
ELDORADO 1 of 8

ELDORADO

John Feo, David Harper, Simon Kahan, Petr Konecny
Cray Inc.

ABSTRACT: This paper introduces Eldorado, a third generation multithreaded
architecture. Previous Cray multithreaded systems were plagued by unreliable hardware
and high costs. Eldorado corrects these problems by using many parts built for other
commercial systems. Its compute processor is a 500 MHZ multithreaded processor
architecturally similar to the MTA-2 processor; but its interconnection network, I/O
subsystem, and service processors are borrowed from other Cray systems. Eldorado
retains the programming model, operating system, and tools of the MTA-2. It has the same
capability as the MTA-2 to tolerate latencies and achieve high performance on programs
that run poorly on SMP clusters. We present several programming examples to illustrate
performance and scalability in the presence of high memory and synchronization latencies.

KEYWORDS: Multithreaded architectures, heterogeneous architectures, multithreaded
processing, performance studies.

1. Introduction
Eldorado is the third generation multithreaded

architecture built by Cray Inc. The two previous
generations, the MTA-1 [6] and MTA-2 systems [2], were
fully custom systems that were expensive to manufacture
and support. Eldorado makes use of many commodity
parts and subsystems built for other commercial systems,
thereby, significantly lowering its cost while maintaining
the high performance, scalability, and simple programming
model of the two previous generations.

The MTA-1 manufactured by Tera Computer Company
was a custom system consisting of twenty-four GaAs
ASICs, a 52-layer network board, and tens of thousands of
connections. The system was large, complex, and power
hungry. The ASICs were difficult to manufacture and
unreliable. While the system did support some evaluation
work [9], neither the hardware nor the operating system
reached a state capable of supporting production work.

The MTA-2 developed by Cray Inc is an entirely CMOS
implementation of the MTA-1. The CMOS design greatly
simplifies all aspects of the machine making it both
manufacturable and reliable. In 2002, two MTA-2 systems
were delivered to customers. These machines remain in
use today supporting research and production work [7,8].

Unfortunately, the high cost of the MTA -2’s custom design
made it difficult to sell.

Eldorado reduces system costs by leveraging the
development of the Red Storm system [1] Cray has built
for Sandia National Laboratory and has brought to market
as the XT3 [3]. The XT3 is a large-scale distributed
memory system supporting the MPI programming model.
In a nutshell, Eldorado is an XT3 with MTA processors in
place of AMD Opteron processors on the compute nodes:
this replacement of processors transforms the distributed
memory XT3 into a shared-memory Eldorado.

The components of early computer systems ran at the same
speed. Processors ran at about the same speed as the
memory systems from which they read and wrote data.
Unfortunately, over the past two decades processor speeds
have increased several orders of magnitude while memory
speeds have increased only slightly. Processors are now
starved for data. The conventional solution is to build
hierarchical memory systems with two or three levels of
cache, local memory, and re mote memories. Only the first
level cache is able to keep up with the processor. Any
memory reference that misses that cache stalls the
processor. The problem is exacerbated in large SMP
clusters where more than 99% of me mory is remote and
messages most be passed between processors to move data.

ELDORADO 2 of 8

Hierarchical memory systems with fast processors and slow
networks present an almost insurmountable programming
problem to users. To get even minimal performance and
scalability, programmers must write code that reads and
writes memory in cache order, reuses each data word many
times, minimizes communication to large block transfers,
minimizes synchronization operations, uses static data
structures, and is load balanced. These constraints shrink
the space of scalable algorithms and increase the size of
programs. The rich literature on parallel algorithms is
worthless. Many algorithmic techniques learned in
graduate school, such as recursion, linear progra mming,
branch-and-bound, and PRAMs, cannot be implemented
efficiently on conventional systems.

The MTA-1 and the MTA-2 established multithreading as
an efficient technique to hide system latencies [7,8,9]. By
maintaining multiple threads of computation per processor
and global shared memory, MTA systems use parallelism
to tolerate latencies and solve the programming problem.
When the executing thread must wait for a memory
operation to complete or a synchronization event to occur,
the processor switches to another thread and executes its
next instruction. As long as at least one thread has a ready
instruction, the processor remains busy. The system’s
shared memory lets any processor read and write any word
and, most importantly, lets any processor execute any
thread. Thus, workloads can be dynamically balanced
without penalty. The programming problem reduces to
writing code with sufficient parallelism to meet the “one
ready instruction per cycle per processor” requirement. All
the constraints listed in the previous paragraph are no
longer important. Any algorithm with a high degree of
parallelism will run well and scale on an MTA. To the
degree that the XT3 network scales, the same is true for
Eldorado.

