
CUG 2005 Proceedings 1 of 9

Unified Parallel C within Computational Fluid Dynamics
Applications on the Cray X1(E)

Andrew A. Johnson
Army High Performance Computing Research Center,

Network Computing Services, Inc.

ABSTRACT: We present some recent results of the performance of our in-house
computational fluid dynamics (CFD) codes on the Cray X1 and X1E for use in large-
scale scientific and engineering applications. Both the vectorization/multi-streaming
performance, and the code’s implementation and use of Unified Parallel C (UPC) as the
main inter-processor communication mechanism, will be discussed. Comparisons of
UPC performance and behaviour with the traditional MPI-based implementation will be
shown through CFD benchmarking and other special communication benchmark codes.

KEYWORDS: Cray X1, Unified Parallel C, CFD, vector systems, benchmarking

1. Introduction
The Army High Performance Computing Research

Center (AHPCRC) has been using the Cray X1, and now
the Cray X1E, for roughly 2 ½ years for various scientific
and engineering applications including computational
fluid dynamics (CFD). CFD has always been a large
application area within the AHPCRC program, and
throughout the center’s 15 year history, several in-house
CFD codes have been developed and used to address
various Army applications such as high-speed missile
aerodynamics, aerodynamics of both ground and aerial
vehicles, both internal and external ballistics simulations,
and airborne contaminant transport in urban
environments. All of these CFD codes are similar in form
and have lots of commonality. They are all built for
unstructured meshes, are based on the stabilized Finite
Element Method, solve either the time-accurate
incompressible or compressible Navier-Stokes equations,
solve an implicit equation system using a GMRES-based
iterative equation solver, and are fully parallel based on
mesh partitioning concepts and fast inter-processor
communications. The specific CFD code being
benchmarked and tested for this paper is called BenchC
which is representative of several other CFD codes in use
at the AHPCRC. BenchC is written in C and portable to
almost all parallel high performance computing (HPC)
systems. BenchC vectorize well on the Cray X1(E) and
can achieve high sustained computational rates. Further
details of the BenchC CFD code, including its
performance benchmarking, are shown in Section 2.

The parallel implementation of the AHPCRC CFD
codes, including BenchC, is based on MPI which is

portable to almost all HPC systems. The actual evolution
of the code’s parallel implementation spans more than 1
½ decades and has been implemented using several other
parallel programming models throughout that time. The
initial implementation of these CFD codes was on the
Cray 2 in 1990, and the parallelization in those days was
based on both vectorization and auto-tasking. In 1991 the
code was modified to run in parallel on the Thinking
Machines CM-5 based on Connection Machine Fortran
(CMF) and Scientific Software Libraries (CMSSL) [1].
Those parallel programming models fit well with our
CFD code’s implementation on that machine, but due to
the demise of Thinking Machine Corporation in the 1994
time frame, the support of those parallel programming
libraries has ended. Roughly at that time (1994) we
switched to a Cray T3D using the Parallel Virtual
Machine (PVM) parallel programming model. In those
days, PVM was the most widely used message-passing
model. A few years after the T3D, the Cray T3E came
around and the HPC community started to migrate to the
Message-Passing Interface (MPI) parallel programming
library, and our CFD codes evolved to support that model.
Today, most of our CFD codes at the AHPCRC use MPI
as the basis of their parallel implementation.

The Cray X1(E) systems also support newer parallel
programming models which are not library-based such as
MPI but are more tightly-coupled to the actual
programming language themselves. These newer
programming models are based on a global address space
(GAS) that allows individual processors to read-from or
write-to other processors’ data which have been declared
“shared” within the code. This new type of parallel
programming makes code development easier and more
efficient than MPI, and also has various performance

CUG 2005 Proceedings 2 of 9

gains associated with them, at least on the Cray X1(E).
For C programs, this new parallel programming
“language” is called Unified Parallel C (UPC). A similar
concept in Fortran, also supported on the Cray X1(E), is
called Co-Array Fortran (CAF). Throughout the 2+ year
history of the Cray X1(E), we have been testing the use of
UPC within our CFD codes, including BenchC, to
observe the advantages of using one of these newer
parallel programming models over the traditional MPI-
based implementation. Our experiences and results of
this analysis are discussed in Section 3.

