
processor grids.   

The parallel LU factorization routines, psgetrf, 
pdgetrf, pcgetrf, pzgetrf, will contain performance 
improvements in the next software release for the Cray 
X1 series, scheduled for December 2005. 

4.1.2 Platform specific improvements 
In addition, we optimize for each of the architectures 

that we support. This includes: 
• Cray XD1:  decoupling block size from 

distribution block size, tuning BLACS for 
the RapidArray interconnect 
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• Cray X1 series:  using Co-Array Fortran in 
communication intensive areas  

• Cray XT3:  decoupling block size and 
tuning for the Cray XT3 MPI 
implementation, using shmem low-latency 
message passing 

 

4.2 Cray FFT development 
The Cray FFTs continue to be tuned for the Cray X1 

series, and work has begun to port the Cray FFT interface 
to the Cray XD1 and Cray XT3 systems. 

4.2.1 New features for Cray X1 series 
Many new features and performance enhancements 

have been added to the FFTs in the last three releases of 
the Programming Environment (PE) software. 

In the PE 5.2 software release (April 2004), 
distributed memory parallel FFT routines were added to 
LibSci.  The interface for these parallel routines is 
consistent with the parallel FFT routines offered on Cray 
T3E systems. 

In the PE 5.3 software release (December 2004), the 
distributed memory parallel FFT routines were modified 
to accept additional work array arguments. This change 
provides the option to manage memory that would 
otherwise be handled internally.  Also, special complex-
to-complex butterflies were added for some composite 
radices, e.g., 6, 10, 12, 15, and 20, and higher powers of 
2, e.g., 16. Together, they reduce the number of floating-
point and memory operations, thus generally improving 
the performance of the FFTs. Improvements are seen in 
the complex-to-complex routines as well as the complex-
to-complex phase of multidimensional real-to-complex or 
complex-to-real transforms.  Furthermore, performance of 
multiple 1-D and multidimensional FFTs is generally 
improved with more effective use of the cache. 

In the PE 5.4 software release (March 2005), 
complex-to-complex FFT butterflies for radices 7, 11, and 
13 were implemented. Applications that previously 
involved complex-to-complex FFTs with FFT lengths 
containing products of powers of these radices will run 
faster than with previous releases. This also includes the 
convolution routine CCNVLF, which effects a complex 
convolution via the Fourier transform. 

4.2.2 Performance on Cray X1 series 
Many performance enhancements to the FFTs have 

been introduced in LibSci between the PE 5.2 and PE 5.4 
software releases.  Included here are graphs of selected 
complex-to-complex FFT routines, comparing the 
performance of PE 5.2 to PE 5.4.  The ratio of time to 
compute FFTs for PE 5.4 to the time for PE 5.2 is plotted 
against problem size.  A value below one indicates a 
performance improvement.  These results are for single 
precision routines with 64-bit default data types, using 
leading dimensions yielding strides that are odd multiples 
of four. 

The tests were run on a single MSP of a Cray X1 
system using Cray LibSci FFTs in PE 5.2 and in PE 5.4.  
The ISYS parameter was 0 in all cases, and the FFT 
lengths shown contain only factors that are powers of 2, 
3, and 5.  Figures 1-4 depict an overall improvement with 
the most improvement for three-dimensional FFTs. The 
plots are somewhat jagged as some FFT lengths take 
advantage of the new butterflies more than other lengths. 
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Figure 1.  Improvement of 64-bit CCFFTM (MSP mode) on 
Cray X1, given by ratio of PE 5.4 time to PE 5.2 time. 
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Figure 2.  Improvement of 64-bit CCFFT2D (MSP mode) on 
Cray X1, given by ratio of PE 5.4 time to PE 5.2 time.  

CUG 2005 Proceedings 5 of 7 



 0

 0.5

 1

 1.5

 2

 2  4  8  16  32  64  128  256  512

P
E

5.
4 

tim
e/

P
E

5.
2 

tim
e

N (=N1=N2=N3)

Forward MSP
Inverse MSP

 
Figure 3.  Improvement of 64-bit CCFFT3D (MSP mode) on 
Cray X1, given by ratio of PE 5.4 time to PE 5.2 time. 
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Figure 4.  Improvement of 64-bit SCFFT3D (MSP mode) on 
Cray X1, given by ratio of PE 5.4 time to PE 5.2 time. 
 

4.2.3 Cray FFT interface on Cray XT3 and Cray XD1 
We plan to provide the Cray FFT interfaces on the 

Cray XT3 and Cray XD1 systems in future software 
releases.  It is our goal to have a consistent FFT interface 
across all Cray platforms.  And, we wish to add to the 
FFT functionality that is provided in ACML.  The ACML 
FFTs do not provide a complete set of real-to-complex, 
complex-to-real FFTs or distributed memory parallel 
routines. And, the ACML complex 3-D FFT routine 
CFFT3D does not allow leading dimension parameters. 

The initial port of the Cray FFT interfaces to the 
Opteron processor is complete.  It is our intent to 
incorporate ACML FFTs in the Cray FFTs where it is 
possible and makes sense to do so.  We have yet to 
determine whether ACML implementations will replace 
or augment Cray FFT implementations. In either case it is 
necessary to meet with AMD and Numerical Algorithms 
Group (NAG) to learn more about the ACML FFT 
implementation, and to suggest further features to extend 
the applicability of the ACML FFTs to Cray FFTs.   

The amount of work required to provide highly tuned 
performance of the Cray FFTs on Cray XT3 and Cray 
XD1 systems is still being determined.  

4.3 Sparse solvers 
Cray plans to make SuperLU our standard direct 

linear equation solver on all platforms.  We are in 
discussions with NERSC to develop a common interface 
for the presently three separate machine model versions 
of SuperLU. 

Optimized sparse level 1 BLAS are provided on all 
Cray platforms, either as part of LibSci or in ACML.  We 
plan to support optimized sparse matrix-vector 
multiplication routines on all platforms, in ways that 
enable users of PETSc or Trilinos to take full advantage 
of Cray hardware. 

Supporting sparse eigensolutions through ARPACK / 
PARPACK is possible, if we learn that this would be 
important to our users. 

5. Summary 
Cray offers a set of scientific library routines on each 

Cray platform.  Our goal is to make these libraries more 
consistent between systems.  Features planned for future 
Cray XD1 and Cray XT3 software releases will provide 
an FFT interface and a library module environment that 
are consistent with other Cray systems. 

AMD’s Core Math Library (ACML) provides highly 
tuned scientific libraries for Opteron processors, and it is 
included in the Cray XD1 and Cray XT3 software 
distributions.  Cray and AMD are working together to 
ensure that ACML contains the performance and features 
required by Cray’s customers. 

Cray continues to improve algorithms and 
implementations for their scientific libraries.  
Collaborations with universities and government labs 
provide assistance with this work, and more joint projects 
are encouraged.  
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