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Outline

• This talk is introductory
• Please read the paper, contact authors, for details

• High-level contextual motivation
• Parallel programming is too hard

• Cray multithreading
• Cray has been evolving a solution

• Eldorado
• Cray’s first production multithreaded computer
• Narrowly focused with unmatched potency

• Roadmap
• Future systems carry multithreading forward



~1970’s Generic Micro-computer

CPU Memory

Memory keeps pace with CPU.

Instructions



~1970’s Generic Micro-computer

CPU Memory

Memory keeps pace with CPU.Memory keeps pace with CPU.

EverythingEverything was in Balance…

Instructions



…but balance was short-lived:
by year 2000,

• Processors had gotten much faster:
over 3000x.

• Memories hadn’t: about 20x faster while
1,000,000x larger.

• Memory cannot keep up with processing.

Meanwhile, a band-aid solution evolved, groping for
balance as it slipped away…



Simplified Cache-based Computer

CPU Memory

When you’re hot, you’re hot…

Cache
Instructions



Simplified Cache-based Computer

CPU Memory

…and when you’re not,
you’re sucking through a straw

Cache
Instructions

?



20th Century Parallel Computer

CPU

Memory

Avoid the straws and there are no flaws.
(And good luck to you.)

Cache

CPU Cache

CPU Cache



Programming 101:
Rules for Performance Programming

• Avoid modifying shared data

• Access data in address order

• Avoid indirection, linked data-structures

• Partition into independent computations

• Avoid synchronization

• Place data near processor doing computation

• Avoid conditional branching

• Do not expect predictable performance!







The space of feasible scalable solutions…

…is withering.



Programmers boxed-in by performance
constraints…

Computer science offers abundance of
algorithmic methods;
conventional computing technology renders
many of them useless.



Cray Multithreading serves to open the box.



load, store,
int_fetch_add

+ - * /, etc.

Arithmetic
Pipeline

With enough active streams, an instruction may be
executed at every clock cycle, thus masking
latency to distant memory…
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Cray MTA System

CPU

MemoryCPU

CPU

Network: conceptually, a pipeline
of memory references;

average latency is about 250 cycles
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Each stream may have up to 8 memory
references outstanding in the network;
each processor may have up to 1024.

Large shared memory… no data
caches…  simple programming model



MTA Basic Features
• Flat shared memory

• Virtual addresses hashed per word to physical locations
• No data placement concerns

• Lightweight synchronization
• int_fetch_add operation…

iglobal = iglobal + 3 requires one mem op
• Full-bit on every location …

• Producer-consumer semantics: two mem ops
A[I] = A[I] + 0.5 requires two mem ops

• Thread-centric, not processor-centric, programming
• Programmer expresses parallelism;
• Compiler and runtime manage it

• Parallelizing compiler for C, C++, Fortran
• Nested parallelism supported to any depth
• Recursive parallelism supported via future construct



Programming 101:
Rules for Performance Programming

• Avoid modifying shared data

• Access data in address order

• Avoid indirection, linked data-structures

• Partition into independent computations

• Avoid synchronization

• Place data near processor doing computation

• Avoid conditional branching

• Do not expect predictable performance!

One Rule:  Be parallel or die!
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Linked Data Structures
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Linked List:

0

data = 37

llink    rlink 

Head

data = 50

llink    rlink 

data = 24

llink    rlink 

Binary Tree:

C, C++,
Objects, …



A Basic Linked List Benchmark

• “Count the number of instances of some target
value found in N randomly constructed lists of
length N.”

• Representative of codes that do pointer chasing.

• Simple enough to analyze.



Linked-List Kernel

struct List {
  List *link;
  int data;
};
int count_data(List **ListHeads,
               int num_lists, int target) {
  int i; int sum = 0;
  for (i = 0; i < num_lists; i++) {
    List *current = ListHeads[i];
    while (current) {
      if (current->data == target) sum++;
      current = current->link;
    }
  }
  return sum;
}



           | int count_data(List ** ListHeads, 
           |                int num_lists, int target) {
           |   int i; int sum = 0;
           |   for (i = 0; i < num_lists; i++) {
    2 P    |     List *current = ListHeads[i];
    3 PX   |     while (current) {
    2 P    +
    3 PX:$ |       if (current->data == target) sum++;
** reduction moved out of 1 loop
    3 PX   |       current = current->link;
           |     }
           |   }
           |   return sum;
           | }

Canal Output



Canal remarks

Loop   2 in count_data at line 10 in region 1
       In parallel phase 1
       Dynamically scheduled

Loop   3 in count_data at line 12 in loop 2
       Loop summary: 2 memory operations,
                      0 floating point operations

4 instructions, needs 68 streams for full utilization
pipelined

       1 instructions added to satisfy dependences



Performance Prediction

• Canal claims 4 instructions per inner loop body.

• MTA-2 peak is 220M instructions per processor
per second.

• Searching N lists of N items using P processors
=> (4*N*N inst’s)/(P*220M inst’s/sec)
  = (N*N/55M sec) / P

• N = 5000   => (25/55 sec)/P = ~.45 sec /P
N = 10000 => ~1.8 sec /P



Performance of Linked-List Kernel
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Cray MTA-2/10

Cray MTA-2/1 220MHz, 40 GB

Intel Xeon 2.8GHz (32bit), 4 GB

SunFire 880MHz, 32GB

System

• N is # of lists and length of each list.

