
CUG 2005 Proceedings 1 of 9

C/C++ Programming Environment
on the Cray XT3 System

Geir Johansen, Cray Inc.

ABSTRACT: A description of the issues involving the Cray C & C++ Programming
Environment of the Cray XT3 system. The goal of this paper is to provide C and C++
programmers information to readily write and port codes to the Cray XT3 system.
Discussion will include the difference between the Catamount system libraries and Linux
system libraries, and the unique features of the PGI C/C++ compiler.

KEYWORDS: Cray XT3, Cray Red Storm, C/C++ Programming

CUG 2005 Proceedings 2 of 9

1.0 Introduction

The goal of this paper is for the user to gain an
understanding of the unique features of the Cray XT3
system and programming environment to enable them to
readily write and port C/C++ code to the Cray XT3. The
paper is not meant as a comprehensive description of the
Cray XT3 programming environment (see Cray Inc.
document Cray XT3 Programming Environment User’s
Guide S-2396), rather it is intended to highlight the issues
that C/C++ programmers have encountered.

All of the information presented in this paper is valid
for the Cray Red Storm system. As a caveat, the software
for the Cray XT3 is evolving at a rapid pace, so it is likely
that some of the information in this paper will be out of
date in the near future. Also, any possible future features
discussed do not represent a commitment by Cray Inc. to
implement these features.

2.0 Programming Environment
2.1 Extremely Brief Cray XT3 Architecture Description

The programming environment for Cray system is
essentially a cross compiler environment. The compiler
and linker are executed on Cray XT3 login service nodes
that run the Linux operating system, while the resulting
executables are invoked on compute nodes that run the
Catamount microkernel. Other relevant information
about the Cray XT3 that affect the programming
environment include:

• Portland Group (PGI) compilers are the only
supported compilers for the compute nodes.

• Catamount only supports static libraries (i.e. no
dynamic libraries).

• x86-64 code.
• Not an SMP. Each PE has its own memory.
• Catamount has a subset of the standard glibc

functionality.
• Application has dedicated use of the processor

and memory on compute node.
• I/O performed by service nodes running Linux.

2.2 Modules
Similar to other Cray Inc. systems, the Cray XT3

uses the modules utility to initialize the programming
environment for the user. The modules utility will set the
appropriate environment variables so the compilers will
find the correct header files and libraries to create an
executable for the Cray XT3 compute nodes. The main
module file is PrgEnv, which when loaded will load the
other programming environment modules and system

modules needed to build code for the Cray XT3. The
following table is a list of the Cray XT3 module files:

Module and
Package
Name

Description

PrgEnv Main programming environment module
that loads all the programming
environment modules, plus all system
modules (xt-libc, xt-catamount, xt-pbs,
…).

pgi PGI compilers
xt-pe Compiler drivers
xt-mpt Cray MPICH2 Message Passing Interface

2 (MPI-2), SHMEM routines
acml AMD Core Math Library
xt-libsci Cray XT3 LibSci scientific library

routines
gcc Gnu C Library 3.2.3 routines

Table 1. Programming Environment modules files

2.2.1 Current Reality of Cray XT3 Modules
One of the main features of using the modules utility

is the ability to change versions of software. For
example, to change from using PGI 5.2-4 to PGI 6.0-1,
the user would simply execute the command “modules
swap pgi/5.2.4 pgi/5.2.4”. At this point in time of the
Cray XT3 life cycle, there are several dependencies that
inhibit the loading of different versions of software. For
example, Cray MPT 1.0 is currently built with PGI 5.2, so
because of an incompatibility between PGI 5.2 and 6.0, it
is not possible to use this version of MPI-2 libraries with
PGI 6.0. Another example is that the user will want to
use the same Catamount glibc routines that were released
with Catamount microkernel.

2.3 Compiler Drivers
 The compiler commands (see Table 2) are shell

scripts that read in the environment variables that have
been initialized by modules files and proceed to call the
compiler executable with the appropriate arguments. Only
the listed compiler commands should be used to compile
code targeted for the compute nodes. Using another
compiler shell script or calling the compiler directly will
likely result in an important option being missed that is
essential to execute on the compute nodes. For example,
an ‘mpicc’ executable does exist on the system, however,
the ‘cc’ command is the correct command to compile MPI
C code.

