
1
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

Unified Parallel C within Computational Fluid
Dynamic Applications on the Cray X1(E)

Andrew A. Johnson, Ph.D.
Army HPC Research Center / NetworkCS, Inc.

Minneapolis, Minnesota

2
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

Outline

• CFD methods and code overview
• CFD performance
• UPC language concepts
• Benefit 1: Programming style and productivity
• Benefit 2: Implement new and complex algorithms
• Benefit 3: Performance

Army High Performance Computing Research Center
Contract DAAD19-03-D-0001

This presentation was developed in connection with contract DAAD19-03-D-0001 with the U.S. Army Research Laboratory. The views and
conclusions contained in this presentation are those of the authors and should not be interpreted as presenting the offic ial polic ies or positions,
either expressed or implied, of the U.S. Army Research Laboratory or the U.S. Government unless so designated by other authorized documents.
Citation of manufacturer’s or trade names does not constitute an offic ial endorsement or approval of the use thereof.

The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon.

3
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

Computational Fluid Dynamics
• Time accurate incompressible flow solvers

built for unstructured meshes
– Tetrahedral element meshes (mainly)
– Finite Element method
– Fully coupled GMRES-based iterative

equation solver
• Matrix-Free mode (most used)
• Sparse-Matrix mode

• Developed at the AHPCRC
– In use for over 14 years
– Used for a wide variety of applications

• Fully parallel and scalable
• BenchC and Aeolus

– Written entirely in C
– Roughly 8,000 lines
– Built-in performance monitoring

Parachute Aerodynamics

Tactical-Unmanned Aerial Vehicle

4
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

CFD Description (parallelism)
• Fully Parallel Based on MPI

– Mesh partitioning and re-distribution
• In-house RCB algorithm
• Entirely built-in to the code

– Number of processors specified at run time
– Fast and efficient inter-processor

communication
• Non-blocking routines

– Fully scalable
• Both computation and memory

• Portable to All Parallel Systems
– Requires only C and MPI
– Tested on X1(E),T3E,SGI,IBM,Clusters,Mac

• Can also use UPC for the Core
Communication Mechanism

5
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

CFD Description (continued)

1.8 Million
Tetrahedral Elements

6
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

History (Parallel Systems/Programming)

Vectorization/Autotasking ~ 1990

CMF/CMSSL ~ 1991

PVM ~ 1994

MPI ~ 1996

UPC/CAF/Vector ~ 2003

7
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

CFD Description (vectorization)
• Fully vectorized on the Cray X1(E)

– 256 Multi-Streaming Processors
• Vector processing elements
• Very high sustained computational rates

– 19.2 GFlops peak per processor (MSP)
– Very fast interconnect network

• Supports globally addressable memory

• Enables large-scale applications
– 1 to 10 million elements have been

common
– Regularly using meshes with around

100 million elements these days
– Applications with meshes containing

up to 2.1 billion elements have been
used

8
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

Cray X1 and X1E Differences

4 to 32 Gbytes Memory

12.8 GF (64bit)
CPU

12.8 GF (64bit)
CPU

12.8 GF (64bit)
CPU

12.8 GF (64bit)
CPU

X1 LC Cabinet
4 to 32 Gbytes Memory

4 to 32 Gbytes Memory

19.2 GF (64bit)
19.2 GF (64bit)

19.2 GF (64bit)
19.2 GF (64bit)

19.2 GF (64bit)
19.2 GF (64bit)

19.2 GF (64bit)
19.2 GF (64bit)

X1E LC Cabinet
4 to 32 Gbytes Memory

Single Node

Single Nodes (2 Total)

Logically
Split

9
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

Vectorization of CFD Kernel
• One big vectorization challenge in unstructured mesh CFD codes
• Assembly (scatter) of element results to the mesh nodes

do i=1,number_of_elements
 node1 = ien(1,i)
 x1 = x(1,node1)
 y1 = x(2,node1)
 z1 = x(3,node1)
 …Several more lines like these…

 …Lots of calculations using these “localized” variables…

 d(1,node1) = d(1,node1) + result1
 d(2,node1) = d(2,node1) + result2
 d(3,node1) = d(3,node1) + result3
 …Several more lines like these…
enddo

Total number of mesh elements on this processor.
Usually in the 100 thousands or more range.

