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ABSTRACT: This paper introduces Eldorado, a third generation multithreaded 
architecture.  Previous Cray multithreaded systems were plagued by unreliable hardware 
and high costs.  Eldorado corrects these problems by using many parts built for other 
commercial systems.  Its compute processor is a 500 MHZ multithreaded processor 
architecturally similar to the MTA-2 processor; but its interconnection network, I/O 
subsystem, and service processors are borrowed from other Cray systems.  Eldorado 
retains the programming model, operating system, and tools of the MTA-2.  It has the same 
capability as the MTA-2 to tolerate latencies and achieve high performance on programs 
that run poorly on SMP clusters.  We present several programming examples to illustrate 
performance and scalability in the presence of high memory and synchronization latencies. 
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1. Introduction 
Eldorado is the third generation multithreaded 

architecture built by Cray Inc.  The two previous 
generations, the MTA-1 [6] and MTA-2 systems [2], were 
fully custom systems that were expensive to manufacture 
and support.  Eldorado makes use of many commodity 
parts and subsystems built for other commercial systems, 
thereby, significantly lowering its cost while maintaining 
the high performance, scalability, and simple programming 
model of the two previous generations. 

 
The MTA-1 manufactured by Tera Computer Company 
was a custom system consisting of twenty-four GaAs 
ASICs, a 52-layer network board, and tens of thousands of 
connections.  The system was large, complex, and power 
hungry.  The ASICs were difficult to manufacture and 
unreliable.  While the system did support some evaluation 
work [9], neither the hardware nor the operating system 
reached a state capable of supporting production work. 

 
The MTA-2 developed by Cray Inc is an entirely CMOS 
implementation of the MTA-1.  The CMOS design greatly 
simplifies all aspects of the machine making it both 
manufacturable and reliable.  In 2002, two MTA-2 systems 
were delivered to customers.  These machines remain in 
use today supporting research and production work [7,8].  

Unfortunately, the high cost of the MTA -2’s custom design 
made it difficult to sell. 

 
Eldorado reduces system costs by leveraging the 
development of the Red Storm system [1] Cray has built 
for Sandia National Laboratory and has brought to market 
as the XT3 [3].  The XT3 is a large-scale distributed 
memory system supporting the MPI programming model.  
In a nutshell, Eldorado is an XT3 with MTA processors in 
place of AMD Opteron processors on the compute nodes: 
this replacement of processors transforms the distributed 
memory XT3 into a shared-memory Eldorado. 

 
The components of early computer systems ran at the same 
speed.  Processors ran at about the same speed as the 
memory systems from which they read and wrote data.  
Unfortunately, over the past two decades processor speeds 
have increased several orders of magnitude while memory 
speeds have increased only slightly.  Processors are now 
starved for data.  The conventional solution is to build 
hierarchical memory systems with two or three levels of 
cache, local memory, and re mote memories.  Only the first 
level cache is able to keep up with the processor.  Any 
memory reference that misses that cache stalls the 
processor.  The problem is exacerbated in large SMP 
clusters where more than 99% of me mory is remote and 
messages most be passed between processors to move data. 
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Hierarchical memory systems with fast processors and slow 
networks present an almost insurmountable programming 
problem to users.  To get even minimal performance and 
scalability, programmers must write code that reads and 
writes memory in cache order, reuses each data word many 
times, minimizes communication to large block transfers, 
minimizes synchronization operations, uses static data 
structures, and is load balanced.  These constraints shrink 
the space of scalable algorithms and increase the size of 
programs.  The rich literature on parallel algorithms is 
worthless.  Many algorithmic techniques learned in 
graduate school, such as recursion, linear progra mming, 
branch-and-bound, and PRAMs, cannot be implemented 
efficiently on conventional systems. 