1.1 Cray X1 and X1E Systems
The Cray X1 was first delivered to the AHPCRC in

the Fall of 2002. At that time, two air-cooled systems
were delivered, and subsequently, a large liquid-cooled
system (pictured in Figure 1) was delivered in early 2003.
Network Computing Services, Inc., which holds the
Infrastructure Support contract for the AHPCRC, runs and
maintains the Cray X1 for the US Army. This X1 system
contained 128 Multi-Streaming Processors (MSPs). Each
MSP chip is composed of four individual Single-
Streaming Processors (SSPs), and the compiler
automatically streams loops of a users application code to
the 4 SSPs during computation. Generally, MSPs are the
user-addressable “processor” within an application, but
Cray now supports modes where users can address SSPs
directly as a “processor” if they wish to (i.e. to avoid the
multi-streaming concept altogether). Each SSP is a vector
processor, so codes must vectorize in order to run
efficiently on the system. The compiler is generally able
to vectorize user application code (i.e. long loops), but in
many cases, code porting and optimisation work is
required to get the compiler to fully vectorize application
code. There is also a serial processor on each SSP, but its
performance is orders of magnitude less than the vector
computing elements on the SSP, so to achieve good
performance on the system, most if not all of the user’s
code must vectorize.

Figure 1. The AHPCRC’s 256-processor Cray X1E at Network

Computing Services, Inc. (Minneapolis, Minnesota).

The multi-streaming processor on the Cray X1 has a

peak computational rate of 12.8 Giga-Flops (3.2 Giga-
Flops for each SSP). Due to the fact that these are vector
processors with a large number of vector registers (32 of

them) with high bandwidth to memory and complex
scheduling if instructions for memory references and
computations, users can expect to achieve higher
sustained computational rates, as opposed to those
observed on “commodity” processors. For example, on
the Cray X1, we can achieve roughly 33% of peak
performance on an MSP, as compared to 8 to 10 percent
we could achieve on an Intel-based processor. Both of
these factors, high computational rates and high peak
performance, make the Cray X1(E) attractive for critical
large-scale numerical simulation applications.

The Cray X1 and X1E systems have other advantages
such as a very fast processor inter-connect network, a
global and unified memory address space, a single system
image, and an advanced programming environment.
These features make the Cray X1(E) a very easy-to-use
system for the AHPCRC’s large user-base.

In early 2005, the AHPCRC’s Cray X1 was upgraded
to the newer Cray X1E model. This was a simple node-
board swap and didn’t involve changing the X1 cabinet
itself or the system’s inter-connect network. The main
difference in the X1E compared to the X1 is a re-design
of the MSP chip and node board. These differences are
highlighted in Figure 2.

Figure 2. Schematic of a Cray X1 (top) and Cray X1E (bottom)
node boards. On the X1, each “physical” node board behaves
as a single “logical” node board on the system. On the X1E,
due to the multi-core MSP chips, each physical node board

behaves as 2 “logical” node boards on the system. Each of the
2 multi-core MSPs on a chip are assigned to separate logical

node boards, even though they share cache and
memory/network bandwidth.

As seen in Figure 2, the Cray X1 node board

(depicted on the top) holds 4 MSP modules. These MSPs
act as individual processors with their own cache, but
share the large main memory that is located on each node
board. Four MSPs share memory on a node board but do
not share memory with the MSPs on other node boards.
To address that memory, the MSPs would have to go
through the processor inter-connect network.

On the newer Cray X1E (depicted on the bottom of
Figure 2), each single MSP module is split into a multi-
core chip. Each physical MSP chip now has two MSPs
on it, and they both share cache and bandwidth to both

CUG 2005 Proceedings 3 of 9

memory and the network. Overall, this has the effect of
doubling the number of processors on the system and now
the AHPCRC’s Cray X1E has 256 MSPs. Also, each
MSP’s clock rate went up 45% which increased the
theoretical computational rate of each MSP to 19.2 Giga-
Flops. Even though each physical node board now holds
8 MSPs, each node board is “logically” split down the
middle and behaves as 2 separate node boards, each with
4 MSPs. One of the drawbacks to this design is that the
amount of cache and bandwidth to memory associated
with each MSP hasn’t also increased by a factor of 2.
This has the effect of lowering the amount of cache and
bandwith associated with each MSP. As will be seen in
Section 2, this has had an effect on the performance of our
CFD codes on the X1E. We don’t see the 45% increase
in performance that the increased clock-rate of the MSPs
might suggest, but only observe, roughly 10 to 15 percent
increase in performance due to these cache and bandwidth
limitations on the Cray X1E.