In the next section, we present Eldorado and carefully point
out the tradeoffs we made by adopting the XT3
infrastructure. In the third section, we discuss several
programming problems suitable for Eldorado. We give
source code and performance numbers for the MTA-2, and
predict performance on Eldorado. We conclude with a
roadmap for multithreaded systems.

2. Eldorado
Eldorado is a shared memory system that efficiently

exploits large-scale fine-grain parallelism through
architectural-level synchronization and scheduling. The
Eldorado hardware infrastructure is based on the Cray Red
Storm project [1], while the processor and system software
are derived from the Cray MTA-2 Project [2]. As
illustrated in Figure 1, an Eldorado node consists of
compute and service modules. A compute module has four
Cray MT processors with commodity DIMM memory,

powered by Cray’s MTX operating system. A service
module consists of two AMD Opteron processors, four
PCI-X interfaces, and commodity DIMM me mory. The
service nodes run the LINUX operating system. Both types
of modules have 4 network interface chips. Table 1
compares Eldorado to the MTA-2.

MTX Linux

Compute Service & IO

Service Partition
• Linux OS
• Specialized Linux nodes

Login PEs

IO Server PEs
Network Server PEs
FS Metadata Server PEs
Database Server PEs

Compute Partition
MTX (BSD)

RAID Controllers

Network

PCI-X
10 GigE

Fiber Channel
PCI-X

MTX Linux

Compute Service & IO

Service Partition
• Linux OS
• Specialized Linux nodes

Login PEs

IO Server PEs
Network Server PEs
FS Metadata Server PEs
Database Server PEs

Compute Partition
MTX (BSD)

RAID Controllers

Network

PCI-X
10 GigE

Fiber Channel
PCI-X

RAID Controllers

Network

PCI-X
10 GigE

Fiber Channel
PCI-X

Figure 1. Eldorado system architecture

Table 1. Comparison of MTA-2 and Eldorado

 MTA-2 Eldorado
CPU speed 220 MHz 500 MHz
Maximum system
size 256 processors 8192 processors

Maximum memory
capacity

1 TB (4 GB/P) 128 TB (16 GB/P)

TLB reach 128 GB 128 TB
Network topology Modified Cayley 3D Torus
Network bisection
bandwidth

3.5 GB/s * P 15.3 GB/s * P2/3

Network injection
rate

220 M wrds/P Variable
(see Table 2)

2.1 MT processors

The architecture of an MT (multithreaded) processor is
shown in Figure 2. Each processor has 128 hardware
streams and a 64 KByte, 4-way associated instruction cache
shared by all 128 streams. A hardware stream includes 32
general-purpose registers, a target register, and a status
word that includes a program counter. Each stream holds
the context of one thread. The processor executes an
instruction from a different stream on every cycle in a fair
manner. Only if no stream has an instruction ready to
execute does the processor stall. There are three pipelined
functional units, M, A, and C. Each instruction word may
include operations that exercise all units. The M unit can
initiate a read or write operation per cycle, the A unit can
initiate a fused multiply-add, and the C unit can initiate
either a control or an add operation. The cycle speed is 500
MHZ, so the processors have a 1.5 GFLOP/s peak
performance (up from 660 MFLOP/s on the MTA-2).

ELDORADO 3 of 8

Figure 2. MT processor block diagram

2.2 Service processors

The hardware implementing Eldorado’s service nodes

is identical to the service node hardware on the XT3.
There are two Opteron sockets on the module; each can be
populated with either single or multi-core processors. Each
socket connects with four commodity DIMM sockets, with
a network interface (Seastar2), and with a PCI-X interface.
The reuse of the existing hardware design allows Eldorado
to also reuse much of the software stack running on the
service nodes. This stack includes a Linux kernel, job
launch and batch facilities, and I/O software including the
high-performance parallel Lustre file system.