In the range of 1100 flops per iteration.

“Gather” values
from global memory.

“Scatter” values back
into global memory.

(Traditional Finite Element
Assembly Operation)

10
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

Element Coloring Algorithm

• No two elements in a
group (color) can touch
each other

• Fairly simple algorithm to
compute the coloring

• 8 Colors in this example
• Around 40 colors in 3D

meshes

11
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

Element Coloring Algorithm (continued)

12
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

Vectorization of CFD Kernel (modification)

do ig=1,number_of_groups
 i1 = gg_begin(ig)
 i2 = gg_end(ig)

!DIR$ CONCURRENT
 do i=i1,i2
 node1 = ien(1,i)
 x1 = x(1,node1)
 y1 = x(2,node1)
 z1 = x(3,node1)
 …Several more lines like these…

 …Lots of calculations using these “localized” variables…

 d(1,node1) = d(1,node1) + result1
 d(2,node1) = d(2,node1) + result2
 d(3,node1) = d(3,node1) + result3
 …Several more lines like these…
 enddo
enddo

Outer group loop not vectorized.

Inner group loop can now be fully
vectorized and multi-streamed.

Iteration count is usually in the 10k or larger range.
A few small group sizes exist at the end.

Groups are pre-computed
during the set-up stage.

Can guarantee that these values will always
be different for all iterations of this loop.

13
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

Performance
• Cray X1 and Cray X1E

– BenchC application runs in MSP “mode”
– Compared SSP “equivalents”

• Atipa Opteron Cluster
– 2.2 GHz, 2 Processors per node
– Myrinet network (switched)

• Tested a CFD data set with 2 million
tetrahedral elements
– 16, 32, 48, 64 Opterons
– 4, 8, 12, 16 Cray X1(E) MSPs

• Report GFlops based on our estimation of total
operations performed in each run

• No I/O or set-up time measured

14
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

Performance - Matrix Free Mode

15
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

Performance - Sparse Matrix Mode

16
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

Performance - Summary
• Cray X1

– About 4.2 GFlops sustained per MSP or around 33% peak
• Cray X1E

– About 5.5 GFlops sustained per MSP or around 28% peak
• Aberration at the 8 MSP (32 SSP) run
• Various kernel routines run faster

– Sparse mode behaves worst than the X1
• More complex vectorization and data structures
• Not used as much as the matrix-free mode

• Opteron Cluster
– Roughly 60% performance of an X1E SSP
– Wide variability in performance

• 10% to 30% variability in performance
– 4 separate runs within a 2 hour time frame

• Hampers our efforts for large-scale scalability tests

• Communication times were a few percent of total run time in all cases

17
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

Application Scalability (X1)

18
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

Large CFD Calculations

Volume rendering of airflow past a cargo aircraft in a take-off configuration.
(243 million tetrahedral elements)

19
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

Large CFD Calculations (continued)

Volume rendering of airflow past a tactical unmanned aerial vehicle (TUAV).
(450 Million tetrahedral elements)

20
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

Large CFD Calculations (continued)

Volume rendering of airflow past a military ground vehicle.
(1.1 Billion tetrahedral elements)

21
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

Large CFD Calculations (continued)
• 1.25 Teraflops sustained overall performance

– 252 application processors on the Cray X1E
• Upgraded AHPCRC system as of 2 months ago

• 1.1 Billion element mesh
– Unstructured mesh
– Tetrahedral elements
– GMRES Iterative equation

solver
– Matrix-Free Mode

This application, but with a larger mesh.