2. Computational Fluid Dynamics
CFD is a large topic with many types of numerical

methods, implementations, and codes. The differences in
various CFD codes is large and varied enough that
conclusions made about the implementation and/or
performance of our CFD codes may not hold true for
other types of codes which use different numerical
methods or implementation schemes. However, we feel
that our implementation, performance, and experiences
with our unstructured-mesh, implicit CFD codes on the
Cray X1(E) will generally apply to other similar codes of
this type, which are very common these days due to the
necessity for real-world complex geometry applications
which require unstructured meshes.

Our CFD codes that are being benchmarked here are
built for unstructured meshes based on the Finite Element
Method. Generally, we use meshes consisting of 4-
nodded tetrahedral elements, even though the codes
support several element types or arbitrary combination of
element types. The formulations are (generally) the
incompressible Navier-Stokes equations, but we also have
compressible flow formulations that are not being
benchmarked in this paper. The formulations are
stabilized using SUPG/PSPG terms for advection-
dominated flows, are time-accurate, and implicit using a
GMRES-based iterative equation solver to solve the large
system of coupled equations at each non-linear iteration
of each time step. More information about these codes
and formulations can be found in [2, 3]. Although there
are several in-house codes based on this general
framework in used at the AHPCRC, the specific code
being tested and benchmarked for this paper is called
BenchC, developed by the author. This code is fairly
small (roughly 6,000 lines), is written entirely in C, can
use either MPI or UPC as the main communication
mechanism, is very portable, has been tested on many
types of HPC systems, and has built-in performance

monitoring and timing routines. Previous reporting of the
vectorization of BenchC and its performance on the Cray
X1 has been reported in [4].

One special feature of our CFD codes, including
BenchC, is its implementation of both matrix-free and
sparse-matrix equation solver modes. In either mode, the
GMRES iterative equation solver will require that a
matrix-vector multiply takes place, many times, using the
Finite Element formulation’s large left-hand-side matrix.
If this matrix is formed and stored in a sparse form (i.e.
using the code’s sparse-matrix mode), the matrix-vector
multiplications take place normally. In the matrix-free
mode, the left-had-matrix is never stored, and the matrix-
vector multiplication product is formed directly based on
the original Finite Element formulation whenever
required by the GMRES solver. We generally use the
matrix-free mode due to its use of less memory since the
large left-hand-side matrix is never stored. Our CFD
codes in the sparse-matrix mode can use, roughly, 2.5
times more memory than when using the matrix-free
mode. The matrix-free mode does have an extra cost
associated with it because, generally, it requires more
calculations to be performed. The sparse matrix-vector
product routine has been fully vectorized on the Cray
X1(E), but is not the focus of this paper, and we will
generally concentrate on the matrix-free mode for
performance testing and results.

2.1 Vectorization
The unstructured mesh Finite Element flow solver

BenchC (and others in-house CFD codes of this type)
vectorize well on the Cray X1(E). In the matrix-free
mode, roughly 70% of execution time is spent forming
these resultant matrx-vector product vectors within the
GMRES solver. Another roughly 15% is spent within the
GMRES function itself, and another roughly 10% if
execution time is spent forming the right-hand-side vector
and diagonal pre-conditioner. Through certain
optimisations and some minor changes to the code’s
algorithms, we can achieve 100% vectorization of our
CFD codes. The main addition we had to add was a
mesh-element coloring algorithm as part of the pre-
processing stages so that the code’s element loops could
be broken-up into smaller vectorizable loops to avoid the
memory conflicts in the Finite Element assembly
operations (i.e. the memory scatter operations at the end
of each element loop). Comprehensive details about the
vectorization of the BenchC CFD code were given in [4]
and are not the focus of this paper.

2.2 Performance
We performed several runs of the BenchC flow

solver on the Cray X1, Cray X1E, and an AMD Opteron
cluster for a CFD application using a mesh containing
roughly 2 million tetrahedral elements. The Opteron
cluster is from Atipa and consists of 75 nodes, each
containing dual AMD Opteron processors running at 2.2
GHz. A high-speed switched Myrinet network connects
all of the nodes together for MPI communication. All

CUG 2005 Proceedings 4 of 9

systems are located at and operated by NetworkCS, Inc.
for the AHPCRC and US Army. The Cray X1 numbers
were obtained before it was upgraded to the Cray X1E.