CUG 2005 Proceedings 3 of 9

 Table 2. Compiler commands

2.3.1 Compiling Code for Service Nodes
In order to compile code that is to be executed on the

login node, such as a utility, then the compilers can be
called directly. For example, to compiler a C code, the
PGI C compiler pgcc or the GNU C compiler gcc can be
invoked to compile the code. These compilers will find
the appropriate header files and libraries in their normal
Linux locations.

2.3 Libraries
The module files and compiler commands are used to

ensure that appropriate libraries are linked for the
executable to run on the compute nodes. The following
table list the libraries that are included when using the
C/C++ compiler commands:

Library Name Description
libmpich.a MPICH2 library
libacml.a AMD Core Math Library

liblustre.a Lustre file system I/O routines
libpgc.a PGI C compiler library
libm.a Catamount glibc math libraries
libcatamount.a Catamount system routines

libsysio.a File system I/O routines
libportals.a Portals routines, low-level message

passing interface
libc.a Catamount glibc routines
libC.a PGI C++ Standard Library, based on

STLport
libgcc.a GNU C library routines
libsma.a SHMEM library (Non-default, need to

specify -lsma)
libpapi.a PAPI library (Non-default, need to

specify -lpapi)
libgmalloc.a glibc version of malloc (Non-default,

need to specify –lgmalloc).

Table 3 Libraries searched by C/C++ compiler drivers

2.4 Linking Linux Libraries
If a program requires linking a Linux library, such as

libjpeg.a, the user will want to copy it from its normal
Linux directory (/usr/lib64) to another directory to
prevent other Linux system libraries, such as libc.a, being
linked in the executable.

2.4 MPICH2 and C++ Incompatibility
A name conflict exists when a C++ program includes

the mpi.h and stdio.h (Note: C++ header file iostream
includes stdio.h) header files. Both header files define
SEEK_SET, SEEK_CUR, and SEEK_END. This name
conflict is not unique to the Cray XT3, but exists on other
platforms that use MPI-2 libraries. The compiler will
abort the compilation if this name conflict is detected.
Assuming that the MPI naming is not needed, the code
can be compiled by using the compiler option
-DMPICH_IGNORE_CXX_SEEK, for example:

$ cat seek1a.C

#include <iostream>
#include <mpi.h>
// stdio.h version of SEEK_SET,
// SEEK_CUR, and SEEK_END are used

void t() { }

$ CC -c -DMPICH_IGNORE_CXX_SEEK seek1a.C
/opt/xt-pe/1.1.02/bin/snos64/CC: INFO:
catamount target is being used
$

Alternatively, the mpi.h header file can be included
before stdio.h is included:

$ cat seek1b.C

#include <mpi.h> //include MPI header
 //before I/O header
#include <iostream>
// stdio.h version of SEEK_SET,
//SEEK_CUR, and SEEK_END are used

void t() { }

$ CC -c seek1b.C
/opt/xt-pe/1.1.02/bin/snos64/CC: INFO:
catamount target is being used
$

If the MPI definitions are needed, then the solution is
to #undef these names prior to including mpi.h:

$ cat seek2.C

#include <iostream>
#undef SEEK_SET
#undef SEEK_CUR
#undef SEEK_END
#include <mpi.h>
// MPI version of SEEK_SET, SEEK_CUR,
// and SEEK_END are used

void t() { }

$ CC -c seek2.C
/opt/xt-pe/1.1.02/bin/snos64/CC: INFO:
catamount target is being used

Compiler
Command

Compiler

cc C compiler
CC C++ compiler
ftn Fortran compiler for Fortran 90

and Fortran 95
f77 Fortran 77 compiler

CUG 2005 Proceedings 4 of 9

$

Some vendors do not implement the C++ MPI seek
definitions, so this is why the problem is not seen on some
other systems. In a future release of Cray XT3 MPICH2
the MPI definitions will be turned off by default and the
option –DMPICH_ENABLE_CXX_SEEK will be used to
explicitly define them.

3. Catamount Microkernel Issues
The Catamount microkernel developed by Sandia

National Laboratories provides support for application
execution without the overhead of a full operating system.
The following sections describe the issues involved when
writing and porting code targeted for the Catamount
microkernel.
3.1 Target Machine Macros

The following predefined macros can be used by
#ifdef statements to provide information that the code
being is targeted for the Cray XT3 compute nodes.

