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ABSTRACT: We present some recent results of the performance of our in-house 
computational fluid dynamics (CFD) codes on the Cray X1 and X1E for use in large-
scale scientific and engineering applications.  Both the vectorization/multi-streaming 
performance, and the code’s implementation and use of Unified Parallel C (UPC) as the 
main inter-processor communication mechanism, will be discussed.  Comparisons of 
UPC performance and behaviour with the traditional MPI-based implementation will be 
shown through CFD benchmarking and other special communication benchmark codes. 
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1. Introduction 
The Army High Performance Computing Research 

Center (AHPCRC) has been using the Cray X1, and now 
the Cray X1E, for roughly 2 ½ years for various scientific 
and engineering applications including computational 
fluid dynamics (CFD).  CFD has always been a large 
application area within the AHPCRC program, and 
throughout the center’s 15 year history, several in-house 
CFD codes have been developed and used to address 
various Army applications such as high-speed missile 
aerodynamics, aerodynamics of both ground and aerial 
vehicles, both internal and external ballistics simulations, 
and airborne contaminant transport in urban 
environments.  All of these CFD codes are similar in form 
and have lots of commonality.  They are all built for 
unstructured meshes, are based on the stabilized Finite 
Element Method, solve either the time-accurate 
incompressible or compressible Navier-Stokes equations, 
solve an implicit equation system using a GMRES-based 
iterative equation solver, and are fully parallel based on 
mesh partitioning concepts and fast inter-processor 
communications.  The specific CFD code being 
benchmarked and tested for this paper is called BenchC 
which is representative of several other CFD codes in use 
at the AHPCRC.  BenchC is written in C and portable to 
almost all parallel high performance computing (HPC) 
systems.  BenchC vectorize well on the Cray X1(E) and 
can achieve high sustained computational rates.  Further 
details of the BenchC CFD code, including its 
performance benchmarking, are shown in Section 2. 

The parallel implementation of the AHPCRC CFD 
codes, including BenchC, is based on MPI which is 

portable to almost all HPC systems.  The actual evolution 
of the code’s parallel implementation spans more than 1 
½ decades and has been implemented using several other 
parallel programming models throughout that time.  The 
initial implementation of these CFD codes was on the 
Cray 2 in 1990, and the parallelization in those days was 
based on both vectorization and auto-tasking.  In 1991 the 
code was modified to run in parallel on the Thinking 
Machines CM-5 based on Connection Machine Fortran 
(CMF) and Scientific Software Libraries (CMSSL) [1].  
Those parallel programming models fit well with our 
CFD code’s implementation on that machine, but due to 
the demise of Thinking Machine Corporation in the 1994 
time frame, the support of those parallel programming 
libraries has ended.  Roughly at that time (1994) we 
switched to a Cray T3D using the Parallel Virtual 
Machine (PVM) parallel programming model.  In those 
days, PVM was the most widely used message-passing 
model.  A few years after the T3D, the Cray T3E came 
around and the HPC community started to migrate to the 
Message-Passing Interface (MPI) parallel programming 
library, and our CFD codes evolved to support that model.  
Today, most of our CFD codes at the AHPCRC use MPI 
as the basis of their parallel implementation. 

The Cray X1(E) systems also support newer parallel 
programming models which are not library-based such as 
MPI but are more tightly-coupled to the actual 
programming language themselves.  These newer 
programming models are based on a global address space 
(GAS) that allows individual processors to read-from or 
write-to other processors’ data which have been declared 
“shared” within the code.  This new type of parallel 
programming makes code development easier and more 
efficient than MPI, and also has various performance 
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gains associated with them, at least on the Cray X1(E).  
For C programs, this new parallel programming 
“language” is called Unified Parallel C (UPC).  A similar 
concept in Fortran, also supported on the Cray X1(E), is 
called Co-Array Fortran (CAF).  Throughout the 2+ year 
history of the Cray X1(E), we have been testing the use of 
UPC within our CFD codes, including BenchC, to 
observe the advantages of using one of these newer 
parallel programming models over the traditional MPI-
based implementation.  Our experiences and results of 
this analysis are discussed in Section 3. 