In order to make the comparisons of the Cray X1(E)
performance to the Opteron cluster performance, SSPs
(i.e. Cray’s single-streaming processors) are used as the
unit of comparisons to AMD Opteron processors. The
BenchC flow solver actually runs in MSP mode (i.e. using
the multi-streaming processors), and the number of MSPs
used for each run was multiplied by 4 for comparison
purposes since each MSP contains 4 SSPs within.

We performed exactly the same run of the BenchC
flow solver using 16, 32, 48, and 64 processors (or SSP
equivalents on the X1 and X1E). The total run time was
measured and was converted to a rough estimate of the
overall sustained Giga-Flop rate based on our estimation
of the total number of calculations performed. Input and
output times, as well as simulation set-up times, are not
measured in these benchmark runs. The results are shown
in Figure 3.

Figure 3. Matrix-free parallel speed-ups (shown as overall

sustained Giga-Flop rates) for an application with a fixed mesh
size of roughly 2 million tetrahedral elements. Shown are

results from the Cray X1 and X1E, as well as an AMD Opteron
cluster. Even though MSPs were used for the Cray X1 and X1E
runs, shown in this graph are the SSP equivalents (4 SSPs for

each MSP).

The performance numbers in Figure 3 show that, as

expected, the Cray X1E is the fastest, followed by the
Cray X1 and Opteron cluster in that order. The Cray X1E
has an overall sustained computational rate of roughly 5.5
Giga-Flops per MSP (28% peak) while the Cray X1 had
roughly 4.2 Giga-Flops per MSP (33% peak). Although
the X1E is faster than the X1, it has a lower percentage of
peak due to the lower bandwith and smaller cache of the
X1E since each physical MSP is now dual-core and the
two “logical” MSPs contend for resources of the same
cache and network. On average, the 2.2 GHz Opterons
run at about 60% of a Cray X1E’s SSP equivelant’s
performance.

The smaller cache and contention for resources
between the two multi-core MSPs on the Cray X1E has
reduced our percentage of peak in the matrix-free mode
because these types of CFD codes are very cache

dependent and swap memory in-and-out of the vector
registers at high rates. In the matrix-free mode however,
the Cray X1E is still faster overall than the older Cray X1.
This is not the case for the sparse-matrix mode. When
these same performance tests are performed in the sparse-
matrix mode, the Cray X1E is actually slower than the
Cray X1 as shown in Figure 4. This is because the
sparse-matrix mode relies even more heavily on cache
and memory bandwidth than the matrix-free mode does.

Figure 4. Sparse-mode parallel speed-ups (shown as overall

sustained Giga-Flop rates) for an application with a fixed mesh
size of roughly 2 million tetrahedral elements.

As stated earlier, the sparse-matrix mode isn’t used

nearly as often as the matrix-free mode, and therefore,
hasn’t received as great attention to optimisation as the
matrix-free mode, even though the sparse matrix-vector
product routines do fully vectorize. Also seen in Figure 4
is that the overall sustained rates are, overall, much
slower than the matrix-free mode, and that is another
reason (aside from higher overall memory usage), that the
sparse-matrix mode isn’t used as often. However, with
more attention to these algorithms though higher
optimisation, the behaviour could change and the
performance of the sparse-matrix mode could improve.

Although not highlighted in this paper, the AHPCRC
unstructured-mesh CFD codes do achieve high levels of
scalability using large numbers of processors. In most
cases, almost linear speed-up is observed to high
processor number counts. Some of this scalability
behaviour of BenchC is discussed in Section 3.1.

2.3 Large-Scale Simulations
The BenchC flow solver has been used to solve many

large-scale CFD simulations on the AHPCRC’s Cray X1
and X1E systems. We try to test the limits of these CFD
codes and HPC systems by determining what types of
large applications can be solved, what sorts of challenges
are involved in such large-scale simulations (i.e. pre- and
post-processing), and what kinds of results are obtained at
these large scales. One such application is shown in
Figure 5 that involves airflow past an unmanned aerial
vehicle (UAV). The mesh used in this simulation
contains roughly 450 million tetrahedral elements and
was solved in the matrix-free mode. Roughly 100 MSPs

CUG 2005 Proceedings 5 of 9

were used to compute this time-accurate simulation on the
Cray X1.