 
The MTA-1 and the MTA-2 established multithreading as 
an efficient technique to hide system latencies [7,8,9].  By 
maintaining multiple threads of computation per processor 
and global shared memory, MTA systems use parallelism 
to tolerate latencies and solve the programming problem.  
When the executing thread must wait for a memory 
operation to complete or a synchronization event to occur, 
the processor switches to another thread and executes its 
next instruction.  As long as at least one thread has a ready 
instruction, the processor remains busy.  The system’s 
shared memory lets any processor read and write any word 
and, most importantly, lets any processor execute any 
thread.  Thus, workloads can be dynamically balanced 
without penalty.  The programming problem reduces to 
writing code with sufficient parallelism to meet the “one 
ready instruction per cycle per processor” requirement.  All 
the constraints listed in the previous paragraph are no 
longer important.  Any algorithm with a high degree of 
parallelism will run well and scale on an MTA.  To the 
degree that the XT3 network scales, the same is true for 
Eldorado. 
 
In the next section, we present Eldorado and carefully point 
out the tradeoffs we made by adopting the XT3 
infrastructure.  In the third section, we discuss several 
programming problems suitable for Eldorado.  We give 
source code and performance numbers for the MTA-2, and 
predict performance on Eldorado.  We conclude with a 
roadmap for multithreaded systems. 

2. Eldorado 
Eldorado is a shared memory system that efficiently 

exploits large-scale fine-grain parallelism through 
architectural-level synchronization and scheduling.  The 
Eldorado hardware infrastructure is based on the Cray Red 
Storm project [1], while the processor and system software 
are derived from the Cray MTA-2 Project [2].  As 
illustrated in Figure 1, an Eldorado node consists of 
compute and service modules.  A compute module has four 
Cray MT processors with commodity DIMM memory, 

powered by Cray’s MTX operating system.  A service 
module consists of two AMD Opteron processors, four 
PCI-X interfaces, and commodity DIMM me mory.  The 
service nodes run the LINUX operating system.  Both types 
of modules have 4 network interface chips.  Table 1 
compares Eldorado to the MTA-2. 

MTX Linux

Compute Service & IO

Service Partition
• Linux OS
• Specialized Linux nodes

Login PEs 

IO Server PEs 
Network Server PEs  
FS Metadata Server PEs 
Database Server PEs 

Compute Partition
MTX (BSD)

RAID Controllers

Network

PCI-X
10 GigE

Fiber Channel
PCI-X

MTX Linux

Compute Service & IO

Service Partition
• Linux OS
• Specialized Linux nodes

Login PEs 

IO Server PEs 
Network Server PEs  
FS Metadata Server PEs 
Database Server PEs 

Compute Partition
MTX (BSD)

RAID Controllers

Network

PCI-X
10 GigE

Fiber Channel
PCI-X

RAID Controllers

Network

PCI-X
10 GigE

Fiber Channel
PCI-X

 
Figure 1. Eldorado system architecture  

Table 1. Comparison of MTA-2 and Eldorado 

 MTA-2 Eldorado 
CPU speed 220 MHz 500 MHz 
Maximum system 
size 256 processors 8192 processors 

Maximum memory 
capacity 

1 TB (4 GB/P) 128 TB (16 GB/P) 

TLB reach 128 GB 128 TB 
Network topology  Modified Cayley  3D Torus 
Network bisection 
bandwidth 

3.5 GB/s * P 15.3 GB/s * P2/3 

Network injection 
rate 

220 M wrds/P  Variable 
(see Table 2) 

 

2.1 MT processors 
 

The architecture of an MT (multithreaded) processor is 
shown in Figure 2.  Each processor has 128 hardware 
streams and a 64 KByte, 4-way associated instruction cache 
shared by all 128 streams.  A hardware stream includes 32 
general-purpose registers, a target register, and a status 
word that includes a program counter.  Each stream holds 
the context of one thread.  The processor executes an 
instruction from a different stream on every cycle in a fair 
manner.  Only if no stream has an instruction ready to 
execute does the processor stall.  There are three pipelined 
functional units, M, A, and C.  Each instruction word may 
include operations that exercise all units.  The M unit can 
initiate a read or write operation per cycle, the A unit can 
initiate a fused multiply-add, and the C unit can initiate 
either a control or an add operation.  The cycle speed is 500 
MHZ, so the processors have a 1.5 GFLOP/s peak 
performance (up from 660 MFLOP/s on the MTA-2). 