1.1 Cray X1 and X1E Systems 
The Cray X1 was first delivered to the AHPCRC in 

the Fall of 2002.  At that time, two air-cooled systems 
were delivered, and subsequently, a large liquid-cooled 
system (pictured in Figure 1) was delivered in early 2003.  
Network Computing Services, Inc., which holds the 
Infrastructure Support contract for the AHPCRC, runs and 
maintains the Cray X1 for the US Army.  This X1 system 
contained 128 Multi-Streaming Processors (MSPs).  Each 
MSP chip is composed of four individual Single-
Streaming Processors (SSPs), and the compiler 
automatically streams loops of a users application code to 
the 4 SSPs during computation.  Generally, MSPs are the 
user-addressable “processor” within an application, but 
Cray now supports modes where users can address SSPs 
directly as a “processor” if they wish to (i.e. to avoid the 
multi-streaming concept altogether).  Each SSP is a vector 
processor, so codes must vectorize in order to run 
efficiently on the system.  The compiler is generally able 
to vectorize user application code (i.e. long loops), but in 
many cases, code porting and optimisation work is 
required to get the compiler to fully vectorize application 
code.  There is also a serial processor on each SSP, but its 
performance is orders of magnitude less than the vector 
computing elements on the SSP, so to achieve good 
performance on the system, most if not all of the user’s 
code must vectorize. 

 

 
Figure 1.  The AHPCRC’s 256-processor Cray X1E at Network 

Computing Services, Inc. (Minneapolis, Minnesota). 
 
The multi-streaming processor on the Cray X1 has a 

peak computational rate of 12.8 Giga-Flops (3.2 Giga-
Flops for each SSP).  Due to the fact that these are vector 
processors with a large number of vector registers (32 of 

them) with high bandwidth to memory and complex 
scheduling if instructions for memory references and 
computations, users can expect to achieve higher 
sustained computational rates, as opposed to those 
observed on “commodity” processors.  For example, on 
the Cray X1, we can achieve roughly 33% of peak 
performance on an MSP, as compared to 8 to 10 percent 
we could achieve on an Intel-based processor.  Both of 
these factors, high computational rates and high peak 
performance, make the Cray X1(E) attractive for critical 
large-scale numerical simulation applications. 

The Cray X1 and X1E systems have other advantages 
such as a very fast processor inter-connect network, a 
global and unified memory address space, a single system 
image, and an advanced programming environment.  
These features make the Cray X1(E) a very easy-to-use 
system for the AHPCRC’s large user-base. 

In early 2005, the AHPCRC’s Cray X1 was upgraded 
to the newer Cray X1E model.  This was a simple node-
board swap and didn’t involve changing the X1 cabinet 
itself or the system’s inter-connect network.  The main 
difference in the X1E compared to the X1 is a re-design 
of the MSP chip and node board.  These differences are 
highlighted in Figure 2. 

 

 
 

 
Figure 2.  Schematic of a Cray X1 (top) and Cray X1E (bottom) 
node boards.  On the X1, each “physical” node board behaves 
as a single “logical” node board on the system.  On the X1E, 
due to the multi-core MSP chips, each physical node board 

behaves as 2 “logical” node boards on the system.  Each of the 
2 multi-core MSPs on a chip are assigned to separate logical 

node boards, even though they share cache and 
memory/network bandwidth. 

 
As seen in Figure 2, the Cray X1 node board 

(depicted on the top) holds 4 MSP modules.  These MSPs 
act as individual processors with their own cache, but 
share the large main memory that is located on each node 
board.  Four MSPs share memory on a node board but do 
not share memory with the MSPs on other node boards.  
To address that memory, the MSPs would have to go 
through the processor inter-connect network. 

On the newer Cray X1E (depicted on the bottom of 
Figure 2), each single MSP module is split into a multi-
core chip.  Each physical MSP chip now has two MSPs 
on it, and they both share cache and bandwidth to both 
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memory and the network.  Overall, this has the effect of 
doubling the number of processors on the system and now 
the AHPCRC’s Cray X1E has 256 MSPs.  Also, each 
MSP’s clock rate went up 45% which increased the 
theoretical computational rate of each MSP to 19.2 Giga-
Flops.  Even though each physical node board now holds 
8 MSPs, each node board is “logically” split down the 
middle and behaves as 2 separate node boards, each with 
4 MSPs.  One of the drawbacks to this design is that the 
amount of cache and bandwidth to memory associated 
with each MSP hasn’t also increased by a factor of 2.  
This has the effect of lowering the amount of cache and 
bandwith associated with each MSP.  As will be seen in 
Section 2, this has had an effect on the performance of our 
CFD codes on the X1E.  We don’t see the 45% increase 
in performance that the increased clock-rate of the MSPs 
might suggest, but only observe, roughly 10 to 15 percent 
increase in performance due to these cache and bandwidth 
limitations on the Cray X1E. 