2.3 Memory system

The MT processor memory system is a global, shared

address space accessible by all MT processors. There are
as many me mory modules as there are processors. Each
module can be configured to be from 4 to 16 GBytes in
size. All memory words are 8 bytes wide and the memory
is byte-addressable. Associated with every word are
several additional bits: a full-and-empty bit, a forwarding
bit, and two trap bits. Memory is implemented using
commodity DDR components and is protected against
single bit failures. Each module has a single access port
and is 128 bits wide. Service processors can access MT
processor memory only by message passing. The Seastar2
ASIC contains a DMA engine that performs all transfers
between MT processor memory and Opteron memory.

Each MT processor memory module has a 128 KByte, 4-
way associated data cache. A line of 8 words (64 bytes) is
transferred to the cache whenever a word of the line is
accessed. Only the accessed word moves beyond the
buffer, so network bandwidth is not wasted moving words

not requested by a processor. This buffer is logically part
of the memory system and not the processor; it is not a data
cache in the conventional sense; there are no cache
coherence issues. The buffer simply retains recently
accessed words and is used to reduce the bandwidth
required from the DRAM pins. To adapt to the commodity
memory technology used in Eldorado, logical addresses are
hashed to physical addresses in 8 word blocks rather than
the word granularity hashing that was used in the custom
MTA-2 memory system.

At boot time, the system can divide the MT processor
memory into global and local memory segments. While
the user will see only global shared memory, we plan to
enhance the compiler and runtime system to exploit any
local me mory set aside at boot time. Certainly, it makes
sense to spill registers, reserve stack space, and allocate
thread private data in local memory rather than disperse
them around the system as is done in the MTA-2.

2.4 Interconnection network

The network topology is a 3D torus. The original Red
Storm network design was optimized to support message
passing and although the raw performance of the network is
in excess of 37 Gb/s per link per direction, Eldorado
communication suffers some inefficiency due to
suboptimal packet formats. It was not within the scope of
the Eldorado project to re -implement the network to
mitigate this problem. Despite this shortcoming, the
network bandwidth is reasonably well matched to other
paths in the system. Communication in the Eldorado
network is protected from error on a per link basis. The
network also supports all classes of Eldorado operations
including the atomic fetch-and add operations that are part
of the MTA instruction set.

2.5 Speeds and feeds

Figure 3 shows some of the important performance

metrics of an Eldorado node. As mentioned previously, the
execution pipes are capable of a 1.5 GF peak performance.
Memory performance is more complex to analyze.
Previous experience with the MTA-2 hardware and the
class of algorithms that have been run successfully on the
architecture suggests a useful memory performance metric
is the sustainable rate at which uniformly distributed
memory operations can be injected into the system. Figure
3 shows the four points at which this metric is determined
for a system. First, the DDR memory interface supports
100 million memory operations per second (assuming
DDR3200 technology). Second, the interface to the
memory cache supports 500 million operations per second.
Third, the HyperTransport interface to the Seastar2
network interface supports 140 million operations per

ELDORADO 4 of 8

second. The fourth interface is the interface to the system
network.

CPU ASIC

140M memory ops

500M memory ops

1.5 GFlops

500M memory ops

100M memory ops

90M→30M memory ops (1 → 4K processors)

16 GB DDR DRAM

Sustained memory rates are for
random single word accesses
over entire address space.

CPU ASIC

140M memory ops

500M memory ops

1.5 GFlops

500M memory ops

100M memory ops

90M→30M memory ops (1 → 4K processors)

16 GB DDR DRAM

Sustained memory rates are for
random single word accesses
over entire address space.

Figure 3. Speeds and feeds

The network interface is capable of supporting an issue rate
of approximately 90 million memory operations per
second. This interface represents the performance-limiting
factor when performance is defined as described above.
However, because the most interesting model of operation
assumes uniformly distributed addressing, a more
important performance characteristic of the network is its
bisection bandwidth. The bisection bandwidth of a 3D
torus scales with P2/3, implying that the sustainable memory
issue rate in the system will not scale linearly with system
size. This condition represents a significant departure from
the MTA-2 implementation that provided bisection
bandwidth that scaled linearly with the number of
processors in the system. Table 2 shows the impact of the
sublinear bisection scaling at several system sizes. It is
also interesting to note the penalty paid by having torus
dimensions that are suboptimal for a given system size, an
artifact of real world packaging issues. Despite these
shortcomings, the larger system sizes offer a considerable
capability to move random words of data.

