
Eldorado

John Feo, David Harper,
Simon Kahan, Petr Konecny

Cray Inc.

Outline

• This talk is introductory
• Please read the paper, contact authors, for details

• High-level contextual motivation
• Parallel programming is too hard

• Cray multithreading
• Cray has been evolving a solution

• Eldorado
• Cray’s first production multithreaded computer
• Narrowly focused with unmatched potency

• Roadmap
• Future systems carry multithreading forward

~1970’s Generic Micro-computer

CPU Memory

Memory keeps pace with CPU.

Instructions

~1970’s Generic Micro-computer

CPU Memory

Memory keeps pace with CPU.Memory keeps pace with CPU.

EverythingEverything was in Balance…

Instructions

…but balance was short-lived:
by year 2000,

• Processors had gotten much faster:
over 3000x.

• Memories hadn’t: about 20x faster while
1,000,000x larger.

• Memory cannot keep up with processing.

Meanwhile, a band-aid solution evolved, groping for
balance as it slipped away…

Simplified Cache-based Computer

CPU Memory

When you’re hot, you’re hot…

Cache
Instructions

Simplified Cache-based Computer

CPU Memory

…and when you’re not,
you’re sucking through a straw

Cache
Instructions

?

20th Century Parallel Computer

CPU

Memory

Avoid the straws and there are no flaws.
(And good luck to you.)

Cache

CPU Cache

CPU Cache

Programming 101:
Rules for Performance Programming

• Avoid modifying shared data

• Access data in address order

• Avoid indirection, linked data-structures

• Partition into independent computations

• Avoid synchronization

• Place data near processor doing computation

• Avoid conditional branching

• Do not expect predictable performance!

The space of feasible scalable solutions…

…is withering.

Programmers boxed-in by performance
constraints…

Computer science offers abundance of
algorithmic methods;
conventional computing technology renders
many of them useless.

Cray Multithreading serves to open the box.

load, store,
int_fetch_add

+ - * /, etc.

Arithmetic
Pipeline

With enough active streams, an instruction may be
executed at every clock cycle, thus masking
latency to distant memory…

(M A C)

Stream 128

.

.

.

Stream 2

Stream 1I
n
s
t
r
u
c
t
i
o
n
s

Cray MTA Processor

Cray MTA System

CPU

MemoryCPU

CPU

Network: conceptually, a pipeline
of memory references;

average latency is about 250 cycles

T
h

re
ad

s
o

f
In

st
ru

ct
io

n
s

m
ap

p
ed

 b
y

sy
st

em
 t

o
 s

tr
ea

m
s

Each stream may have up to 8 memory
references outstanding in the network;
each processor may have up to 1024.

Large shared memory… no data
caches… simple programming model

MTA Basic Features
• Flat shared memory

• Virtual addresses hashed per word to physical locations
• No data placement concerns

• Lightweight synchronization
• int_fetch_add operation…

iglobal = iglobal + 3 requires one mem op
• Full-bit on every location …

• Producer-consumer semantics: two mem ops
A[I] = A[I] + 0.5 requires two mem ops

• Thread-centric, not processor-centric, programming
• Programmer expresses parallelism;
• Compiler and runtime manage it

• Parallelizing compiler for C, C++, Fortran
• Nested parallelism supported to any depth
• Recursive parallelism supported via future construct

Programming 101:
Rules for Performance Programming

• Avoid modifying shared data

• Access data in address order

• Avoid indirection, linked data-structures

• Partition into independent computations

• Avoid synchronization

• Place data near processor doing computation

• Avoid conditional branching

• Do not expect predictable performance!

One Rule: Be parallel or die!

data
link

Linked Data Structures

data
link

data
link

Root

Linked List:

0

data = 37

llink rlink

Head

data = 50

llink rlink

data = 24

llink rlink

Binary Tree:

C, C++,
Objects, …

A Basic Linked List Benchmark

• “Count the number of instances of some target
value found in N randomly constructed lists of
length N.”

• Representative of codes that do pointer chasing.

• Simple enough to analyze.

Linked-List Kernel

struct List {
 List *link;
 int data;
};
int count_data(List **ListHeads,
 int num_lists, int target) {
 int i; int sum = 0;
 for (i = 0; i < num_lists; i++) {
 List *current = ListHeads[i];
 while (current) {
 if (current->data == target) sum++;
 current = current->link;
 }
 }
 return sum;
}

 | int count_data(List ** ListHeads,
 | int num_lists, int target) {
 | int i; int sum = 0;
 | for (i = 0; i < num_lists; i++) {
 2 P | List *current = ListHeads[i];
 3 PX | while (current) {
 2 P +
 3 PX:$ | if (current->data == target) sum++;
** reduction moved out of 1 loop
 3 PX | current = current->link;
 | }
 | }
 | return sum;
 | }

Canal Output

Canal remarks

Loop 2 in count_data at line 10 in region 1
 In parallel phase 1
 Dynamically scheduled

Loop 3 in count_data at line 12 in loop 2
 Loop summary: 2 memory operations,
 0 floating point operations

4 instructions, needs 68 streams for full utilization
pipelined

 1 instructions added to satisfy dependences

Performance Prediction

• Canal claims 4 instructions per inner loop body.