2. Computational Fluid Dynamics 
CFD is a large topic with many types of numerical 

methods, implementations, and codes.  The differences in 
various CFD codes is large and varied enough that 
conclusions made about the implementation and/or 
performance of our CFD codes may not hold true for 
other types of codes which use different numerical 
methods or implementation schemes.  However, we feel 
that our implementation, performance, and experiences 
with our unstructured-mesh, implicit CFD codes on the 
Cray X1(E) will generally apply to other similar codes of 
this type, which are very common these days due to the 
necessity for real-world complex geometry applications 
which require unstructured meshes. 

Our CFD codes that are being benchmarked here are 
built for unstructured meshes based on the Finite Element 
Method.  Generally, we use meshes consisting of 4-
nodded tetrahedral elements, even though the codes 
support several element types or arbitrary combination of 
element types.  The formulations are (generally) the 
incompressible Navier-Stokes equations, but we also have 
compressible flow formulations that are not being 
benchmarked in this paper.  The formulations are 
stabilized using SUPG/PSPG terms for advection-
dominated flows, are time-accurate, and implicit using a 
GMRES-based iterative equation solver to solve the large 
system of coupled equations at each non-linear iteration 
of each time step.  More information about these codes 
and formulations can be found in [2, 3].  Although there 
are several in-house codes based on this general 
framework in used at the AHPCRC, the specific code 
being tested and benchmarked for this paper is called 
BenchC, developed by the author.  This code is fairly 
small (roughly 6,000 lines), is written entirely in C, can 
use either MPI or UPC as the main communication 
mechanism, is very portable, has been tested on many 
types of HPC systems, and has built-in performance 

monitoring and timing routines.  Previous reporting of the 
vectorization of BenchC and its performance on the Cray 
X1 has been reported in [4]. 

One special feature of our CFD codes, including 
BenchC, is its implementation of both matrix-free and 
sparse-matrix equation solver modes.  In either mode, the 
GMRES iterative equation solver will require that a 
matrix-vector multiply takes place, many times, using the 
Finite Element formulation’s large left-hand-side matrix.  
If this matrix is formed and stored in a sparse form (i.e. 
using the code’s sparse-matrix mode), the matrix-vector 
multiplications take place normally.  In the matrix-free 
mode, the left-had-matrix is never stored, and the matrix-
vector multiplication product is formed directly based on 
the original Finite Element formulation whenever 
required by the GMRES solver.  We generally use the 
matrix-free mode due to its use of less memory since the 
large left-hand-side matrix is never stored.  Our CFD 
codes in the sparse-matrix mode can use, roughly, 2.5 
times more memory than when using the matrix-free 
mode.  The matrix-free mode does have an extra cost 
associated with it because, generally, it requires more 
calculations to be performed.  The sparse matrix-vector 
product routine has been fully vectorized on the Cray 
X1(E), but is not the focus of this paper, and we will 
generally concentrate on the matrix-free mode for 
performance testing and results. 

2.1 Vectorization 
The unstructured mesh Finite Element flow solver 

BenchC (and others in-house CFD codes of this type) 
vectorize well on the Cray X1(E).  In the matrix-free 
mode, roughly 70% of execution time is spent forming 
these resultant matrx-vector product vectors within the 
GMRES solver.  Another roughly 15% is spent within the 
GMRES function itself, and another roughly 10% if 
execution time is spent forming the right-hand-side vector 
and diagonal pre-conditioner.  Through certain 
optimisations and some minor changes to the code’s 
algorithms, we can achieve 100% vectorization of our 
CFD codes.  The main addition we had to add was a 
mesh-element coloring algorithm as part of the pre-
processing stages so that the code’s element loops could 
be broken-up into smaller vectorizable loops to avoid the 
memory conflicts in the Finite Element assembly 
operations (i.e. the memory scatter operations at the end 
of each element loop).  Comprehensive details about the 
vectorization of the BenchC CFD code were given in [4] 
and are not the focus of this paper. 

