
C/C++ Programming for the
Cray XT3 and Cray Red Storm

Systems

Geir Johansen

Cray Inc.

Geir Johansen CUG 2005

Overview

• C/C++ Programming Environment Basics

• Catamount Microkernel Issues

• PGI C/C++ Compiler

• Future Opportunities

Cray XT3 Architecture
 in 60 Seconds

• Code built on login service nodes running Linux

• Applications run on compute nodes running
Catamount microkernel

• X86-64

• Static libraries only

• Each PE has its own memory

Cray XT3 Architecture
 in 60 Seconds

• Application has dedicated use of processor and
memory on compute nodes

• Catamount has a subset of glibc functionality

• I/O performed by service nodes running Linux

• Portland Group compilers only supported
compilers for compute nodes

modules

• Modules used to initialize programming
environment

• PrgEnv modulefile used to load other
programming environment modules and system
modules

• Current dependencies exist between modules
• PGI 5.2 C++ and MPT

Programming Environment
modules

• pgi - Portland Group compilers

• xt-pe - Compiler drivers

• xt-mpt - Cray MPICH2 MPI-2, Cray SHMEM
routines

• acml - AMD Core Math Library

• xt-libsci - Cray XT3 LibSci scientific library

• gcc - Gnu C Library 3.2.3 routines

Compiler Drivers

• cc, CC

• Must be used.

• Sets up compiler flags, header file paths, and
library file paths for the Catamount target

• Used for compiling MPI code (not mpicc)

• To compile code for login nodes, use pgcc/pgCC
or gcc/g++

Libraries Searched by the C/C++
Compiler Drivers

• libmpich.a - Cray MPICH2

• libacml.a - AMD Core Math library

• liblustre.a - Lustre file system I/O routines

• libpgc.a - PGI C compiler library

• libm.a - Catamount glibc math routines

• libcatamount.a - Catamount system routines

• libsysio.a - File system I/O routines

Libraries Searched by the C/C++
Compiler Drivers (continue)

• libportals.a - Portals routines

• libc.a - Catamount glibc routines

• libC.a - PGI C++ Standard library

• libgcc.a - GNU C library routines

• libsma.a - SHMEM library (Non-default)

• libpapi.a - PAPI library (Non-default)

• libgmalloc.a -glibc version of malloc (Non-default)

Using Linux Libraries

• If a Linux library is being linked in the application,
be sure to copy the library from its normal Linux
directory (i.e. /usr/lib64)

MPICH2 and C++ Incompatibility

• Name conflict for C++ code including mpi.h and
stdio.h (iostream includes stdio.)

• Both header files define SEEK_SET, SEEK_CUR,
and SEEK_END

• This is a MPI-2 problem

• Other vendor systems don’t implement MPI seek
definitions

MPICH2 and C++ Incompatibility

• To ignore MPI seek definitions:
• Use –DMPICH_IGNORE_CXX_SEEK
• Or include mpi.h before stdio.h

• To use MPI seek definitions:
• #undef seek values before including mpi.h

• In future, -DMPICH_ENABLE_CXX_SEEK used to
define MPI seek definitions

Target Machine Macros

• Predefined macros to specify code is targeted for
the Cray XT3 (i.e. #ifdef statement)
• __QK_USER__
• __LIB_CATAMOUNT__

Catamount glibc Support

• Catamount eliminates the overhead of a full OS

• Processor and memory on compute node is
dedicated to the application

• Catamount does not support the following glib
functions
• Sockets, pipes, remote procedure calls, or other

TCP/IP routines
• Dynamic process control: fork, exec, system
• Share memory routines: shm_open

Catamount glibc Support

• Catamount does not support the following glib
functions(continue)
• Dynamic library routines: dlopen
• Pthreads
• getcwd call
• Functions requiring database: getuid
• Limited support for signals and ioctl

• Work arounds for non-supported glibc functions

malloc, mmap
• Customized version of malloc
• Tuned for applications with large contiguous data

arrays

• heap_info routine gives memory usage info

• glibc version of malloc is available by specifying ‘-
lgmalloc’

• mmap not supported
• map called with MAP_ANONYMOUS flag can be

replaced with a call to malloc

times, clock, and _rtc

• times, clock, and _rtc functions not supported

• Use dclock routine to calculate elapsed time

• gettimeofday, getrusage, MPI_Wtime, and Fortran
cpu_time are supported
• Same clock as dclock
• dclock has lowest calling overhead
• User and system time are identical for getrusage

system

• Typically used to call a command

• Usually replaced by library routine

• Example: system(“mkdir /tmp)” becomes
mkdir(“/tmp, 0750)

getpid

• Supported, but not usually helpful

• Use nid to get a unique value for each process of
a parallel program

• Example:

 #include <catamount/data.h>
 unsigned getnid() { return((unsigned)_my_pnid); }

getrlimit, setrlimit

• getrlimit: all but data size, stack size, and number
of processes return unlimited

• File I/O limits from service nodes not returned

• setrlimit: value ignored by Catamount

Catamount Standard I/O

• Unbuffered by default -> very slow

• Use setvbuf to buffer stdin, stdout, or stderr

• Example
char *buf;
buf = (char *)malloc(1024 char *);
setvbuf(stdout, buf, _IOFBF, 1024);

PGI C/C++ Compiler Issues
• PGI 5.2 & and 6.0 object file incompatibilities

• C99 Standard Conformance
• C++-style comments, use ‘-B’ option
• Variable length arrays
• ISO C99 library routines

• Compiler undefs __USE_ISOC99 macro

• Catamount glibc and libm has ISO C99 routines

• Prototypes for routines not included, problem for C++

• PGI profile (-Mprof) does not work on Catamount

 C++ Template Instantiation

• PGI 5.2 uses a prelinker to perform template
instantiation

• Very problematic in 5.2
• Need to prelink before archiving object files in a

library. Need to alter makefiles, which assume g++
style instantiation

• The ‘-g’ option was not permitted for building C++
object files for a library. Could not debug code

• Prelinking requires files to be recompiled, adds to
total build time

 C++ Template Instantiation

• 5.2 problems (continue)
• Build process not robust. Required additional

supporting files (i.e. *.ti, *.ii) to be maintained.
Undefined linking errors were sometime resolved by
removing files and performing a clean build

• PGI 6.0 uses gnu-like template instantiation
• Template instantiated immediately in object file
• gnu linker discard multiple copies of templates
• No special options are needed

PGI Compiler Options

• Chapter 2 of PGI User Guide has overview of
optimization options

• Options I have seen used for Cray XT3 code:
• -fastsee
• -Mnontemporal
• -Mprefetch=distance:8,nta
• -Msafeptr
• -Mipa=fast
• -Minline=levels:10

PGI Compiler Options

• Options (continued):
• -Kieee
• -O3
• -Minfo
• -Mneginfo
• -help
• -v
• -tp k8-64, -tp amd64

Future Opportunities

• Large memory support
• Data >2GB requires –mcmodel=medium option
• New set of libraries are needed

• Cross Compiler Environment

• Support of additional compilers (Gnu, Pathscale)

• Parallel execution on Linux kernel nodes

Conclusion

• Given current stage of the Cray XT3 life cycle,
C/C++ programming environment is very good

• Catamount glibc limitations have not been a major
obstacle

• PGI compilers have performed well
• One exception is PGI 5.2 C++ template instantiation.

Fixed in PGI 6.0

Questions? Answers?