ELDORADO 3 of 8 
 

 
Figure 2. MT processor block diagram 

2.2 Service processors 
 
The hardware implementing Eldorado’s service nodes 

is identical to the service node hardware on the XT3.  
There are two Opteron sockets on the module; each can be 
populated with either single or multi-core processors.  Each 
socket connects with four commodity DIMM sockets, with 
a network interface (Seastar2), and with a PCI-X interface.  
The reuse of the existing hardware design allows Eldorado 
to also reuse much of the software stack running on the 
service nodes.  This stack includes a Linux kernel, job 
launch and batch facilities, and I/O software including the 
high-performance parallel Lustre file system. 

 

2.3 Memory system 
 
The MT processor memory system is a global, shared 

address space accessible by all MT processors.  There are 
as many me mory modules as there are processors.  Each 
module can be configured to be from 4 to 16 GBytes in 
size.  All memory words are 8 bytes wide and the memory 
is byte-addressable.  Associated with every word are 
several additional bits: a full-and-empty bit, a forwarding 
bit, and two trap bits.  Memory is implemented using 
commodity DDR components and is protected against 
single bit failures.  Each module has a single access port 
and is 128 bits wide.  Service processors can access MT 
processor memory only by message passing.  The Seastar2 
ASIC contains a DMA engine that performs all transfers 
between MT processor memory and Opteron memory. 

 
Each MT processor memory module has a 128 KByte, 4-
way associated data cache.  A line of 8 words (64 bytes) is 
transferred to the cache whenever a word of the line is 
accessed.  Only the accessed word moves beyond the 
buffer, so network bandwidth is not wasted moving words 

not requested by a processor.  This buffer is logically part 
of the memory system and not the processor; it is not a data 
cache in the conventional sense; there are no cache 
coherence issues.  The buffer simply retains recently 
accessed words and is used to reduce the bandwidth 
required from the DRAM pins.  To adapt to the commodity 
memory technology used in Eldorado, logical addresses are 
hashed to physical addresses in 8 word blocks rather than 
the word granularity hashing that was used in the custom 
MTA-2 memory system. 

 
At boot time, the system can divide the MT processor 
memory into global and local memory segments.  While 
the user will see only global shared memory, we plan to 
enhance the compiler and runtime system to exploit any 
local me mory set aside at boot time.  Certainly, it makes 
sense to spill registers, reserve stack space, and allocate 
thread private data in local memory rather than disperse 
them around the system as is done in the MTA-2. 

 

2.4 Interconnection network 
 

The network topology is a 3D torus.  The original Red 
Storm network design was optimized to support message 
passing and although the raw performance of the network is 
in excess of 37 Gb/s per link per direction, Eldorado 
communication suffers some inefficiency due to 
suboptimal packet formats.  It was not within the scope of 
the Eldorado project to re -implement the network to 
mitigate this problem.  Despite this shortcoming, the 
network bandwidth is reasonably well matched to other 
paths in the system.  Communication in the Eldorado 
network is protected from error on a per link basis.  The 
network also supports all classes of Eldorado operations 
including the atomic fetch-and add operations that are part 
of the MTA instruction set. 

 

2.5 Speeds and feeds 
 
Figure 3 shows some of the important performance 

metrics of an Eldorado node.  As mentioned previously, the 
execution pipes are capable of a 1.5 GF peak performance.  
Memory performance is more complex to analyze.  
Previous experience with the MTA-2 hardware and the 
class of algorithms that have been run successfully on the 
architecture suggests a useful memory performance metric 
is the sustainable rate at which uniformly distributed 
memory operations can be injected into the system. Figure 
3 shows the four points at which this metric is determined 
for a system.  First, the DDR memory interface supports 
100 million memory operations per second (assuming 
DDR3200 technology).  Second, the interface to the 
memory cache supports 500 million operations per second.  
Third, the HyperTransport interface to the Seastar2 
network interface supports 140 million operations per 
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second.  The fourth interface is the interface to the system 
network. 
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Figure 3. Speeds and feeds 

The network interface is capable of supporting an issue rate 
of approximately 90 million memory operations per 
second.  This interface represents the performance-limiting 
factor when performance is defined as described above.  
However, because the most interesting model of operation 
assumes uniformly distributed addressing, a more 
important performance characteristic of the network is its 
bisection bandwidth.  The bisection bandwidth of a 3D 
torus scales with P2/3, implying that the sustainable memory 
issue rate in the system will not scale linearly with system 
size.  This condition represents a significant departure from 
the MTA-2 implementation that provided bisection 
bandwidth that scaled linearly with the number of 
processors in the system.  Table 2 shows the impact of the 
sublinear bisection scaling at several system sizes.  It is 
also interesting to note the penalty paid by having torus 
dimensions that are suboptimal for a given system size, an 
artifact of real world packaging issues.  Despite these 
shortcomings, the larger system sizes offer a considerable 
capability to move random words of data. 