2.2 Performance 
We performed several runs of the BenchC flow 

solver on the Cray X1, Cray X1E, and an AMD Opteron 
cluster for a CFD application using a mesh containing 
roughly 2 million tetrahedral elements.  The Opteron 
cluster is from Atipa and consists of 75 nodes, each 
containing dual AMD Opteron processors running at 2.2 
GHz.  A high-speed switched Myrinet network connects 
all of the nodes together for MPI communication.  All 
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systems are located at and operated by NetworkCS, Inc. 
for the AHPCRC and US Army.  The Cray X1 numbers 
were obtained before it was upgraded to the Cray X1E. 

In order to make the comparisons of the Cray X1(E) 
performance to the Opteron cluster performance, SSPs 
(i.e. Cray’s single-streaming processors) are used as the 
unit of comparisons to AMD Opteron processors.  The 
BenchC flow solver actually runs in MSP mode (i.e. using 
the multi-streaming processors), and the number of MSPs 
used for each run was multiplied by 4 for comparison 
purposes since each MSP contains 4 SSPs within. 

We performed exactly the same run of the BenchC 
flow solver using 16, 32, 48, and 64 processors (or SSP 
equivalents on the X1 and X1E).  The total run time was 
measured and was converted to a rough estimate of the 
overall sustained Giga-Flop rate based on our estimation 
of the total number of calculations performed.  Input and 
output times, as well as simulation set-up times, are not 
measured in these benchmark runs.  The results are shown 
in Figure 3. 
 

 
Figure 3.  Matrix-free parallel speed-ups (shown as overall 

sustained Giga-Flop rates) for an application with a fixed mesh 
size of roughly 2 million tetrahedral elements.  Shown are 

results from the Cray X1 and X1E, as well as an AMD Opteron 
cluster.  Even though MSPs were used for the Cray X1 and X1E 
runs, shown in this graph are the SSP equivalents (4 SSPs for 

each MSP). 
 
The performance numbers in Figure 3 show that, as 

expected, the Cray X1E is the fastest, followed by the 
Cray X1 and Opteron cluster in that order.  The Cray X1E 
has an overall sustained computational rate of roughly 5.5 
Giga-Flops per MSP (28% peak) while the Cray X1 had 
roughly 4.2 Giga-Flops per MSP (33% peak).  Although 
the X1E is faster than the X1, it has a lower percentage of 
peak due to the lower bandwith and smaller cache of the 
X1E since each physical MSP is now dual-core and the 
two “logical” MSPs contend for resources of the same 
cache and network.  On average, the 2.2 GHz Opterons 
run at about 60% of a Cray X1E’s SSP equivelant’s 
performance. 

The smaller cache and contention for resources 
between the two multi-core MSPs on the Cray X1E has 
reduced our percentage of peak in the matrix-free mode 
because these types of CFD codes are very cache 

dependent and swap memory in-and-out of the vector 
registers at high rates.  In the matrix-free mode however, 
the Cray X1E is still faster overall than the older Cray X1.  
This is not the case for the sparse-matrix mode.  When 
these same performance tests are performed in the sparse-
matrix mode, the Cray X1E is actually slower than the 
Cray X1 as shown in Figure 4.  This is because the 
sparse-matrix mode relies even more heavily on cache 
and memory bandwidth than the matrix-free mode does. 

 

 
Figure 4.  Sparse-mode parallel speed-ups (shown as overall 

sustained Giga-Flop rates) for an application with a fixed mesh 
size of roughly 2 million tetrahedral elements. 

 
As stated earlier, the sparse-matrix mode isn’t used 

nearly as often as the matrix-free mode, and therefore, 
hasn’t received as great attention to optimisation as the 
matrix-free mode, even though the sparse matrix-vector 
product routines do fully vectorize.  Also seen in Figure 4 
is that the overall sustained rates are, overall, much 
slower than the matrix-free mode, and that is another 
reason (aside from higher overall memory usage), that the 
sparse-matrix mode isn’t used as often.  However, with 
more attention to these algorithms though higher 
optimisation, the behaviour could change and the 
performance of the sparse-matrix mode could improve. 