Tactical Unmanned Aerial Vehicle

22
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

UPC and CAF
• Extensions to the C (UPC) and FORTRAN (CAF) languages that make

distributed data “visible” and accessible by all processors
– No (very few) library functions are needed (i.e. it is part of the language)
– In general, can be mixed with other models such as MPI

• Very low overhead for one-sided reads and writes
• Able to take advantage of the Cray X1’s global address space
• No subroutine calls

– Compiler can optimize across GETs and PUTs
– Can make coding simpler (more elegant) in many cases
– Can implement advanced algorithms which would be difficult or impossible with

message-passing models such as MPI

• Fairly new and supported by only a few vendors
• Will require changes to existing codes

23
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

CAF and UPC (Language Overview)
shared double d1[N][THREADS];
shared double d2[N][THREADS];
shared int nn[THREADS], ne[THREADS];
shared int norder;

double x1[N], x2[N];

if (MYTHREAD == 0){
 printf(“Hello world!\n”);
 for (i = 1; i < THREADS; i++){
 nn[i] = 9381;
 ne[i] = 3813;
 }
}
upc_barrier;

for (i = 0; i < N; i++){
 x1[i] = d1[i][MYTHREAD - 1];
 d2[i][MYTHREAD + 1] = x2[i];
}
upc_barrier;

real*8 d1(N)[*]
real*8 d2(N)[*]
integer nn[*], ne[*]
integer npes, mypn
real*8 x1(N)[*], x2(N)[*]

mypn = this_image()
npes = num_images()
if (mypn .eq. 1) then
 print*,”Hello world!”
 do i=2,npes
 nn[I] = 9381
 ne[I] = 3813
 enddo
endif
call sync_all()

do i=1,N
 x1(i) = d1(iI)[mypn - 1]
 d2(i)[mypn + 1] = x2(i)
enddo
call sync_all()

UPC CAF

24
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

Programming Style and Productivity
• It is often easier and more efficient to implement parallel

communication algorithms using UPC than with MPI
– Avoids function calls
– Compiler can perform better optimizations
– More readable and elegant coding

• Performance increases are also observed using UPC, at
least on the Cray X1(E)

• Example case; unstructured-mesh inter processor
communication for CFD (and many CSM) codes

25
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

Partitioned Mesh Communication Pattern

Implemented on
16 Processors

For Example:
Green processor need to
communicate with 4 others
Blue processor needs to
communicate with 5 others
Red processor needs to
communicate with 3 others

26
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

“Scatter” Communication Function
void nscatter(double *bg, int len, int iflag){
 int i, j, iloc, num, nreq, i1, i2;

 for (i = nreq = 0; i < npnum; i++){
 iloc = nploc[i];
 num = nploc[i+1] - iloc;
 MPI_Irecv(&buff[iloc*len],len*num,
 MPI_DOUBLE,np[i],MPI_ANY_TAG,
 MPI_COMM_WORLD,&ereq[nreq++]);
 }
 for (i = 0; i < epnum; i++){
 iloc = eploc[i];
 num = eploc[i+1] - iloc;
 MPI_Isend(&bg[iloc*len],len*num,
 MPI_DOUBLE,ep[i],999,
 MPI_COMM_WORLD,&ereq[nreq++]);
 }
 if (nreq > 0) MPI_Waitall(nreq, ereq, estat);

 for (j = 0; j < npnum; j++){
 i1 = nploc[j+0];
 i2 = nploc[j+1];
#pragma concurrent
 for (i = i1; i < i2; i++){
 iloc = ibuff[i]*4;
 bg[iloc + 0] += buff[i*4 + 0];
 bg[iloc + 1] += buff[i*4 + 1];
 bg[iloc + 2] += buff[i*4 + 2];
 bg[iloc + 3] += buff[i*4 + 3];
 }
 }
}

void nscatter(double *bg, int len, int iflag){
 int i, j, iloc, iloc1, iloc2, num, ip, i1, i2;

 upc_barrier 567;

#pragma csd parallel for private(i,j,iloc1,iloc2,num,ip)
 for (i = 0; i < epnum; i++){
 iloc1 = eploc [i]*len;
 iloc2 = eploc2[i]*len;
 num = (eploc[i+1] - eploc[i+0])*len;
 ip = ep[i];