• MTA-2 performance is order of magnitude better per processor and scales
predictably both with processors and problem size.



Sweet-spot comes at a price:
• Only 1 Cray MTA-1 was ever sold (~1995).
• Only 2 Cray MTA-2’s were sold (~2002).

• Largest was 40 processors, 160GB
• Price-performance for dense linear algebra?

• 220 MHz. => 660 MFlop/s for $125,000
• About 250:1…

• Single threaded execution is ~3-5 Mips.
• No current commercial applications.

High price relative to general purpose performance
meant volume was too limited to justify investment in
software.



Eldorado: MTA-3



Overview
• Eldorado is a peak in the

North Cascades.

• Also, Cray project name for the
MTA-3 with goals to:

• Reduce cost

• Increase scale

• Minimize development risk

• Preserve the good

• Eldorado strategy:
• Hardware infrastructure

reuses Red Storm, XT3.

• Processor, programming
model and software almost
identical to MTA-2.



• Red Storm consists of over 10,000 AMD Opteron™ processors
connected by an innovative high speed, high bandwidth 3D mesh
interconnect designed by Cray (Seastar).

• Cray is responsible for the design, development, and delivery of the
Red Storm system to support the Department of Energy's Nuclear
stockpile stewardship program for advanced 3D modeling and
simulation.

• Red Storm uses a distributed memory programming model (MPI).

Red Storm



4 DIMM Slots4 DIMM Slots

CRAY
Seastar™

CRAY
Seastar™

CRAY
Seastar™

CRAY
Seastar™

L0 RAS ComputerL0 RAS Computer

Redundant VRMsRedundant VRMs

Red Storm Compute Board

Just a few chips away…



4 DIMM Slots4 DIMM Slots

CRAY
Seastar2™

CRAY
Seastar2™

CRAY
Seastar2™

CRAY
Seastar2™

L0 RAS ComputerL0 RAS Computer

Redundant VRMsRedundant VRMs

Eldorado Compute Board (4 processors, 16-64GB)

…is an MTA!



MTA-2 Module (1 processor; 4GB)

MT CPU

Memory Controller

Network Interface

Instruction Cache



Red Storm Cabinet

Much simpler
cooling system,
too!



MTX Linux

Compute   Service & IO

Service Partition
• Linux OS
• Specialized Linux nodes

Login PEs

IO Server PEs

Network Server PEs

FS Metadata Server PEs

Database Server PEs

Compute Partition

   MTX (BSD)

RAID Controllers

Network

PCI-X

10 GigE

Fiber Channel
PCI-X

Eldorado System Architecture



Eldorado CPU/Mem Ctlr/Network ASIC
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Eldorado’s MT memory structure
• Partitioned per processor at boot time

• Global memory – (e.g., what malloc returns)
• Inaccessible to Opterons

• Globally addressable by MT processors

• Scrambled in blocks of 8 words
 As on MTA-2, uniformly utilizes network & memory

• Local memory – programmer generally oblivious to this
• Accessible to Opterons via portals

• Globally addressable by MT processors

• Used to accelerate stack & local runtime data structures

• 128kB Buffer (cache) at memory module – 8 words per line
• Mitigates bandwidth limitation & latency of DIMMs
• Processor can access buffered memory every cycle



MTA-2 / Eldorado Comparisons

15.36 P2/3 GB/s3.5 P GB/s
Network bisection
bandwidth

3D torusModified Cayley graphNetwork topology

Variable (next slide)220 M Ops/PNetwork injection rate

128 TB128 GBTLB reach

128 TB

(16 GB/P)

1 TB

(4 GB/P)

Max memory capacity

8192 P256 PMax system size

Stride 1:                        6.4 GB/s

Random:                       0.8 GB/s

Random from buffer:   4.0 GB/s

Stride 1:      4.0 GB/s

Random:     4.0 GB/s

Peak memory
bandwidth
(per processor)

500 MHz220 MHzCPU clock speed

EldoradoMTA-2



Eldorado Scaling
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HPC Challenge Benchmarks: Preliminary Results
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Even a small Eldorado system will be the GUPS champ



Code length for benchmarks w/o library calls

• HPCC MPI implementation:
RandomAccess 635
STREAM 509
PTRANS 923
Total 2067 lines

• MTA-2 shared memory implementation:
Total (for the three) 288 lines



Eldorado Timeline

ASIC
Tape-out

Prototype
Systems

Early
Systems

(moderate-size of 500-1000P)

2004 2005 2006



Integrated computing

Cray X1

Cray X1E

Scalable High-Bandwidth Computing

Cray XT3
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200620062006
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Product
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Eldorado Summary
• Unmatched features

• 128TB globally addressable shared memory
• Parallelism => Scaling, even when pointer chasing
• Easy MTA programming model, simple code
• Automatic parallelizing compiler

• Leverages Red Storm / XT3
• Chip swap: distributed memory  shared memory!
• 10x less costly than MTA-2
• Scales-up to over 8000 processors

• Focused on specialized, mission critical applications
• Available mid-2006 at scale

• Major component of future computing by 2010
• Multithreading is becoming mainstream
• Integration into Cray’s Cascade system as LWP

Meanwhile, we encourage you to learn more!