Although not highlighted in this paper, the AHPCRC 
unstructured-mesh CFD codes do achieve high levels of 
scalability using large numbers of processors.  In most 
cases, almost linear speed-up is observed to high 
processor number counts.  Some of this scalability 
behaviour of BenchC is discussed in Section 3.1. 

2.3 Large-Scale Simulations 
The BenchC flow solver has been used to solve many 

large-scale CFD simulations on the AHPCRC’s Cray X1 
and X1E systems.  We try to test the limits of these CFD 
codes and HPC systems by determining what types of 
large applications can be solved, what sorts of challenges 
are involved in such large-scale simulations (i.e. pre- and 
post-processing), and what kinds of results are obtained at 
these large scales.  One such application is shown in 
Figure 5 that involves airflow past an unmanned aerial 
vehicle (UAV).  The mesh used in this simulation 
contains roughly 450 million tetrahedral elements and 
was solved in the matrix-free mode.  Roughly 100 MSPs 
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were used to compute this time-accurate simulation on the 
Cray X1. 

 

 
Figure 5.  Airflow past an unmanned aerial vehicle at a high 
angle-of-attack.  The mesh used for this simulation contains 

roughly 450 million tetrahedral elements.  Shown is a volume-
rendering of velocity magnitude. 

 
One of the largest application we have solved to-date 

on the AHPCRC’s Cray X1E is shown in Figure 6 and 
simulates the airflow past a military ground vehicle 
travelling at 60 miles-per-hour.  The mesh used in this 
simulation contains 1.1 billion tetrahedral elements and 
was computed using 252 MSPs of the AHPCRC’s Cray 
X1E.  The overall sustained computational rate for this 
simulation was measured at 1.25 Tera-Flops. 

 

 
Figure 6.  Airflow past a military ground vehicle travelling at 60 

miles-per-hour.  The mesh used for this simulation contains 
roughly 1.1 billion tetrahedral elements.  The sustained 

computational rate for this calculation was measured at 1.25 
Tera-Flops using 252 processors (MSPs) of the Cray X1E.  

Shown is a volume-rendering of velocity magnitude. 
 
The Cray X1(E) gives us the ability to perform very 

detailed and accurate CFD simulation at these scales 
which would have been impossible only a few years ago.  
We are currently exploring these more accurate and high-
fidelity results in more detail to determine the advantages 
(both in accuracy and complexity) and challenges (both 
pre- and post-processing) of performing simulations at 
this scale. 

3. Unified Parallel C 
A new type of parallel programming based on a 

global address space (GAS) is now being supported on 
several HPC systems, including the Cray X1 and X1E.  
One of these models is Unified Parallel C (UPC) which is 
an extension to the C language which gives processors 
direct access to data located on other processors by simple 
reads and/or writes to data and/or arrays which are 
declared to be shared within a user’s application code.  A 
similar concept in Fortran is called Co-Array Fortran, 
which is also supported on the Cray X1(E).  UPC and 
CAF are not library-based programming models such as 
MPI, but are extension to the languages themselves where 
inter-processor communication and access to data 
distributed across the parallel machine are inherent to the 
language.  All memory on the Cray X1(E) is addressable 
by any processor due to the systems implementation of a 
global address space which spans the entire system, and 
the way application codes such as the BenchC flow solver 
can take advantage of this feature is by using UPC.  A 
detailed description of the UPC language is not the focus 
of this paper, but more details on it can be found in [5, 6, 
and 7].  The concepts in UPC and CAF are fairly simple 
and interested readers can learn these language extensions 
in only a few hours. 

The three main advantages of using a GAS parallel 
programming model such as UPC or CAF over the 
traditional MPI library-based model are; 1) higher 
productivity and easier, more efficient parallel 
programming;  2) the ability to implement new, more 
complex algorithms and techniques that would be difficult 
if not impossible to implement using MPI;  3) higher 
performance in inter-processor communication, at least on 
the Cray X1(E).  Although we have seen the advantages 
of UPC over MPI in all three of these areas though 
various projects underway at the AHPCRC involving 
GAS programming, we will highlight advantage Number 
1 and 3 in the following two sub-sections. 