#pragma ivdep
 for (j = 0; j < num; j++)
 buffSH[ip][iloc2+j] = bg[iloc1+j];
 }

 upc_barrier 568;

 for (j = 0; j < npnum; j++){
 i1 = nploc[j+0];
 i2 = nploc[j+1];
#pragma concurrent
 for (i = i1; i < i2; i++){
 iloc = ibuff[i]*4;
 bg[iloc + 0] += buff[i*4 + 0];
 bg[iloc + 1] += buff[i*4 + 1];
 bg[iloc + 2] += buff[i*4 + 2];
 bg[iloc + 3] += buff[i*4 + 3];
 }
 }
}

Write data on to another processor

27
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

Compiler Listing (simplified form)

632. #pragma csd parallel for private(i, j, iloc1, iloc2, num, ip)
633. M------------< for (i = 0; i < epnum; i++){
634. M iloc1 = eploc [i]*len;
635. M iloc2 = eploc2[i]*len;
636. M num = (eploc[i+1] - eploc[i+0])*len;
637. M ip = ep[i];
639. M #pragma ivdep
640. M MV---------< for (j = 0; j < num; j++){
641. M MV buffSH[ip][iloc2+j] = bp[iloc1+j];
642. M MV--------- }
643. M------------> }
644. upc_barrier;

633. 1------------< for (i = 0; i < epnum; i++){
634. 1 iloc1 = eploc [i]*len;
635. 1 iloc2 = eploc2[i]*len;
636. 1 num = (eploc[i+1] - eploc[i+0])*len;
637. 1 ip = ep[i];
639. 1 #pragma concurrent
640. 1 MV---------< for (j = 0; j < num; j++){
641. 1 MV buffSH[ip][iloc2+j] = bp[iloc1+j];
642. 1 MV--------- }
643. 1------------> }
644. upc_barrier;

28
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

Cray X1 Speed-up (2 million elements)

29
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

Implementing Parallel Algorithms
• Volume calculation

– Each mesh element
calculates its volume and
then sums them all up

– Representative of more
complex calculation and
numerical methods

• Implemented on a
distributed mesh
– Elements and nodes

30
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

Serial (not-parallel) version

 double vol, volume;
 double x[nn], y[nn];
 int n1[ne], n2[ne], n3[n3];

 volume = 0.0;
 for (i = 0; i < ne; i++){
 x1 = x[n1[i]]; y1 = y[n1[i]];
 x2 = x[n2[i]]; y2 = y[n2[i]];
 x3 = x[n3[i]]; y3 = y[n3[i]];

 vol = (x1-x3)*(y2-y3) - (x2-x3)*(y1-y3);
 volume += vol;
 }
 printf(“Volume is %lf\n”,volume);

31
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

Parallel (MPI) Version
• Need to localize “relevant” mesh coordinates on each

processor
– Figure out which node references are off-processor
– Gather up those nodes and sort them based on processor ownership
– Send out requests for these node coordinates to these other

processors
– Give give out these node coordinates
– Receive the node coordinates back
– Lots of memory allocations and bookkeeping involved throughout

• Can then calculate the element volumes in a normal manner
• Call an “MPI_Allreduce” at the end to sum-up the values

– The only part of the algorithm which is actually easier to do with MPI
than with UPC (not much easier though)

32
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

Parallel (MPI) Version
 int i, j, k, ip, nod, mypn, npes, smax, rmax, numS, numR;
 int nnc, nloc, i1, i2, j1, j2, iloc, itoo, ifrom, nn;
 int *ntag, *nsnd, *nrec, *ans, *irbuff, *isbuff;
 double xp, yp, zp, xmax, xmin, ymax, ymin, zmax, zmin, *xtmp, *xbuff;
 MPI_Status stat;

 MPI_Comm_size(MPI_COMM_WORLD, &npes);
 MPI_Comm_rank(MPI_COMM_WORLD, &mypn);

 nsnd = (int *) malloc(sizeof(int) * (npes+1));
 nrec = (int *) malloc(sizeof(int) * (npes+1));
 for (i = 0; i <= npes; i++) nsnd[i] = nrec[i] = 0;

 ntag = (int *) malloc(sizeof(int) * nn);
 for (i = 0; i < nn; i++) ntag[i] = -1;
 for (i = 0; i < (nen*nec); i++) if ((nod = n[i]) > -1) ntag[nod] = 0;

 nloc = 0;
 for (ip = 0; ip < npes; ip++){
 for (i = nnpl[ip]; i < nnpl[ip+1]; i++) if (ntag[i] == 0){
 ntag[i] = nloc;
 nsnd[ip]++;
 nloc++;
 }
 }