Figure 5. Airflow past an unmanned aerial vehicle at a high
angle-of-attack. The mesh used for this simulation contains

roughly 450 million tetrahedral elements. Shown is a volume-
rendering of velocity magnitude.

One of the largest application we have solved to-date

on the AHPCRC’s Cray X1E is shown in Figure 6 and
simulates the airflow past a military ground vehicle
travelling at 60 miles-per-hour. The mesh used in this
simulation contains 1.1 billion tetrahedral elements and
was computed using 252 MSPs of the AHPCRC’s Cray
X1E. The overall sustained computational rate for this
simulation was measured at 1.25 Tera-Flops.

Figure 6. Airflow past a military ground vehicle travelling at 60

miles-per-hour. The mesh used for this simulation contains
roughly 1.1 billion tetrahedral elements. The sustained

computational rate for this calculation was measured at 1.25
Tera-Flops using 252 processors (MSPs) of the Cray X1E.

Shown is a volume-rendering of velocity magnitude.

The Cray X1(E) gives us the ability to perform very

detailed and accurate CFD simulation at these scales
which would have been impossible only a few years ago.
We are currently exploring these more accurate and high-
fidelity results in more detail to determine the advantages
(both in accuracy and complexity) and challenges (both
pre- and post-processing) of performing simulations at
this scale.

3. Unified Parallel C
A new type of parallel programming based on a

global address space (GAS) is now being supported on
several HPC systems, including the Cray X1 and X1E.
One of these models is Unified Parallel C (UPC) which is
an extension to the C language which gives processors
direct access to data located on other processors by simple
reads and/or writes to data and/or arrays which are
declared to be shared within a user’s application code. A
similar concept in Fortran is called Co-Array Fortran,
which is also supported on the Cray X1(E). UPC and
CAF are not library-based programming models such as
MPI, but are extension to the languages themselves where
inter-processor communication and access to data
distributed across the parallel machine are inherent to the
language. All memory on the Cray X1(E) is addressable
by any processor due to the systems implementation of a
global address space which spans the entire system, and
the way application codes such as the BenchC flow solver
can take advantage of this feature is by using UPC. A
detailed description of the UPC language is not the focus
of this paper, but more details on it can be found in [5, 6,
and 7]. The concepts in UPC and CAF are fairly simple
and interested readers can learn these language extensions
in only a few hours.

The three main advantages of using a GAS parallel
programming model such as UPC or CAF over the
traditional MPI library-based model are; 1) higher
productivity and easier, more efficient parallel
programming; 2) the ability to implement new, more
complex algorithms and techniques that would be difficult
if not impossible to implement using MPI; 3) higher
performance in inter-processor communication, at least on
the Cray X1(E). Although we have seen the advantages
of UPC over MPI in all three of these areas though
various projects underway at the AHPCRC involving
GAS programming, we will highlight advantage Number
1 and 3 in the following two sub-sections.

3.1 CFD Communication
The BenchC CFD code discussed in Section 2 can be

compiled to either use MPI as its main inter-processor
communication mechanism, or can be compiled to use
UPC as the main communication mechanism. The UPC
version of BenchC was used in the benchmarking
numbers reported in Section 2. There are only 3 critical
inter-processor communication routines used in the
BenchC flow solver. They are called “gather”, “scatter”,
and “reduction/broadcast”. UPC versions of all of these
three routines were written and compiled into the code if
the UPC compilation option is chosen, and this change
required the modification of around 100 lines of code. In
the UPC version of BenchC, MPI is still used in the main
set-up stages of the code since those are not critical
performance areas.

The “gather” and “scatter” routines within the
BenchC CFD code are used to tie the mesh partitions

CUG 2005 Proceedings 6 of 9

together during the time-integration stages to make sure
that each processor is generating a “compatible” solution
along with its neighbouring mesh partitions. The two
routines are very similar in form and facilitate
communication in two directions. In once sense, the
“gather” function sends data from the mesh-elements to
the mesh-nodes, and the “scatter” function sends data in
the reverse direction from the nodes to the elements. The
elements are used to formulate the problem and generate
the equation system, and the nodes are used to actually
solve the equation system (as stated in Section 2, using a
GMRES iterative solver). These inter-processor
communication routines are called many times in a
simulation and are critical to the scalability performance
of the code. While not going into great detail on the
operation of these communication routines, we show
examples of both the MPI and UPC versions of the
“scatter” routine in Appendix A. The actual inter-
processor communication parts of the routines are
highlighted in blue, while the MPI or UPC
communication routines are highlighted in red. As can be
seen in these examples, UPC is simply an extension to the
C language and more natural and readable over its MPI
counterpart which is library based using non-blocking
send and receives.