 

2.6 I/O and file system 
 
One deficiency of both the MTA-1 and MTA-2 

systems is slow performance on serial scalar code.  
Consequently, OS code and in particular file system code 
performs poorly.  Although the Eldorado processor clock 
frequency is twice that of the MTA-2 the clock is still 4 to 
8 times slower than the clock speed of mainstream 
microprocessors.  This performance differential makes it 
prudent for Eldorado to offload I/O operations to the 
service nodes, leveraging several technologies: the 
significant I/O software work done for Red Storm, the high 
serial code performance of commodity microprocessors, 
and the continuing improvement of I/O devices and drivers 
in commodity environments (Linux/PCI-X).  I/O related 
system calls are packaged into messages and sent to one or 

more service nodes.  Messages are decoded and handed to 
Linux and the file systems hosted on the service nodes . 

Table 2. Estimated Eldorado scaling 

Topology  6x12x8 11x12x8 11x12x16 22x12x16 14x24x24 

Processors 572 1056 2112 4224 8064 

Memory 
size 

9 TB 16.5  33 66 126  

Sustainable 
remote  
reference 
rate (per 
processor) 

60MW/s 60 45 33 30 

Sustainable 
remote  
reference 
rate 
(aggregate) 

34.6GW/s 63.4 95 139.4  241.9  

Relative 
size 1.0 1.8 3.7 7.3 14.0 

Relative 
performance 1.0 1.8 2.8 4.0 7.0 

 

2.7 Power and cooling 
 
Eldorado power and cooling is directly leveraged from 

XT3. Power is delivered as 48 VDC to the edge of the 
board.  Redundant voltage regulator modules (VRMs) 
convert the 48 VDC to 1.8 VDC, 2.5 VDC, and 3.3 VDC.  
An embedded control unit monitors the output of each 
VRM.  The control unit is capable of handling exceptional 
conditions by powering down the module and at all times 
communicates status to a system console. 
 
Cooling is accomplished with chilled air and heat sinks 
attached to the processor and network interface ASICs.  Air 
is driven vertically through the cabinet (24 modules stacked 
3 high, 8 wide) using a single fan located in the base of the 
cabinet.  The cooling problem for Eldorado (given the 
existence of XT3) was not a particular challenge because 
the MT processor consumes about 50% of the power 
required by the Opteron based XT3 design. 

3. Program Examples 

Multithreaded architectures present a unique 
programming environment to the user.  Since parallelism is 
the only criterion for good utilization, the programmer’s 
primary interest is to maximize parallelism.  If sufficient 
parallelism exists, processors will always have an 
instruction to execute, and execution time equals the 
product of the number of instructions executed and the 
machine’s cycle time.  As with the MTA-2, Eldorado will 
be most cost-effective on codes that run poorly on SMP 
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clusters.  Such codes have one or more of the following 
features: larger number of cache misses; severe load 
imbalances; sparse, dynamic, or adaptive data structures; 
high communication to computation ratio; or fine-grain 
synchronization. 

 
In addition to eliminating many of the programming issues 
that make parallel programming so difficult on SMP 
clusters, Eldorado makes the compiler and runtime system 
responsible for implementing parallelism.  It is the 
compiler, and not the user, that inserts instructions to 
reserve streams, divide loop iterations among the streams 
assigned, allocate stack space for each stream, pass global 
values, and recover all but one stream when the parallel 
work completes.  The compiler recognizes most reductions 
and linear recurrences, and automatically generates codes 
to implement the operations in parallel and without race 
conditions.  Where the compiler is unable to recognize 
parallelism automatically, the programmer may provide 
guidance via a wide variety of pragmas; thus, codes written 
in OpenMP and other shared-memory paradigms port 
readily with the caveat that greater parallelism is required 
than on other systems to achieve comparable performance. 