3.1 CFD Communication 
The BenchC CFD code discussed in Section 2 can be 

compiled to either use MPI as its main inter-processor 
communication mechanism, or can be compiled to use 
UPC as the main communication mechanism.  The UPC 
version of BenchC was used in the benchmarking 
numbers reported in Section 2.  There are only 3 critical 
inter-processor communication routines used in the 
BenchC flow solver.  They are called “gather”, “scatter”, 
and “reduction/broadcast”.  UPC versions of all of these 
three routines were written and compiled into the code if 
the UPC compilation option is chosen, and this change 
required the modification of around 100 lines of code.  In 
the UPC version of BenchC, MPI is still used in the main 
set-up stages of the code since those are not critical 
performance areas. 

The “gather” and “scatter” routines within the 
BenchC CFD code are used to tie the mesh partitions 
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together during the time-integration stages to make sure 
that each processor is generating a “compatible” solution 
along with its neighbouring mesh partitions.  The two 
routines are very similar in form and facilitate 
communication in two directions.  In once sense, the 
“gather” function sends data from the mesh-elements to 
the mesh-nodes, and the “scatter” function sends data in 
the reverse direction from the nodes to the elements.  The 
elements are used to formulate the problem and generate 
the equation system, and the nodes are used to actually 
solve the equation system (as stated in Section 2, using a 
GMRES iterative solver).  These inter-processor 
communication routines are called many times in a 
simulation and are critical to the scalability performance 
of the code.  While not going into great detail on the 
operation of these communication routines, we show 
examples of both the MPI and UPC versions of the 
“scatter” routine in Appendix A.  The actual inter-
processor communication parts of the routines are 
highlighted in blue, while the MPI or UPC 
communication routines are highlighted in red.  As can be 
seen in these examples, UPC is simply an extension to the 
C language and more natural and readable over its MPI 
counterpart which is library based using non-blocking 
send and receives. 

The MPI version of BenchC is probably the most 
efficient it can be (when implemented using MPI) and 
was developed/optimised over a number of years, so in 
most CFD simulations, the BenchC CFD code only 
spends between 1 and 5 percent of total execution time 
performing inter-processor communication on systems 
with a fast inter-processor network such as the Cray 
X1(E).  When using the UPC version of BenchC, the 
inter-processor communication times are smaller and 
might bring down communication times between 1/3 or 
1/2 of that used with the MPI routines.  This has an 
impact in performance, but by bringing a communication 
percent down from, for example, 3 percent when using 
MPI to 2 or 1 ½ percent when using UPC, this has a 
rather small impact on overall performance. 

These differences in inter-processor communication 
performance are more greatly observed when a small 
application is scaled to run on a large number of 
processors.  In such cases, the inter-processor 
communication times begin to grow and can dominate the 
on-processor calculation times, and thus, limit the 
scalability of the application.  To demonstrate this, we 
performed a scalability test of the BenchC flow solver on 
the Cray X1 for a small application consisting of roughly 
2 million tetrahedral elements.  We performed several 
runs of the exact same CFD calculation using both the 
MPI and UPC versions of the BenchC code using 
different processor counts from 4 MSPs to 124 MSPs.  
The overall speed of the code is ploted for these runs in 
Figure 7. 

 

 
Figure 7.  Scalability of the BenchC flow solver for a small 

application when run using large numbers of processors (MSPs) 
on the Cray X1.  The CFD application uses a mesh containing 
roughly 2 million tetrahedral elements.  The graph shows ideal 

(i.e. linear) scalability along with the scalability of both the MPI 
and UPC versions of BenchC.  As seen in this figure, the UPC 
version can hold linear scalability longer than the MPI version 
due to the smaller communication costs associated with UPC. 

 
As can be seen in this figure, due to UPC’s lower 

communication costs, the UPC version of BenchC can 
hold linear scalability longer than the MPI version and 
achieves higher computational rates for larger number of 
processors.  This higher performance of UPC over MPI, 
at least on the Cray X1(E), as well as the easier 
programming style as can be seen in Appendix A are 
reasons we generally have been using UPC over MPI 
when possible.  We are also exploring the use of UPC for 
other, more complex parallel applications and methods 
where MPI would either be more expensive or too 
complicated to use and implement. 