The MPI version of BenchC is probably the most
efficient it can be (when implemented using MPI) and
was developed/optimised over a number of years, so in
most CFD simulations, the BenchC CFD code only
spends between 1 and 5 percent of total execution time
performing inter-processor communication on systems
with a fast inter-processor network such as the Cray
X1(E). When using the UPC version of BenchC, the
inter-processor communication times are smaller and
might bring down communication times between 1/3 or
1/2 of that used with the MPI routines. This has an
impact in performance, but by bringing a communication
percent down from, for example, 3 percent when using
MPI to 2 or 1 ½ percent when using UPC, this has a
rather small impact on overall performance.

These differences in inter-processor communication
performance are more greatly observed when a small
application is scaled to run on a large number of
processors. In such cases, the inter-processor
communication times begin to grow and can dominate the
on-processor calculation times, and thus, limit the
scalability of the application. To demonstrate this, we
performed a scalability test of the BenchC flow solver on
the Cray X1 for a small application consisting of roughly
2 million tetrahedral elements. We performed several
runs of the exact same CFD calculation using both the
MPI and UPC versions of the BenchC code using
different processor counts from 4 MSPs to 124 MSPs.
The overall speed of the code is ploted for these runs in
Figure 7.

Figure 7. Scalability of the BenchC flow solver for a small

application when run using large numbers of processors (MSPs)
on the Cray X1. The CFD application uses a mesh containing
roughly 2 million tetrahedral elements. The graph shows ideal

(i.e. linear) scalability along with the scalability of both the MPI
and UPC versions of BenchC. As seen in this figure, the UPC
version can hold linear scalability longer than the MPI version
due to the smaller communication costs associated with UPC.

As can be seen in this figure, due to UPC’s lower

communication costs, the UPC version of BenchC can
hold linear scalability longer than the MPI version and
achieves higher computational rates for larger number of
processors. This higher performance of UPC over MPI,
at least on the Cray X1(E), as well as the easier
programming style as can be seen in Appendix A are
reasons we generally have been using UPC over MPI
when possible. We are also exploring the use of UPC for
other, more complex parallel applications and methods
where MPI would either be more expensive or too
complicated to use and implement.

3.2 Inter-Processor Communication Benchmark
In order to probe the differences in inter-processor

communication times associated with MPI and UPC on
the Cray X1(E) in more detail, we wrote a special
communication benchmark called “CommBench”. There
are two versions of the benchmark code, one for MPI
called “CommBenchMPI”, and a UPC version called
“CommBenchUPC”. In both codes, each processor sends
data to all other processors at the same time. The
communication procedure is repeated many times for
messages of varying size, and these communication times
are measured throughout the run with great precision.
This type of communication pattern is the most common
one used and models the communication patterns found
within the BenchC CFD code itself. See reference [5] for
more details on these benchmarks, or contact the author
for the actual benchmark codes themselves.

For the MPI benchmark, there are two different ways
to facilitate this “all-to-all” communication pattern. One
uses MPI non-blocking routines “MPI_Isend” and
“MPI_Irecv”, and the other uses a more coordinated data

CUG 2005 Proceedings 7 of 9

transfer called “MPI_SendRecv”. Both of these modes
are measured and are called “MPI Non-Blocking” and
“MPI Send/Recv”.

For the UPC benchmark, there are four separate ways
to facilitate this type of data transfer. First, since UPC
uses one-sided communication, each processor can either
“put” data into (i.e. write to) the other processors
memory, or they could “get” data (i.e. read from) other
processors memory. Also, due to the Cray X1(E)’s multi-
streaming processor, we could either vectorize and multi-
stream together the data transfer statement, or we could
stream the loop over the other processors, and then just
vectorize over the actual data transfer statement alone.
These variations in UPC communication constitutes the
four modes, and each one is measured and reported here.
Finally, we also run the MPI communication benchmark
on the AHPCRC’s AMD Opteron Cluster with a switched
Myrinet network. The results of our communication
benchmark are reported in Figure 8.