• __QK_USER__ Code is targeted to run under the
Catamount OS

• __LIBCATAMOUNT__ Code uses Catamount
libraries

3.2 Catamount glibc support
The Catamount microkernel only supports a subset of

glibc functionality, some of the routines not supported
include:

• Sockets, pipes, remote procedure calls, or other
TCP/IP communication routines.

• Dynamic process control routines, such as fork,
exec, and system.

• Share memory routines (shm_open).
• Dynamic library routines (dlopen).
• Pthreads.
• getcwd routines.
• Functions that require a database, for example

getuid and related routines are not supported.
• Limited support for signal routines and ioctl.

Appendix A of the Cray XT3 Programming
Environment User’s Guide (S-2396) contains a full list of
the glibc functions that are supported in Catamount.

The practical experience with porting codes to the
Cray XT3 is that there have been a few codes that cannot
be ported to the Cray XT3 because of the Catamount glibc
limitation. For example, codes that rely on the use of
pthreads or sockets cannot be ported. Most codes have
required no or minor modifications to allow them to run
the Cray XT3. The following sections describe some of
the issues that have required work-arounds to the code.

3.2.1 malloc
The Catamount malloc routine is a customized

version that has been optimized for the Catamount non-
virtual memory operating system. It is tuned to work with
applications that allocate large, contiguous data arrays.
The heap_info routine is a Catamount routine that returns
information about heap memory usage. Here is an
example of the information provided by this routine:

$ cat mem_check.c
#include <stdio.h>
#include <catamount/catmalloc.h>

main ()
{
 size_t fragments;
 unsigned long total_free, largest_free,
total_used;
 if (heap_info(&fragments, &total_free,
 &largest_free, &total_used) == 0) {
 printf("heap_info fragments=%lu \
 \n total_free=%lu \
 \n largest_free=%lu \
 \n total_used =%lu\n",
 fragments, total_free, largest_free,
total_used);
 } else {
 printf("non zero return code from \
heap_info\n");
 }
 return;
}
$ cc -o mem_check mem_check.c
/opt/xt-pe/1.1.02/bin/snos64/cc: INFO:
catamount target is being used
mem_check.c:
geir@nid00004:/ufs/home/users/geir> yod -sz
1 ./mem_check
heap_info fragments=300
 total_free=918419968
 largest_free=918413840
 total_used =132560
$

The glibc version of malloc is available to users by
specifying the –lgmalloc option on the compiler
command line.

3.2.2 mmap
Catamount does not support the mmap function.

Applications that use the mmap function with the
MAP_ANONYMOUS flag to allocate memory space can
instead use malloc to perform this function.

3.2.3 times
Catamount does not support the times, _rtc, and clock

routines. The Catamount dclock routine is used to
determine the elapsed time of a program segment. In
addition to dclock, the functions gettimeofday, getrusage,
MPI_Wtime , and Fortran cpu_time can be used to

CUG 2005 Proceedings 5 of 9

calculate elapsed time. All of these routines use the same
clock, however, dclock will have the lowest calling
overhead. Here is an example using dclock:

$ cat dclock.c
#include <catamount/dclock.h>

main()
{
 double start_time, end_time;
 start_time = dclock();
 sleep(3);
 end_time = dclock();
 printf("\nElapsed time =
%f\n",(end_time - start_time));
}
$ yod -sz 1 ./dclock

Elapsed time = 3.000008
$

gettimeofday example:

$ cat gettimeofday.c
#include <sys/time.h>

main()
{
 struct timeval tv;
 struct timezone tzp;
 double start_time, end_time;

 gettimeofday(&tv,&tzp);
 start_time = (double) tv.tv_sec
 + (double) tv.tv_usec * 1.e-6;
 sleep(3);
 gettimeofday(&tv,&tzp);
 end_time = (double) tv.tv_sec
 + (double) tv.tv_usec * 1.e-6;
 printf("\nElapsed time =
%f\n",(end_time - start_time));
}
$ yod -sz 1 ./gettimeofday

Elapsed time = 3.000009
$

For getrusage, user time and system time will be the
same time. The compute node running the Catamount
microkernel is dedicated for the users application.
Adding the elapsed user and system time will simple
result in the doubling of the actual elapsed time:

$ cat getrusage.c
#include <sys/time.h>
#include <sys/resource.h>

main()
{
 struct rusage ru;
 double u_start_time, u_end_time;
 double s_start_time, s_end_time;

 getrusage(RUSAGE_SELF,&ru);

 u_start_time = (double)ru.ru_utime.tv_sec
 + (double) ru.ru_utime.tv_usec * 1.e-6;
 s_start_time = (double)ru.ru_stime.tv_sec
 + (double) ru.ru_stime.tv_usec * 1.e-6;
 sleep(3);
 getrusage(RUSAGE_SELF,&ru);
 u_end_time = (double) ru.ru_utime.tv_sec
 + (double) ru.ru_utime.tv_usec * 1.e-6;
 s_end_time = (double) ru.ru_stime.tv_sec
 + (double) ru.ru_stime.tv_usec * 1.e-6;
 printf("\nElapsed time (user) = %f\n",
 (u_end_time - u_start_time));
 printf("\nElapsed time (system) = %f\n",
 (s_end_time - s_start_time));
}
$ yod -sz 1 ./getrusage

Elapsed time (user) = 3.000009

User Elapsed time (system) = 3.000009
$

3.2.4 system routine
The system routine performs a call to fork and exec,

which are not supported by the Catamount microkernel.
Often the call to execute a command can be replaced by a
library routine. For example, system(“mkdir /dir”) can be
replaced by a call to mkdir(“/dir”, 0750) . In other cases,
users have written routines to replace the command being
called. For example, system(“cp src dest”) could be
replaced by a call to routine that copies one file to
another.

3.2.5 getpid
While the getpid function is supported by Catamount

it may not return information that is useful to the
program. On Catamount, the getpid function returns an
integer from 1 – 5. Different processes within the same
parallel program can return the same getpid number. To
get a unique value for each process, the nid value can be
used. For example, in the program below a getnid
function is written to return a unique value for each
process.

$ cat getpid.c
#include <catamount/data.h>

unsigned getnid() {
 return((unsigned)_my_pnid);
}

main()
{
 printf("getpid=%d, getnid=%d\n",
 getpid(), getnid());
}
$ cc -o getpid getpid.c
/opt/xt-pe/1.1.02/bin/snos64/cc: INFO:
catamount target is being used
getpid.c:
$ yod -sz 8 ./getpid

CUG 2005 Proceedings 6 of 9

getpid=2, getnid=82
getpid=5, getnid=196
getpid=3, getnid=199
getpid=3, getnid=200
getpid=2, getnid=201
getpid=4, getnid=197
getpid=2, getnid=204
getpid=2, getnid=202
$

3.2.6 getrlimit, setrlimit
An application running on a compute node will have

dedicated use of the processor and memory, so getrlimit
will show that many resources limits have a value of
RLIM_INFINITY . For file I/O related limits, the
Catamount does not having limitations, however, the
specific file system on the Linux service partition may
have limits that are unknown to the Catamount
microkernel. The following code shows the limits being
returned by getrlimit for each system resource:

$ cat rlimit.c

#include <stdio.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <unistd.h>

main () {
 struct rlimit rl;
printf("RLIM_INFINITY=%d\n",RLIM_INFINITY);
 getrlimit(RLIMIT_CPU,&rl);
 printf("RLIMIT_CPU limit = %d\n",
rl.rlim_cur);
 getrlimit(RLIMIT_DATA,&rl);
 printf("RLIMIT_DATA limit = %d\n",
rl.rlim_cur);
 getrlimit(RLIMIT_FSIZE,&rl);
 printf("RLIMIT_FSIZE limit = %d\n",
rl.rlim_cur);
 getrlimit(RLIMIT_LOCKS,&rl);
 printf("RLIMIT_LOCK limit = %d\n",
rl.rlim_cur);
 getrlimit(RLIMIT_MEMLOCK,&rl);
 printf("RLIMIT_MEMLOCK limit = %d\n",
rl.rlim_cur);
 getrlimit(RLIMIT_NOFILE,&rl);
 printf("RLIMIT_NOFILE limit = %d\n",
rl.rlim_cur);
 getrlimit(RLIMIT_NPROC,&rl);
 printf("RLIMIT_NPROC limit = %d\n",
rl.rlim_cur);
 getrlimit(RLIMIT_RSS,&rl);
 printf("RLIMIT_RSS limit = %d\n",
rl.rlim_cur);
 getrlimit(RLIMIT_STACK,&rl);
 printf("RLIMIT_STACK limit = %d\n",
rl.rlim_cur);
}
$ cc -o rlimit rlimit.c
/opt/xt-pe/1.1.02/bin/snos64/cc: INFO:
catamount target is being used
rlimit.c:

$ yod -sz 1 ./rlimit
RLIM_INFINITY=-1
RLIMIT_CPU limit = -1
RLIMIT_DATA limit = 918659072
RLIMIT_FSIZE limit = -1
RLIMIT_LOCK limit = -1
RLIMIT_MEMLOCK limit = -1
RLIMIT_NOFILE limit = -1
RLIMIT_NPROC limit = 1
RLIMIT_RSS limit = -1
RLIMIT_STACK limit = 16777216
$

The setrlimit function will always return successfully
when called with a valid resource name and valid pointer
to an rlimit structure. This rlimit passed by setrlimit is
ignored by Catamount.

3.2.7 Other Routines
Here are other examples of cases where missing

Catamount libraries have affected the porting of code:

tmpnam The mkstemp routine can be used to
create a temporary file with a unique name.

statfs Routine to get file system statistics is
not supported.

fcntl (F_SETLK) The fcntl routine is supported,
however, it cannot be used to set file locks. The error
EINVAL (Invalid argument) will be returned.

3.3 Catamount Standard I/O
Standard I/O (stdin, stdout , and stderr) on the

compute nodes is unbuffered by default. As a result, the
performance of read and writes to standard I/O is very
poor. A user may dramatically improve performance by
calling setvbuf to buffer stdin, stdout, or stderr. In the
following example, the stdout buffer size is set to 1024,
but larger buffer sizes can be used if needed.

$ cat setvbuf.c
#include <catamount/dclock.h>
#include <stdio.h>

main()
{
 int i;
 char *buf;
 double start_time, end_time;

 start_time = dclock();
 for(i=0;i<128;i++)
 printf("sixteen chars!!\n");
 fflush(stdout);
 end_time = dclock();
 fprintf(stderr," Time for unbuffer
I/O = %f\n",
 (end_time - start_time));

CUG 2005 Proceedings 7 of 9

 buf = (char *)malloc(1024);
 setvbuf(stdout, buf, _IOFBF, 1024);
 start_time = dclock();
 for(i=0;i<128;i++)
 printf("sixteen chars!!\n");
 fflush(stdout);
 end_time = dclock();
 fprintf(stderr," Time for buffer I/O
= %f\n",
 (end_time - start_time));
}
$ yod -sz 1 ./setvbuf >set.out
 Time for unbuffer I/O = 25.609129
 Time for buffer I/O = 0.200042
$

4. PGI C/C++ Compiler Issues
The Portland Group compilers are currently the only

supported compilers for code to be executed on the Cray
XT3 compute nodes. The PGI compilers do provide a
good combination of features and performance for HPC
programming. PGI has been very responsive in regards to
the support of their compilers. The following sections
describe the PGI specific issues that have occurred when
compiling code for the Cray XT3.
4.1 PGI 5.2 & 6.0 Incompatibilities

The PGI 6.0 Release Notes indicate that object files
created using the 6.0 compilers are incompatible with
object files from previous releases. One reason for this is
the C++ name mangling has changed in PGI C++ from
previous releases.

4.2 C99 Standard
 The Portland Group has indicated that full

conformance to the C99 standard is a likely feature of the
PGI 6.1 release. The following are examples of how not
conforming to the C99 standard have affected compilation
of code for the Cray XT3.

4.2.1 C++ style comments
The PGI C compiler by default does not interpret the

C++-style comments (“//”) in source code. The ‘-B’
option can be specified on the compiler command line to
allow the C compiler to understand that // designates
comments in the code.

4.2.2 Variable Length Arrays
PGI 6.0 C compiler does not support variable length

arrays (VLAs). For example, the following code will not
compile:

void vla(int size) {
 char dummy[size];
 .
 .

The above code can be rewritten as:

void vla(int size) {
 char *dummy;
 dummy = (char *)malloc(size);
 .
 .