2.6 I/O and file system

One deficiency of both the MTA-1 and MTA-2

systems is slow performance on serial scalar code.
Consequently, OS code and in particular file system code
performs poorly. Although the Eldorado processor clock
frequency is twice that of the MTA-2 the clock is still 4 to
8 times slower than the clock speed of mainstream
microprocessors. This performance differential makes it
prudent for Eldorado to offload I/O operations to the
service nodes, leveraging several technologies: the
significant I/O software work done for Red Storm, the high
serial code performance of commodity microprocessors,
and the continuing improvement of I/O devices and drivers
in commodity environments (Linux/PCI-X). I/O related
system calls are packaged into messages and sent to one or

more service nodes. Messages are decoded and handed to
Linux and the file systems hosted on the service nodes .

Table 2. Estimated Eldorado scaling

Topology 6x12x8 11x12x8 11x12x16 22x12x16 14x24x24

Processors 572 1056 2112 4224 8064

Memory
size

9 TB 16.5 33 66 126

Sustainable
remote
reference
rate (per
processor)

60MW/s 60 45 33 30

Sustainable
remote
reference
rate
(aggregate)

34.6GW/s 63.4 95 139.4 241.9

Relative
size 1.0 1.8 3.7 7.3 14.0

Relative
performance 1.0 1.8 2.8 4.0 7.0

2.7 Power and cooling

Eldorado power and cooling is directly leveraged from

XT3. Power is delivered as 48 VDC to the edge of the
board. Redundant voltage regulator modules (VRMs)
convert the 48 VDC to 1.8 VDC, 2.5 VDC, and 3.3 VDC.
An embedded control unit monitors the output of each
VRM. The control unit is capable of handling exceptional
conditions by powering down the module and at all times
communicates status to a system console.

Cooling is accomplished with chilled air and heat sinks
attached to the processor and network interface ASICs. Air
is driven vertically through the cabinet (24 modules stacked
3 high, 8 wide) using a single fan located in the base of the
cabinet. The cooling problem for Eldorado (given the
existence of XT3) was not a particular challenge because
the MT processor consumes about 50% of the power
required by the Opteron based XT3 design.

3. Program Examples

Multithreaded architectures present a unique
programming environment to the user. Since parallelism is
the only criterion for good utilization, the programmer’s
primary interest is to maximize parallelism. If sufficient
parallelism exists, processors will always have an
instruction to execute, and execution time equals the
product of the number of instructions executed and the
machine’s cycle time. As with the MTA-2, Eldorado will
be most cost-effective on codes that run poorly on SMP

ELDORADO 5 of 8

clusters. Such codes have one or more of the following
features: larger number of cache misses; severe load
imbalances; sparse, dynamic, or adaptive data structures;
high communication to computation ratio; or fine-grain
synchronization.

In addition to eliminating many of the programming issues
that make parallel programming so difficult on SMP
clusters, Eldorado makes the compiler and runtime system
responsible for implementing parallelism. It is the
compiler, and not the user, that inserts instructions to
reserve streams, divide loop iterations among the streams
assigned, allocate stack space for each stream, pass global
values, and recover all but one stream when the parallel
work completes. The compiler recognizes most reductions
and linear recurrences, and automatically generates codes
to implement the operations in parallel and without race
conditions. Where the compiler is unable to recognize
parallelism automatically, the programmer may provide
guidance via a wide variety of pragmas; thus, codes written
in OpenMP and other shared-memory paradigms port
readily with the caveat that greater parallelism is required
than on other systems to achieve comparable performance.

Eldorado will run the MTA-2 operating system, a
multithreaded Unix. It will inherit the compilers, libraries,
programming tools, and runtime system developed for the
MTA-2. One of the tools is CANAL, a static compiler
analysis tool. It generates a report stating how each loop is
compiled. For innermost loops it gives the number of
instructions, memory operations, floating point operations,
the compiler’s estimate of the number of streams required
to hide latency, and other statistics. If latencies are hidden,
then a loop’s execution time is the product of the trip count,
number of instructions, and the machine’s cycle time. Any
difference in this product and the actual execution time
implies that all latencies are not hidden. The user can then
increase the number of streams or look for ways to increase
the loop’s parallelism.