 MPI_Alltoall(nsnd, 1, MPI_INT, nrec, 1, MPI_INT, MPI_COMM_WORLD);
 smax = rmax = -1;
 for (i = 0; i < npes; i++) if (i != mypn){
 if (nsnd[i] > smax) smax = nsnd[i];
 if (nrec[i] > rmax) rmax = nrec[i];
 }
 isbuff = (int *) malloc(sizeof(int) * smax);
 irbuff = (int *) malloc(sizeof(int) * rmax);
 xbuff = (double *) malloc(sizeof(double) * NSD * rmax);
 xtmp = (double *) malloc(sizeof(double) * NSD * nloc);

 for (i = j1 = j2 = 0; i <= npes; i++){
 k = nsnd[i]; nsnd[i] = j1; j1 += k;
 k = nrec[i]; nrec[i] = j2; j2 += k;
 }

Page 1

Smallest font
supported by

PowerPoint

33
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

Parallel (MPI) Version
 for (i = nnpl[mypn]; i < nnpl[mypn+1]; i++) if ((j = ntag[i]) > -1){
 nod = i - nnpl[mypn];
 xtmp[j*NSD + X] = x[nod*NSD + X];
 xtmp[j*NSD + Y] = x[nod*NSD + Y];
 xtmp[j*NSD + Z] = x[nod*NSD + Z];
 }

 for (i = 1; i < npes; i++){
 MPI_Barrier(MPI_COMM_WORLD);

 itoo = mypn + i; if (itoo >= npes) itoo -= npes;
 ifrom = mypn - i; if (ifrom < 0) ifrom += npes;

 i1 = nsnd[itoo];
 numS = 0;
 for (j = nnpl[itoo]; j < nnpl[itoo+1]; j++) if (ntag[j] > -1){
 isbuff[numS] = j;
 numS++;
 }

 numR = nrec[ifrom+1] - nrec[ifrom];
 MPI_Sendrecv(isbuff, numS, MPI_INT, itoo, 111,
 irbuff, numR, MPI_INT, ifrom, 111, MPI_COMM_WORLD, &stat);

 for (j = 0; j < numR; j++){
 nod = irbuff[j] - nnpl[mypn];

 xbuff[j*NSD + X] = x[nod*NSD + X];
 xbuff[j*NSD + Y] = x[nod*NSD + Y];
 xbuff[j*NSD + Z] = x[nod*NSD + Z];
 }

 MPI_Sendrecv(xbuff, NSD*numR, MPI_DOUBLE, ifrom, 222,
 &xtmp[i1*NSD], NSD*numS, MPI_DOUBLE, itoo, 222,
 MPI_COMM_WORLD, &stat);
 }
 free(irbuff); free(isbuff); free(xbuff);

Page 2

34
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

Parallel (MPI) Version
 volume = 0.0
 for (i = 0; i < nec; i++){
 n1 = n[I*nen + N1]; n1Loc = ntag[n1];
 n2 = n[I*NEN + N2]; n2Loc = ntag[n2];
 n3 = n[I*NEN + N3]; n3Loc = ntag[n3];
 x1 = xtmp[n1Loc*NSD + X];
 y1 = xtmp[n1Loc*NSD + Y];
 x2 = xtmp[n2Loc*NSD + X];
 y2 = xtmp[n2Loc*NSD + Y];
 x3 = xtmp[n3Loc*NSD + X];
 y3 = xtmp[n3Loc*NSD + Y];

 vol_Loc = (x1-x3)*(y2-y3) - (x2-x3)*(y1-y3);
 volume += vol_Loc
 }
 free(ntag); free(xtmp);