3.2 Inter-Processor Communication Benchmark 
In order to probe the differences in inter-processor 

communication times associated with MPI and UPC on 
the Cray X1(E) in more detail, we wrote a special 
communication benchmark called “CommBench”.  There 
are two versions of the benchmark code, one for MPI 
called “CommBenchMPI”, and a UPC version called 
“CommBenchUPC”.  In both codes, each processor sends 
data to all other processors at the same time.  The 
communication procedure is repeated many times for 
messages of varying size, and these communication times 
are measured throughout the run with great precision.  
This type of communication pattern is the most common 
one used and models the communication patterns found 
within the BenchC CFD code itself.  See reference [5] for 
more details on these benchmarks, or contact the author 
for the actual benchmark codes themselves. 

For the MPI benchmark, there are two different ways 
to facilitate this “all-to-all” communication pattern.  One 
uses MPI non-blocking routines “MPI_Isend” and 
“MPI_Irecv”, and the other uses a more coordinated data 
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transfer called “MPI_SendRecv”.  Both of these modes 
are measured and are called “MPI Non-Blocking” and 
“MPI Send/Recv”. 

For the UPC benchmark, there are four separate ways 
to facilitate this type of data transfer.  First, since UPC 
uses one-sided communication, each processor can either 
“put” data into (i.e. write to) the other processors 
memory, or they could “get” data (i.e. read from) other 
processors memory.  Also, due to the Cray X1(E)’s multi-
streaming processor, we could either vectorize and multi-
stream together the data transfer statement, or we could 
stream the loop over the other processors, and then just 
vectorize over the actual data transfer statement alone.  
These variations in UPC communication constitutes the 
four modes, and each one is measured and reported here.  
Finally, we also run the MPI communication benchmark 
on the AHPCRC’s AMD Opteron Cluster with a switched 
Myrinet network.  The results of our communication 
benchmark are reported in Figure 8. 

 

 
Figure 8.  Single message transfer times for the AHPCRC 

communication benchmark using either MPI or UPC.  Shown 
are results for the Cray X1 as well as the AHPCRC’s AMD 
Opteron Cluster for benchmark runs using 32 processors. 

 
On the bottom axis of the graph in Figure 8 is the size 

of the messages being sent, and on the vertical axis shows 
the data transfer times, measured in micro-seconds, for a 
single data transfer.  Both axises are Log-10.  The results 
shown here are for 32 processors.  Many runs were 
carried out and average times are shown here.  Similar 
behaviour is observed for other processor counts. 

Both the bandwidth-dominated region (the large-
message region on the right) and the latency-dominated 
region (the small-message region on the left) can clearly 
be seen.  The UPC communication is somewhat faster 
than the MPI communication on the X1, and both UPC 
and MPI on the X1 are roughly an order-of-magnitude 
faster than the Myrinet network of the Opteron cluster.  
The communication mode differences are more dramatic 
in the latency-dominated region.  Both MPI on the Cray 
X1 and Cluster show latency times in the 12-15 micro-
second range while the UPC latency times are rather 
dramatic at either slightly over or slightly under 1 

microsecond.  The multi-streaming version of the UPC 
benchmark (i.e. the one where streaming is split from 
vectorization) has a latency time of under 1 microsecond. 

We believe that the extremely small latency times of 
UPC, at least on the Cray X1(E), will enable the 
implementation of codes and algorithms which are 
heavily dominated by the sending of many small 
messages between processors. 

It is important to note that in our benchmark code 
“CommBenchMPI” and “CommBenchUPC”, all 
processors are sending messages to all other processors at 
the same time.  This is a more complex procedure and 
benchmark than other benchmarks codes where only a 
single processor is sending messages to another single 
processor.  Those single-processor benchmarks may show 
different bandwidth and latency behaviour than ours, but 
our benchmark is more representative of actual 
application codes that use heavy inter-processor 
communication and will represent real-world behaviour 
better than other idealized benchmark codes. 

4. Conclusion 
We have shown that the Cray X1E system has 

continued to be a very productive tool for the CFD work 
being carried out at the AHPCRC.  Performance gains are 
observed on the system over those observed on the older 
X1 system, but this performance analysis has shown that 
further optimisations might be required to improve the 
performance even further. 