4.2.3 ISO C99 Library Routines
The PGI compiler will leave the macro

__USE_ISOC99 undefined, so the code in the header files
that depends on this macro being set (i.e. #i fde f
__USE_ISOC99) will not be included. The Catamount
glibc and libm libraries contain some ISO C99 specific
routines, and they are linked in even if they have not been
prototyped in a header file. This is a problem for the PGI
C++ compiler, as it requires all routines that are used to
be prototyped. Here is an example where the routine
trunc is located in the Catamount version of libm.a, but is
not prototyped in the header file because __USE_ISOC99
is not set. Manually prototyping the trunc routine works
around the problem:

$ cat trunc.C

#include <cmath>
#ifdef __USE_ISOC99
 #error 1 //__USE_ISOC99 is unset
#endif
#include <iostream>

#ifdef TRUNC
extern "C" double trunc(double);
#endif

int main() {
 double a = trunc(1.2);
 std::cout << a << std::endl;
 return 0;
}

$ CC -D__USE_ISOC99 -o trunc trunc.C
/opt/xt-pe/1.1.02/bin/snos64/CC: INFO:
catamount target is being used
trunc.C:
"trunc.C", line 13: error: identifier
"trunc" is undefined
 double a = trunc(1.2);
 ^

1 error detected in the compilation of
"trunc.C".
$ CC -DTRUNC -o trunc trunc.C
/opt/xt-pe/1.1.02/bin/snos64/CC: INFO:
catamount target is being used
trunc.C:
$ yod -sz 1 ./trunc
1
geir@nid00004:/ufs/home/users/geir>

4.3 Compiler Options
The PGI C/C++ compiler has many options to

specify features and optimization techniques to be

CUG 2005 Proceedings 8 of 9

performed by the compiler. Chapter 2 of the PGI User’s
Guide provides a good overview of optimization options
available for the PGI compilers. The following list is a
sampling of the PGI compiler options that have been used
in compiling the code for the Cray XT3:

• -fastsse This flag is a collection of optimization
options that PGI suggests for targets with SSE/SSE2
capability. The specific optimization flags that are
specified by the –fastsse are: “-fast -Mvect=sse -
Mscalarsse -Mcache_align –Mflushz”, where –fast
specifies “-O2 -Munroll=c:1 -Mnoframe –Mlre”

• - M n o n t e m p o r a l Informs compiler to force
generation of nontemporal move and prefetch
instructions.

• -Mprefetch=distance:8,nta distance option for the
prefetch flag sets the fetch-ahead distance to 8 cache
lines. The nta option instructs compiler to use the
prefetchnta instruction.

• -Msafeptr Optimization option that instructs the
compiler that pointers do not have data dependencies.
Option is similar to the Cray C/C++ restrict option.

• -Mipa (=fast) Invokes interprocedural analysis. The
fast option is collection of IPA sub-options that are
generally optimal for the targeted machine.

• -Minline=levels:X Informs the inliner to perform X
levels of inlining, where the default is 1. This is an
important option for C++ code. The PGI User Guide
suggests using –Minline-levels:10 for C++ code.

• -Kieee Floating-point operations are performed in
conformance with the IEEE 754 standard. This
option is useful for producing bit identical results. In
PGI 6.0, a performance penalty has been observed
when using this option.

• -O3 The -fastsse option contains ‘-O2’, so this option
must appear after the –fastsse option on the command
line. PGI informs us there is not significant
difference between –O2 and –O3.

• -Minfo Outputs messages of optimizations the
compiler performed.

• -Mneginfo Outputs messages on why certain
optimizations were not performed.

• -Mnodepchk The compiler assumes that potential
data dependencies do not conflict. Option can
produce incorrect code if there are data dependencies.
Option is similar to the Cray ivdep compiler option.

• -help Displays useful information about the options
specified on the command line.

• -v Displays how the compiler, assembler, and linker
were called.

• -tp k8-64, -tp amd64 Specifies that you are targeting
code to run on a AMD64 processor 64-bit mode.
This option is not necessary when compiling on a
Cray XT3 system

4.4 C++ Template Instantiaion
The single largest problem area involving the PGI

C/C++ compiler has been with template instantiation.
The PGI 5.2 compiler used a prelinker process to

instantiate templates for the C++ program. The prelinker
instantiation method was problematic for the following
reasons:

• The process for building libraries required that all the
object files be prelinked before they are added to a
library. Many software makefiles assume that g++-
style instantiation is available, so makefiles needed to
be altered in order to use PGI 5.2 method of building
libraries containing C++ code.