 MPI_Allreduce(&volume, &volumeTot, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
 if (mypn == 0){
 printf(“Volume is %lf\n”,volumeTot);
 }
 MPI_Barrier(MPI_COMM_WORLD);

Page 3

35
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

Parallel (UPC) Version

 double vol, volume;
 shared double volumeSH[THREADS];
 shared double x[nnLocal][THREADS], y[nnLocal][THREADS];
 int n1[neLocal], n2[neLocal], n3[n3Local];

 upc_barrier;

 volume = 0.0;
 for (i = 0; i < neLocal; i++){
 p1 = n1[i] / nnLocal; n1Loc = n1[i] % nnLocal;
 p2 = n2[i] / nnLocal; n2Loc = n2[i] % nnLocal;
 p3 = n3[i] / nnLocal; n3Loc = n3[i] % nnLocal;
 x1 = x[n1Loc][p1]; y1 = y[n1Loc][p1];
 x2 = x[n2Loc][p2]; y2 = y[n2Loc][p2];
 x3 = x[n3Loc][p3]; y3 = y[n3Loc][p3];

 vol = (x1-x3)*(y2-y3) - (x2-x3)*(y1-y3);
 volume += vol;
 }
 volumeSH[MYTHREAD] = volume;
 upc_barrier;
 If (MYTHREAD == 0){
 for (i = 1; i < THREADS; i++) volume += volumeSH[i];
 printf(“Volume is %lf\n”,volume);
 }

36
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

Performance Of UPC (Cray X1)
• Special-purpose benchmark code I wrote
• Every processor sends data (of varying size) to every other

processor at the same time
• Compare MPI times with UPC

140. 1--< for (i = 0; i < (npes-1); i++){
141. 1 MPI_Sendrecv(d1, num, MPI_DOUBLE, itoo[i], 111,
142. 1 d2, num, MPI_DOUBLE, ifrom[i], 111,
143. 1 MPI_COMM_WORLD, &stat);
144. 1--> }

183. 1--< for (i = 0; i < (npes-1); i++){
184. 1 MPI_Irecv(d2, num, MPI_DOUBLE, ifrom[i], 222,
185. 1 MPI_COMM_WORLD, &reqL[nreq++]);
186. 1--> }
190. 1--< for (i = 0; i < (npes-1); i++){
191. 1 MPI_Isend(d1, num, MPI_DOUBLE, itoo[i], 222,
192. 1 MPI_COMM_WORLD, &reqL[nreq++]);
193. 1--> }
197. MPI_Waitall(nreq, reqL, statL);

37
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

Performance Tests (UPC Version)
• The entire data transfer loop is vectorized and multi-streamed

• In an alternate form, the outer “processor” loop is multi-
streamed and the inner data transfer loop is vectorized
– Cray Streaming Directives (CSD) are used to govern this behavior

156. 1-----< for (i = 0; i < (npes-1); i++){
157. 1 MV--< for (j = 0; j < num; j++){
158. 1 MV d2[j] = d1S[ifromLR[i]][j];
159. 1 MV--> }
160. 1-----> }

258. #pragma csd parallel for private(i, j)
259. M-----< for (i = 0; i < (npes-1); i++){
260. M MV--< for (j = 0; j < num; j++){
261. M MV d2[j] = d1S[ifromLR[i]][j];
262. M MV--> }
263. M-----> }

38
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

All-to-All Data Transfer (Cray X1, 32 MSP)

39
AHPCRC NETWORK COMPUTING SERVICES, INC.

 © 2005

The Good and the Bad
• Distributed memory (shared nothing) - MPI

– Portable to most (all) systems
– Many codes have been ported to this model
– Fairly simple concepts
– Nice collective operations are available
– Library calls may limit optimization and performance
– Complex routines and coding required for many algorithms

• Distributed shared memory (globally addressable) - UPC/CAF
– Simple concepts and relatively easy to program
– Can achieve high performance
– Can implement complex routines and algorithms much easier
– Not fully portable yet
– Don’t having nice collective operations available (have to do it yourself)

• Are adding some collective routines to the standard