On Eldorado, the analysis is more complicated because the
network’s bandwidth does not match the processor’s
appetite for data and it does not scale with the number of
processors. Moreover, if the compiler and runtime system
use local memory for register spills, stack space, and thread
private data, then not all memory operations will go out
over the network. We have developed a calculator to
predict Eldorado performance. Its inputs are: trip count,
number of instructions, number of memory operations to
global me mory, number of memory operations to local
memory, cycle time, and system configuration. In the
subsections that follow, we use the calculator to estimate
performance on Eldorado. In each case, we assume all
memory operations in an inner loop are to global memory:
consequently, our estimates are conservative.

3.1 Sparse matrix multiply

Let C = A * B where A is a sparse n x m matrix. To

save space we store only the nonzeros of A in packed row
form, transforming A into a column vector of size nz
(number of nonzeros), and introducing two new vectors:
rows, the start of each row in A; and cols, the column index
of the nonzeros. The MTA-2 code is:

#pragma mta use 100 streams
#pragma mta assert no dependence
for (i = 0; i < n; i++) {
 int j;
 double sum = 0.0;
 for (j = rows[I]; j < rows[i+1]; j++)
 sum += A[j] * B[cols[j]];
C[i] = sum;
}

There are two points to note about the code. First, the code
is identical to what one would write for a sequential
implementation. A recurring theme in multithreaded
programming is that parallel code is no more complicated
than sequential code. Second, the code is devoid of
implementation details except for the two pragmas. The
“no dependence” pragma assures the compiler that the
memory spaces for A, B, and C are disjoint and do not
overlap. The “request 100 streams” pragma asks the
runtime system for 100 streams per processor to execute
the loop.

The CANAL report is:

 | #pragma mta use 100 streams
 | #pragma mta assert no dependence
 | for (i = 0; i < n; i++) {
 | int j;
3 P | double sum = 0.0;
4 P- | for (j = rows[i]; j < rows[i+1]; j++)
 | sum += A[j] * B[cols[j]];
3 P | C[i] = sum;
 | }

Parallel region 2 in SpMVM
 Multiple processor implementation
 Requesting at least 100 streams
Loop 3 in SpMVM at line 33 in region 2
 In parallel phase 1
 Dynamically scheduled
Loop 4 in SpMVM at line 34 in loop 3
 Loop summary: 3 memory operations,
 2 floating point operations, 3
 instructions, needs 30 streams for full
 utilization, pipelined

We learn from the report that the i loop runs parallel and
the j loop runs sequential. The inner loop consists of three
instructions that execute three memory operations and two
floating-point operations. The compiler chooses dynamic
scheduling and estimates that 30 streams are sufficient to
hide latencies. The scheduling decision is a good one since
the work per iteration varies with the number of nonzeros

ELDORADO 6 of 8

per row. The estimate of the number of streams is too low,
so the need for the second pragma.

Table 3 gives the performance of the code for n = m = 1M.
The number of nonzeros on each row is uniformly
distributed between 0 and 1000. For the particular
problem, nz = 499,902,410. On the MTA-2, the minimum
execution time for the code is 6.82 seconds---the product of
the number of instructions in the j loop (3), the number of
times the j loop executes (nz), and the cycle time of the
machine (220 MHz). Dividing minimum time by actual
time shows that the machine is 96% utilized, so latencies
are hidden. Since the innermost loop executes one memory
operation per cycle, performance on Eldorado is limited by
the network injection rate. Scalability degrades as the
injection rate decreases with increasing number of
processors.

Table 3. Sparse matrix-vector multiply

System T (sec.)