We have also provided details about the use of 
Unified Parallel C within our CFD codes, and have shown 
some of the advantages, both in code development and 
performance, of using these global address-space 
programming models.  We plan to explore these new 
parallel programming models even further and look into 
other, newer types of applications that could take 
advantage of these new features. 
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Appendix A 
 
Shown here are the inter-processor communication “scatter” functions used in the BenchC CFD code.  Not shown here 

are the rather complicated communication pre-processing procedures that calculate the communication patterns and set-up 
and store the internal memory buffers and values to facilitate these communication routines.  On the left is shown the MPI 
version that is used if BenchC is compiled in the MPI-mode, and on the right is shown the UPC version which is used if UPC 
is set as the main inter-processor communication mechanism.  Highlighted in blue are the actual inter-processor 
communication stages, and the actual lines of code that involve inter-processor communication are highlighted in red. 

 
 
void nscatter(double *bg, int len, int iflag){ void nscatter(double *bg, int len, int iflag){ 
  int i, j, iloc, num, nreq, i1, i2;   int i, j, iloc, iloc1, iloc2, num, ip, i1, i2; 
  
  for (i = nreq = 0; i < npnum; i++){   upc_barrier; 
    iloc = nploc[i];  
    num  = nploc[i+1] - iloc; #pragma csd parallel for 
    MPI_Irecv(&buff[iloc*len],len*num,   for (i = 0; i < epnum; i++){ 
              MPI_DOUBLE,np[i],MPI_ANY_TAG,     iloc1 = eploc [i]*len; 
              MPI_COMM_WORLD,&ereq[nreq++]);     iloc2 = eploc2[i]*len; 
  }     num = (eploc[i+1] – eploc[i+0])*len; 
  for (i = 0; i < epnum; i++){     ip = ep[i]; 
    iloc = eploc[i];  
    num  = eploc[i+1] - iloc; #pragma ivdep 
    MPI_Isend(&bg[iloc*len],len*num,     for (j = 0; j < num; j++) 
              MPI_DOUBLE,ep[i],999,       buffSH[ip][iloc2+j] = bg[iloc1+j]; 
              MPI_COMM_WORLD,&ereq[nreq++]);   } 
  }  
  if (nreq > 0) MPI_Waitall(nreq, ereq, estat);   upc_barrier; 
  
  for (j = 0; j < npnum; j++){   for (j = 0; j < npnum; j++){ 
    i1 = nploc[j+0];     i1 = nploc[j+0]; 
    i2 = nploc[j+1];     i2 = nploc[j+1]; 
#pragma concurrent #pragma concurrent 
    for (i = i1; i < i2; i++){     for (I = i1; I < i2; i++){ 
      iloc = ibuff[i]*4;       iloc = ibuff[i]*4; 
      bg[iloc + 0] += buff[i*4 + 0];       bg[iloc + 0] += buff[i*4 + 0]; 
      bg[iloc + 1] += buff[i*4 + 1];       bg[iloc + 1] += buff[i*4 + 1]; 
      bg[iloc + 2] += buff[i*4 + 2];       bg[iloc + 2] += buff[i*4 + 2]; 
      bg[iloc + 3] += buff[i*4 + 3];       bg[iloc + 3] += buff[i*4 + 3]; 
    }     } 
  }   } 
} } 
 
 
It is important to note that the internal data transfer buffer is called “buff” in the MPI version and “buffSH” in the 

UPC version.  In the UPC version, buffSH is the only variable that had to be declared “shared” (a UPC variable type 
declaration) throughout the entire code.  By declaring buffSH as shared, an extra “processor-dimension” is added to the 
array so that any processor can read-from or write-to any other processor’s version by referencing this processor-dimension.  
For easier use of this “shared” internal data transfer variable, an on-processor only version of this array is declared and called 
“buff” within the UPC code by the pointer casting statement: 

 
double *buff; 
buff = (double *) buffSH[MYTHREAD]; 
 
This statement is called during the set-up procedures after the shared variable is declared and allocated.  The value of 

“MYTHREAD” is a UPC-defined value that represents this processor’s “number”, and is equivalent to the value that would 
have been returned by the MPI function MPI_Comm_rank. 

 