• The PGI compiler did not allow the use of the –g
option to be used when building the object files for
the library. This prevented the code from being
examined by a debugger.

• The prelinking process requires that some source files
to be recompiled in order to instantiate templates.
This process adds to the overall build time of an
executable.

• The build process is not robust in that it requires
additional supporting files (i.e. *.ii, *.ti) to be
maintained. Often undefined linking errors have
been resolved by removing all object files and
supporting instantiation information, then rebuilding
from the entire source.

In PGI 6.0 the C++ compiler now uses a gnu-like
style of template instantiation. A template is now
instantiated each time it is referenced and placed in the
object file. Archives and plain objects will contain
multiple copies of templates, which will be discarded by
the gnu linker. No special compiler or linker flags are
required for this template instantiation method.

4.5 profile
Code generated using the PGI profile options (-

Mprof) does not execute successfully on the compute
nodes. Problem is likely a Catamount porting issue of the
PGI profile library being linked in the code.

5. Future Opportunities

5.1 Large Memory Support
Currently the system software limits applications to

1GB of memory per compute nodes, but this restriction
will be removed in the near future. In order for the
executable to use data sections that are greater than 2GB
per node, the code will need to be compiled and linked
with the PGI -mcmodel=medium option. This option
requires that the static libraries being linked in must also
be compiled with the -mcmodel=medium option. The
programming environment will need to provide libraries
compiled with this option.

5.2 Cross Compiler Environment
A request from Cray Inc. internal users has been for

the implementation of a cross compiler environment to
compile and build code. A main benefit of the cross
compiler environment is to allow users to develop

CUG 2005 Proceedings 9 of 9

application code while not having access to the Cray XT3.
At this time the Cray XT3 software is being updated
frequently, so a version of cross compiler environment
becomes obsolete quickly. As the Cray XT3 software
stack becomes more mature with less updates, this would
be a helpful feature.

5.3 Support of Additional Compilers
Currently the PGI compilers are the only officially

supported compilers for applications running on the Cray
XT3. A possible future enhancement is to support other
compilers, such as the Gnu compilers or the Pathscale
compilers.

While not supported, it is possible to create code for
the compute nodes using other compilers. Compiling the
Streams benchmark using the gcc compiler, and then
using the cc command to link the executable resulted in
an executable that could run on a compute node. The
results from this executable were:

Function Rate (MB/s) RMS time Min time Max time
Copy: 1807.5439 0.0886 0.0885 0.0888
Scale: 1866.3021 0.0858 0.0857 0.0858
Add: 2169.6453 0.1107 0.1106 0.1107
Triad: 2176.1226 0.1103 0.1103 0.1103

The same software compiled with the PGI 6.0
compiler yielded the following results:

Function Rate (MB/s) RMS time Min time Max time
Copy: 4148.8482 0.0386 0.0386 0.0388
Scale: 3542.561 0.0452 0.0452 0.0454
Add: 3870.0874 0.0620 0.0620 0.0620
Triad: 3845.9712 0.0624 0.0624 0.0624

5.4 MPP Applications Running on Linux Kernel
A possible future enhancement to the Cray XT3

would be to extend parallel programming to nodes
running the Linux kernel. This feature would allow
certain codes to execute that were otherwise affected by
the limitations of the Catamount microkernel.

Conclusion
Given that the Cray XT3 is still very early in its

product lifecycle, the C/C++ programming environment
has performed very well in enabling users to generate
code for the Cray XT3. The Catamount microkernel glibc
limitations have not been a major obstacle for porting
many important codes to the Cray XT3. The PGI C/C++
compilers have also performed well, with one exception
being template instantiation difficulties with PGI 5.2,
which has been addressed in PGI 6.0

About the Author
Geir Johansen works in Software Product Support,

Cray Inc. He is responsible for support of C, C++, libc,
MPI, TotalView and other debuggers, and performance
tools for the Cray X1 and Cray XT3 platforms. He can be
reached at Cray Inc., 1340 Mendota Heights Road,
Mendota Heights, MN 55120, USA; Email:
geir@cray.com