Figure 8. Single message transfer times for the AHPCRC

communication benchmark using either MPI or UPC. Shown
are results for the Cray X1 as well as the AHPCRC’s AMD
Opteron Cluster for benchmark runs using 32 processors.

On the bottom axis of the graph in Figure 8 is the size

of the messages being sent, and on the vertical axis shows
the data transfer times, measured in micro-seconds, for a
single data transfer. Both axises are Log-10. The results
shown here are for 32 processors. Many runs were
carried out and average times are shown here. Similar
behaviour is observed for other processor counts.

Both the bandwidth-dominated region (the large-
message region on the right) and the latency-dominated
region (the small-message region on the left) can clearly
be seen. The UPC communication is somewhat faster
than the MPI communication on the X1, and both UPC
and MPI on the X1 are roughly an order-of-magnitude
faster than the Myrinet network of the Opteron cluster.
The communication mode differences are more dramatic
in the latency-dominated region. Both MPI on the Cray
X1 and Cluster show latency times in the 12-15 micro-
second range while the UPC latency times are rather
dramatic at either slightly over or slightly under 1

microsecond. The multi-streaming version of the UPC
benchmark (i.e. the one where streaming is split from
vectorization) has a latency time of under 1 microsecond.

We believe that the extremely small latency times of
UPC, at least on the Cray X1(E), will enable the
implementation of codes and algorithms which are
heavily dominated by the sending of many small
messages between processors.

It is important to note that in our benchmark code
“CommBenchMPI” and “CommBenchUPC”, all
processors are sending messages to all other processors at
the same time. This is a more complex procedure and
benchmark than other benchmarks codes where only a
single processor is sending messages to another single
processor. Those single-processor benchmarks may show
different bandwidth and latency behaviour than ours, but
our benchmark is more representative of actual
application codes that use heavy inter-processor
communication and will represent real-world behaviour
better than other idealized benchmark codes.

4. Conclusion
We have shown that the Cray X1E system has

continued to be a very productive tool for the CFD work
being carried out at the AHPCRC. Performance gains are
observed on the system over those observed on the older
X1 system, but this performance analysis has shown that
further optimisations might be required to improve the
performance even further.

We have also provided details about the use of
Unified Parallel C within our CFD codes, and have shown
some of the advantages, both in code development and
performance, of using these global address-space
programming models. We plan to explore these new
parallel programming models even further and look into
other, newer types of applications that could take
advantage of these new features.

References
1. M. Behr, A. Johnson, J. Kennedy, S. Mittal, and

T. Tezduyar, “Computation of incompressible flows with
implicit finite element implementations on the Connection
Machine”, Computer Methods in Applied Mechanics and
Engineering, 108 (1993), 99-118.

2. A. Johnson and T. Tezduyar, “Parallel
computation of incompressible flows with complex
geometries”, International Journal for Numerical
Methods in Fluids, 24 (1997), 1321-1340.

3. A. Johnson and T. Tezduyar, “Advanced mesh
generation and update methods for 3D flow simulations”,
Computational Mechanics, 23 (1999), 130-143.

4. A. Johnson, “Computational fluid dynamics
applications on the Cray X1 architecture: Experiences,
algorithms, and performance analysis”, Proceedings of
the 2003 Cray User Group Conference, Columbus Ohio,
2003.

CUG 2005 Proceedings 8 of 9

5. A. Johnson, “Unified Parallel C in CFD codes on
the Cray X1 system”, AHPCRC Bulletin, Vol. 14, No. 4,
2004.

6. S. Chauvin, P. Saha, F. Contonnet, S. Annareddy,
and T. El-Ghazawi, “UPC Manual”, The George
Washington University High Performance Computing
Laboratory, Version 1.0, available at http://upc.gwu.edu/

7. Berkeley Lab UPC Group; Documentation,
Berkeley UPC compiler, and source code, available at
http://upc.lbl.gov/

Acknowledgments
This document was developed in connection with

contract DAAD19-03-D-0001 with the U.S. Army
Research Laboratory. The views and conclusions
contained in this presentation are those of the authors and
should not be interpreted as presenting the official
policies or positions, either expressed or implied, of the
U.S. Army Research Laboratory or the U.S. Government
unless so designated by other authorized documents.
Citation of manufacturer’s or trade names does not
constitute an official endorsement or approval of the use
thereof.

The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes
notwithstanding any copyright notation hereon.