IBM Power4 1.7 GHz (1 P) 26.10

MTA-2 (1 P) 7.11

MTA-2 (2 P) 3.59

MTA-2 (4 P) 1.83

MTA-2 (8 P) 0.94

Eldorado (576 P) (estimated) 0.043

Eldorado (2112 P) (estimated) 0.016

Eldorado (8064 P) (estimated) 0.006

3.2 Linked list search

Given N linked-lists each of length N count the number

of list elements whose data field is equal to a particular
target value. This problem is representative of applications
that involve a lot of pointer chasing. Consider the
following straightforward solution:

 | int count_data(List **ListHeads,
 | int num_lists, int target) {
 | int i; int sum = 0;
 | for (i = 0; i < num_lists; i++) {
2 P | List *current = ListHeads[i];
3 PX | while (current) {
3 PX:$| if (current->data == target) sum++;
 ** reduction moved out of 1 loop
3 PX | current = current->link;
 | } }
 | return sum;
 | }

Loop 2 in count_data at line 10 in region 1
 In parallel phase 1
 Dynamically scheduled
Loop 3 in count_data at line 12 in loop 2
 Loop summary: 2 memory operations, 0
 floating point operations, 4 instructions,
 needs 68 streams for full utilization,
 pipelined, 1 instructions added to satisfy
 dependences

Cray’s MTA-2 compiler automatically parallelizes this
code as is, without any pragmas. The compiler introduces
a reduction to avoid hot-spot contention when incrementing
the sum variable.

From the Canal output, we estimate the code’s execution
time. The compiler reports 4 instructions in the inner loop.
Since the loop is executed N2 times, 4N2 instructions are
issued. If there are P processors each running at 220 MHz,
then we expect the time to be: (4N2)/(220,000,000 P)
seconds. In particular, for N = 5,000 we expect 0.45
seconds for P = 1 and .045 seconds for P = 10. If we
double N, we expect the time to go up by a factor of 4 to
1.8 and 0.18 seconds, respectively. The measured MTA-2
results are reported in Table 4, and agree with these
estimates. Eldorado results are predicted based on the
calculator mentioned previously. The much longer
execution times on cache-based systems, despite
significantly faster processors, show how ineffective these
systems are on codes that routinely miss cache.

ELDORADO 7 of 8

Table 4. Linked-list search

System Time (sec)
N = 5000

Time (sec)
N = 10,000

SunFire 880 MHz (1 P) 9.3 107.0

Intel Xeon 2.8GHz (1 P) 7.15 40.0

MTA-2 (1 P) 0.485 1.98

MTA-2 (2 P) 0.053 0.197

Eldorado (576P) (estimiated) 0.0014 0.0058

Eldorado (2112 P) (estimiated) 0.0005 0.0020

Eldorado (8064 P) (estimiated) 0.0002 0.0008

3.3 Random access

RandomAccess is one of the HPC Challenge

Benchmarks [5]. It is a variant of the famous GUPS
benchmark that repeatedly performs a commutative update
operator on data at randomly selected locations in a large
table. In this case, the operator is bit-wise XOR.
The MTA-2 code for RandomAccess is:

#define NEXTRND(x) (((x)<<1) ^ ((x)<0 ? 7 : 0))
 int i, j;
 int bigstep = 262144;
 int tablesize = 4294967296 /* 2^32 words */
 int nstrs = (4 * tablesize)/bigstep;
#pragma mta assert parallel
#pragma mta dynamic schedule
#pragma mta use 100 streams
 for (j = 0; j < nstrs; j++) {
 v = random_start(bigstep * j);
 for (i = 0; i < bigstep; i++) {
 v = NEXTRND(v);
 data = Table + (v & (tableSize-1));
 val = readfe(data);
 writeef(data, val^v);
 } }

The synchronized read and write operations, readfe and
writeef, assure the atomicity of the update. readfe returns
the value stored at the memory address when the full/empty
is one and sets the bit to zero. writeef stores the value at
the memory address when the full/empty is zero and sets
the bit to one. Although the HPC Challenge definition
allows for 1% error in the accumulated answer, the MTA-2
(and Eldorado) can compute 100% accurate values at no
cost. The synchronized read and write instructions are no
more expensive to issue than normal operations; however,
they may not return for many hundreds of cycles.
Regardless of when the operations return, the issuing
processor continues to execute instructions as long as there
are instructions ready to execute. So like all other
latencies, synchronization latencies are hidden with
parallelism.