 
Eldorado will run the MTA-2 operating system, a 
multithreaded Unix.  It will inherit the compilers, libraries, 
programming tools, and runtime system developed for the 
MTA-2.  One of the tools is CANAL, a static compiler 
analysis tool.  It generates a report stating how each loop is 
compiled.  For innermost loops it gives the number of 
instructions, memory operations, floating point operations, 
the compiler’s estimate of the number of streams required 
to hide latency, and other statistics.  If latencies are hidden, 
then a loop’s execution time is the product of the trip count, 
number of instructions, and the machine’s cycle time.  Any 
difference in this product and the actual execution time 
implies that all latencies are not hidden.  The user can then 
increase the number of streams or look for ways to increase 
the loop’s parallelism. 

 
On Eldorado, the analysis is more complicated because the 
network’s bandwidth does not match the processor’s 
appetite for data and it does not scale with the number of 
processors.  Moreover, if the compiler and runtime system 
use local memory for register spills, stack space, and thread 
private data, then not all memory operations will go out 
over the network.  We have developed a calculator to 
predict Eldorado performance.  Its inputs are: trip count, 
number of instructions, number of memory operations to 
global me mory, number of memory operations to local 
memory, cycle time, and system configuration.  In the 
subsections that follow, we use the calculator to estimate 
performance on Eldorado.  In each case, we assume all 
memory operations in an inner loop are to global memory: 
consequently, our estimates are conservative. 

 

3.1 Sparse matrix multiply 
 
Let C  = A * B where A is a sparse n x m matrix.  To 

save space we store only the nonzeros of A in packed row 
form, transforming A into a column vector of size nz 
(number of nonzeros), and introducing two new vectors: 
rows, the start of each row in A; and cols, the column index 
of the nonzeros.  The MTA-2 code is: 

 
#pragma mta use 100 streams 
#pragma mta assert no dependence 
for (i = 0; i < n; i++) { 
  int j; 
  double sum = 0.0; 
  for (j = rows[I]; j < rows[i+1]; j++) 
    sum += A[j] * B[cols[j]]; 
C[i] = sum; 
} 

There are two points to note about the code. First, the code 
is identical to what one would write for a sequential 
implementation.  A recurring theme in multithreaded 
programming is that parallel code is no more complicated 
than sequential code.  Second, the code is devoid of 
implementation details except for the two pragmas.  The 
“no dependence” pragma assures the compiler that the 
memory spaces for A, B, and C are disjoint and do not 
overlap.  The “request 100 streams” pragma asks the 
runtime system for 100 streams per processor to execute 
the loop. 
 

The CANAL report is: 

      | #pragma mta use 100 streams 
      | #pragma mta assert no dependence 
      | for (i = 0; i < n; i++) { 
      |     int j; 
3 P   |     double sum = 0.0; 
4 P-  |     for (j = rows[i]; j < rows[i+1]; j++) 
      |         sum += A[j] * B[cols[j]]; 
3 P   |     C[i] = sum; 
      | } 
 
Parallel region   2 in SpMVM 
       Multiple processor implementation 
       Requesting at least 100 streams 
Loop   3 in SpMVM at line 33 in region 2 
       In parallel phase 1 
       Dynamically scheduled 
Loop   4 in SpMVM at line 34 in loop 3 
       Loop summary: 3 memory operations, 
       2 floating point operations, 3 
       instructions, needs 30 streams for full 
       utilization, pipelined 

We learn from the report that the i loop runs parallel and 
the j loop runs sequential.  The inner loop consists of three 
instructions that execute three memory operations and two 
floating-point operations.  The compiler chooses dynamic 
scheduling and estimates that 30 streams are sufficient to 
hide latencies.  The scheduling decision is a good one since 
the work per iteration varies with the number of nonzeros 
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per row.  The estimate of the number of streams is too low, 
so the need for the second pragma. 
 