About the Author
Dr. Andrew Johnson is a Senior Scientist at Network

Computing Services, Inc. working on the Army High
Performance Computing Research Center (AHPCRC)
program. He has been with that program since its
inception in 1990. Dr. Johnson performs research,
development, and support activities in the areas of
Computational Fluid Dynamics, High Performance
Computing, Automatic Mesh Generation, Geometric
Modeling, and Large-Scale Scientific Visualization on
parallel architectures. Dr. Johnson holds a Ph.D. in
Aerospace Engineering from the University of Minnesota.
He can be reached at 1200 Washington Avenue South,
Minneapolis, MN 55415 USA. E-mail
ajohn@ahpcrc.org.

CUG 2005 Proceedings 9 of 9

Appendix A

Shown here are the inter-processor communication “scatter” functions used in the BenchC CFD code. Not shown here

are the rather complicated communication pre-processing procedures that calculate the communication patterns and set-up
and store the internal memory buffers and values to facilitate these communication routines. On the left is shown the MPI
version that is used if BenchC is compiled in the MPI-mode, and on the right is shown the UPC version which is used if UPC
is set as the main inter-processor communication mechanism. Highlighted in blue are the actual inter-processor
communication stages, and the actual lines of code that involve inter-processor communication are highlighted in red.

void nscatter(double *bg, int len, int iflag){ void nscatter(double *bg, int len, int iflag){
 int i, j, iloc, num, nreq, i1, i2; int i, j, iloc, iloc1, iloc2, num, ip, i1, i2;

 for (i = nreq = 0; i < npnum; i++){ upc_barrier;
 iloc = nploc[i];
 num = nploc[i+1] - iloc; #pragma csd parallel for
 MPI_Irecv(&buff[iloc*len],len*num, for (i = 0; i < epnum; i++){
 MPI_DOUBLE,np[i],MPI_ANY_TAG, iloc1 = eploc [i]*len;
 MPI_COMM_WORLD,&ereq[nreq++]); iloc2 = eploc2[i]*len;
 } num = (eploc[i+1] – eploc[i+0])*len;
 for (i = 0; i < epnum; i++){ ip = ep[i];
 iloc = eploc[i];
 num = eploc[i+1] - iloc; #pragma ivdep
 MPI_Isend(&bg[iloc*len],len*num, for (j = 0; j < num; j++)
 MPI_DOUBLE,ep[i],999, buffSH[ip][iloc2+j] = bg[iloc1+j];
 MPI_COMM_WORLD,&ereq[nreq++]); }
 }
 if (nreq > 0) MPI_Waitall(nreq, ereq, estat); upc_barrier;

 for (j = 0; j < npnum; j++){ for (j = 0; j < npnum; j++){
 i1 = nploc[j+0]; i1 = nploc[j+0];
 i2 = nploc[j+1]; i2 = nploc[j+1];
#pragma concurrent #pragma concurrent
 for (i = i1; i < i2; i++){ for (I = i1; I < i2; i++){
 iloc = ibuff[i]*4; iloc = ibuff[i]*4;
 bg[iloc + 0] += buff[i*4 + 0]; bg[iloc + 0] += buff[i*4 + 0];
 bg[iloc + 1] += buff[i*4 + 1]; bg[iloc + 1] += buff[i*4 + 1];
 bg[iloc + 2] += buff[i*4 + 2]; bg[iloc + 2] += buff[i*4 + 2];
 bg[iloc + 3] += buff[i*4 + 3]; bg[iloc + 3] += buff[i*4 + 3];
 } }
 } }
} }

It is important to note that the internal data transfer buffer is called “buff” in the MPI version and “buffSH” in the

UPC version. In the UPC version, buffSH is the only variable that had to be declared “shared” (a UPC variable type
declaration) throughout the entire code. By declaring buffSH as shared, an extra “processor-dimension” is added to the
array so that any processor can read-from or write-to any other processor’s version by referencing this processor-dimension.
For easier use of this “shared” internal data transfer variable, an on-processor only version of this array is declared and called
“buff” within the UPC code by the pointer casting statement:

double *buff;
buff = (double *) buffSH[MYTHREAD];

This statement is called during the set-up procedures after the shared variable is declared and allocated. The value of

“MYTHREAD” is a UPC-defined value that represents this processor’s “number”, and is equivalent to the value that would
have been returned by the MPI function MPI_Comm_rank.