The MTA-2 rates for RandomAccess far exceed all other
platforms (Table 5). The rate is a predictable consequence
of the code generated: five instructions for the inner loop
body, implying 220M / 5 = 44M updates per second per
processor. The presence of the random number generator
dilutes the non-local character of the benchmark and makes
it as much a test of floating point speed as of random
memory access. Moreover, the random number generator
generates a uniformly distributed stream of memory
accesses guaranteeing good load balance. This fact has
little consequence for the MTA-2 and Eldorado, but
improves performance on SMP clusters.

For Eldorado, we have 5 instructions and 2 memory
operations in the inner loop. Eldorado keeps pace with the
MTA-2 up to 256 processors; but for larger systems its
performance falls off with decreasing network bandwidth.
The fallout is less than the falloff in the network (last line
of Table 5) because the benchmark computes its random
numbers on-the-fly, decreasing the density of memory
operations.

Table 5. RandomAccess

System Giga updates per second

Cray X1 800 MHz (60 P) 0.0031

IBM Power4 1.7 GHz (256 P) 0.0055

MTA-2 (2 P) 0.041

MTA-2 (5 P) 0.204

MTA-2 (10 P) 0.405

Eldorado (576 P) (estimated) 17.32

Eldorado (2112 P) (estimated) 47.57

Eldorado (8064 P) (estimated) 121.0

4. Conclusions
This paper has introduced Eldorado, the third

generation mult ithreaded computer system built by Cray
Inc. While retaining the programming model and latency
tolerant capabilities of previous generations, the system
improves reliability and manufacturability and reduces
costs by borrowing parts from other commercial systems.
The system is essentially an XT3 with MT processors in
place of AMD Opteron processors.

Although the system does not provide the computation to
communication balance of earlier systems, its
multithreaded processor and support for fine-grain
synchronization can still hide most of the memory and
synchronization latency in codes that have a large number
of cache misses, use non-array data structures, or have
severe load imbalances. The critical bottleneck is the

ELDORADO 8 of 8

injection rate of memory operations into the network. We
may be able to lessen this bottleneck by enhancing the
compiler and runtime system to exploit local memory set
aside at boot time.

The use of multithreaded processors seems to be our best
hope of overcoming the increasing gap between processor
and memory speed. Multithreading will play a prominent
role in the design of Cascade, Cray’s HPCS system [4].
This system includes heavy-weight processors, very light-
weight processors embedded in the memory system, and
commodity processors. The light-weight processors will be
heavily multithreaded permitting the processors to tolerate
long latencies and execute fine-grain operations. It is likely
the heavy-weight processors will be multithreaded, but to a
lesser extent, in order to hide the latency of loading and
storing the large data sets on which they execute. As the
first heterogeneous system consisting of multithreaded and
commodity processors, Eldorado will serve as an important
test platform for Cascade. Most importantly, it will
establish multithreading as a serious alternative to
distributed memory, message passing programming.

References

[1] Cray Red Storm Project [Online].
http://www.cray.com/products/programs/red_storm/.
[2] Cray MTA-2 System [Online].
http://www.cray.com/products/programs/mta_2/.
[3] Cray XT3 System [Online].
http://www.cray.com/products/xt3/.
[4] Cray Cascade Project [Online].
http://www.cray.com/products/programs/cascade/.
[5] HPC Challenge Benchmarks [Outline].
http://icl.cs.utk.edu/hpcc/.
[6] Alverson, A, et. al., “The Tera computer system.” in
Proceedings of the 4 th International Conference on
Supercomputing, ACM Press, 1990.
[7] Anderson, W., et. al. “Early experience with scientific
programs on the Cray MTA-2.” in Proceedings of SC ’03,
ACM Press, 2003.
[8] Bokhari, S.H. and J.R. Sauer, “Sequence alignment on
the MTA-2.” Concurrency and Computation: Practice and
Experience, 16, pp. 823-839, 2004.
[9] Pfeiffer, W., A. Snavelly, and L. Carter, Evaluation of a
multithreaded architecture on defense applications, SDSC
Technical Report, 1999.

Contact Information

The authors can be contacted as follows:

John Feo, feo@cray.com; David Harper, dth@cray.com;
Simon Kahan, skahan@cray.com; Petr Konecny,
pekon@cray.com.