Table 3 gives the performance of the code for n = m = 1M.  
The number of nonzeros on each row is uniformly 
distributed between 0 and 1000.  For the particular 
problem, nz = 499,902,410.  On the MTA-2, the minimum 
execution time for the code is 6.82 seconds---the product of 
the number of instructions in the j loop (3), the number of 
times the j loop executes (nz), and the cycle time of the 
machine (220 MHz).  Dividing minimum time by actual 
time shows that the machine is 96% utilized, so latencies 
are hidden.  Since the innermost loop executes one memory 
operation per cycle, performance on Eldorado is limited by 
the network injection rate. Scalability degrades as the 
injection rate decreases with increasing number of 
processors. 

Table 3. Sparse matrix-vector multiply 

System T (sec.) 

IBM Power4 1.7 GHz (1 P) 26.10 

MTA-2  (1 P) 7.11 

MTA-2  (2 P) 3.59 

MTA-2 (4 P) 1.83 

MTA-2 (8 P) 0.94 

Eldorado (576 P) (estimated) 0.043 

Eldorado (2112 P) (estimated) 0.016 

Eldorado (8064 P) (estimated) 0.006 

 

3.2 Linked list search 
 
Given N linked-lists each of length N count the number 

of list elements whose data field is equal to a particular 
target value.  This problem is representative of applications 
that involve a lot of pointer chasing.  Consider the 
following straightforward solution: 

 

      | int count_data(List **ListHeads, 
      |            int num_lists, int target) { 
      |   int i; int sum = 0; 
      |   for (i = 0; i < num_lists; i++) { 
2 P   |     List *current = ListHeads[i]; 
3 PX  |     while (current) { 
3 PX:$|       if (current->data == target) sum++; 
 ** reduction moved out of 1 loop 
3 PX  |       current = current->link; 
      |   } } 
      |   return sum; 
      | } 
 
Loop   2 in count_data at line 10 in region 1 
       In parallel phase 1 
       Dynamically scheduled 
Loop   3 in count_data at line 12 in loop 2 
       Loop summary: 2 memory operations, 0 
       floating point operations, 4 instructions, 
       needs 68 streams for full utilization, 
       pipelined, 1 instructions added to satisfy 
       dependences 

Cray’s MTA-2 compiler automatically parallelizes this 
code as is, without any pragmas.  The compiler introduces 
a reduction to avoid hot-spot contention when incrementing 
the sum variable. 

 
From the Canal output, we estimate the code’s execution 
time.  The compiler reports 4 instructions in the inner loop.  
Since the loop is executed N2 times, 4N2 instructions are 
issued.  If there are P processors each running at 220 MHz, 
then we expect the time to be:  (4N2)/(220,000,000 P) 
seconds.  In particular, for N = 5,000 we expect 0.45 
seconds for P = 1 and .045 seconds for P = 10.  If we 
double N, we expect the time to go up by a factor of 4 to 
1.8 and 0.18 seconds, respectively.  The measured MTA-2 
results are reported in Table 4, and agree with these 
estimates.  Eldorado results are predicted based on the 
calculator mentioned previously.  The much longer 
execution times on cache-based systems, despite 
significantly faster processors, show how ineffective these 
systems are on codes that routinely miss cache. 
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Table 4. Linked-list search 

System Time (sec) 
N = 5000 

Time (sec) 
N = 10,000 

SunFire 880 MHz (1 P) 9.3 107.0 

Intel Xeon 2.8GHz (1 P) 7.15 40.0 

MTA-2 (1 P) 0.485 1.98 

MTA-2 (2 P) 0.053 0.197 

Eldorado (576P) (estimiated) 0.0014 0.0058 

Eldorado (2112  P) (estimiated) 0.0005 0.0020 

Eldorado (8064 P) (estimiated) 0.0002 0.0008 

 

3.3 Random access 
 
RandomAccess is one of the HPC Challenge 

Benchmarks [5].  It is a variant of the famous GUPS 
benchmark that repeatedly performs a commutative update 
operator on data at randomly selected locations in a large 
table.  In this case, the operator is bit-wise XOR. 
The MTA-2 code for RandomAccess is: 

#define NEXTRND(x) (((x)<<1) ^ ((x)<0 ? 7 : 0)) 
  int i, j; 
  int bigstep = 262144; 
  int tablesize = 4294967296  /* 2^32 words */ 
  int nstrs = (4 * tablesize)/bigstep; 
#pragma mta assert parallel 
#pragma mta dynamic schedule 
#pragma mta use 100 streams 
  for (j = 0; j < nstrs; j++) { 
      v = random_start(bigstep * j); 
      for (i = 0; i < bigstep; i++) { 
          v    = NEXTRND(v); 
          data = Table + (v & (tableSize-1)); 
          val  = readfe(data); 
          writeef(data, val^v); 
  }   } 

The synchronized read and write operations, readfe and 
writeef, assure the atomicity of the update.  readfe returns 
the value stored at the memory address when the full/empty 
is one and sets the bit to zero.  writeef stores the value at 
the memory address when the full/empty is zero and sets 
the bit to one.  Although the HPC Challenge definition 
allows for 1% error in the accumulated answer, the MTA-2 
(and Eldorado) can compute 100% accurate values at no 
cost.    The synchronized read and write instructions are no 
more expensive to issue than normal operations; however, 
they may not return for many hundreds of cycles.  
Regardless of when the operations return, the issuing 
processor continues to execute instructions as long as there 
are instructions ready to execute.  So like all other 
latencies, synchronization latencies are hidden with 
parallelism. 

 

The MTA-2 rates for RandomAccess far exceed all other 
platforms (Table 5).  The rate is a predictable consequence 
of the code generated: five instructions for the inner loop 
body, implying 220M / 5 = 44M updates per second per 
processor.  The presence of the random number generator 
dilutes the non-local character of the benchmark and makes 
it as much a test of floating point speed as of random 
memory access.  Moreover, the random number generator 
generates a uniformly distributed stream of memory 
accesses guaranteeing good load balance.  This fact has 
little consequence for the MTA-2 and Eldorado, but 
improves performance on SMP clusters.  

 
For Eldorado, we have 5 instructions and 2 memory 
operations in the inner loop.  Eldorado keeps pace with the 
MTA-2 up to 256 processors; but for larger systems its 
performance falls off with decreasing network bandwidth.  
The fallout is less than the falloff in the network (last line 
of Table 5) because the benchmark computes its random 
numbers on-the-fly, decreasing the density of memory 
operations. 

Table 5. RandomAccess 

System Giga updates per second 

Cray X1 800 MHz (60 P) 0.0031 

IBM Power4 1.7 GHz (256 P) 0.0055 

MTA-2  (2 P) 0.041 

MTA-2 (5 P) 0.204 

MTA-2 (10 P) 0.405 

Eldorado (576 P) (estimated) 17.32 

Eldorado (2112 P) (estimated) 47.57 

Eldorado (8064 P) (estimated) 121.0 

4. Conclusions  
This paper has introduced Eldorado, the third 

generation mult ithreaded computer system built by Cray 
Inc.  While retaining the programming model and latency 
tolerant capabilities of previous generations, the system 
improves reliability and manufacturability and reduces 
costs by borrowing parts from other commercial systems.  
The system is essentially an XT3 with MT processors in 
place of AMD Opteron processors. 

 
Although the system does not provide the computation to 
communication balance of earlier systems, its 
multithreaded processor and support for fine-grain 
synchronization can still hide most of the memory and 
synchronization latency in codes that have a large number 
of cache misses, use non-array data structures, or have 
severe load imbalances.  The critical bottleneck is the 
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injection rate of memory operations into the network.  We 
may be able to lessen this bottleneck by enhancing the 
compiler and runtime system to exploit local memory set 
aside at boot time. 

 
The use of multithreaded processors seems to be our best 
hope of overcoming the increasing gap between processor 
and memory speed.  Multithreading will play a prominent 
role in the design of Cascade, Cray’s HPCS system [4].  
This system includes heavy-weight processors, very light-
weight processors embedded in the memory system, and 
commodity processors.  The light-weight processors will be 
heavily multithreaded permitting the processors to tolerate 
long latencies and execute fine-grain operations.  It is likely 
the heavy-weight processors will be multithreaded, but to a 
lesser extent, in order to hide the latency of loading and 
storing the large data sets on which they execute.  As the 
first heterogeneous system consisting of multithreaded and 
commodity processors, Eldorado will serve as an important 
test platform for Cascade.  Most importantly, it will 
establish multithreading as a serious alternative to 
distributed memory, message passing programming. 
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