• MTA-2 peak is 220M instructions per processor
per second.

• Searching N lists of N items using P processors
=> (4*N*N inst’s)/(P*220M inst’s/sec)
 = (N*N/55M sec) / P

• N = 5000 => (25/55 sec)/P = ~.45 sec /P
N = 10000 => ~1.8 sec /P

Performance of Linked-List Kernel

.197

1.98

40

107

Time for
N=10,000

0.0525

0.485

7.15

9.3 seconds

Time for
N=5,000

Cray MTA-2/10

Cray MTA-2/1 220MHz, 40 GB

Intel Xeon 2.8GHz (32bit), 4 GB

SunFire 880MHz, 32GB

System

• N is # of lists and length of each list.

• MTA-2 performance is order of magnitude better per processor and scales
predictably both with processors and problem size.

Sweet-spot comes at a price:
• Only 1 Cray MTA-1 was ever sold (~1995).
• Only 2 Cray MTA-2’s were sold (~2002).

• Largest was 40 processors, 160GB
• Price-performance for dense linear algebra?

• 220 MHz. => 660 MFlop/s for $125,000
• About 250:1…

• Single threaded execution is ~3-5 Mips.
• No current commercial applications.

High price relative to general purpose performance
meant volume was too limited to justify investment in
software.

Eldorado: MTA-3

Overview
• Eldorado is a peak in the

North Cascades.

• Also, Cray project name for the
MTA-3 with goals to:

• Reduce cost

• Increase scale

• Minimize development risk

• Preserve the good

• Eldorado strategy:
• Hardware infrastructure

reuses Red Storm, XT3.

• Processor, programming
model and software almost
identical to MTA-2.

• Red Storm consists of over 10,000 AMD Opteron™ processors
connected by an innovative high speed, high bandwidth 3D mesh
interconnect designed by Cray (Seastar).

• Cray is responsible for the design, development, and delivery of the
Red Storm system to support the Department of Energy's Nuclear
stockpile stewardship program for advanced 3D modeling and
simulation.

• Red Storm uses a distributed memory programming model (MPI).

Red Storm

4 DIMM Slots4 DIMM Slots

CRAY
Seastar™

CRAY
Seastar™

CRAY
Seastar™

CRAY
Seastar™

L0 RAS ComputerL0 RAS Computer

Redundant VRMsRedundant VRMs

Red Storm Compute Board

Just a few chips away…

4 DIMM Slots4 DIMM Slots

CRAY
Seastar2™

CRAY
Seastar2™

CRAY
Seastar2™

CRAY
Seastar2™

L0 RAS ComputerL0 RAS Computer

Redundant VRMsRedundant VRMs

Eldorado Compute Board (4 processors, 16-64GB)

…is an MTA!

MTA-2 Module (1 processor; 4GB)

MT CPU

Memory Controller

Network Interface

Instruction Cache

Red Storm Cabinet

Much simpler
cooling system,
too!

MTX Linux

Compute Service & IO

Service Partition
• Linux OS
• Specialized Linux nodes

Login PEs

IO Server PEs

Network Server PEs

FS Metadata Server PEs

Database Server PEs

Compute Partition

 MTX (BSD)

RAID Controllers

Network

PCI-X

10 GigE

Fiber Channel
PCI-X

Eldorado System Architecture

Eldorado CPU/Mem Ctlr/Network ASIC

M

E

M

O

R

Y

N E T W O R K (via SeaStar2 router)

Unchanged from MTA-2

Eldorado’s MT memory structure
• Partitioned per processor at boot time

• Global memory – (e.g., what malloc returns)
• Inaccessible to Opterons

• Globally addressable by MT processors

• Scrambled in blocks of 8 words
 As on MTA-2, uniformly utilizes network & memory

• Local memory – programmer generally oblivious to this
• Accessible to Opterons via portals

• Globally addressable by MT processors

• Used to accelerate stack & local runtime data structures

• 128kB Buffer (cache) at memory module – 8 words per line
• Mitigates bandwidth limitation & latency of DIMMs
• Processor can access buffered memory every cycle

MTA-2 / Eldorado Comparisons

15.36 P2/3 GB/s3.5 P GB/s
Network bisection
bandwidth

3D torusModified Cayley graphNetwork topology

Variable (next slide)220 M Ops/PNetwork injection rate

128 TB128 GBTLB reach

128 TB

(16 GB/P)

1 TB

(4 GB/P)

Max memory capacity

8192 P256 PMax system size

Stride 1: 6.4 GB/s

Random: 0.8 GB/s

Random from buffer: 4.0 GB/s

Stride 1: 4.0 GB/s

Random: 4.0 GB/s

Peak memory
bandwidth
(per processor)

500 MHz220 MHzCPU clock speed

EldoradoMTA-2

Eldorado Scaling

5.004.002.241.501.00
Rate relative to
8x8x8

7680409623041152512Processors

230 G/s184 G/s103 G/s69 G/s46 G/s
Sustainable remote
memory reference
rate (aggregate)

30 M/s45 M/s45 M/s60 M/s90 M/s

Sustainable remote
memory reference
rate (per
processor)

8 TB

8x8x8

120 TB64 TB36 TB18 TBMemory capacity

20x24x1616x16x1612x12x1612x12x8Example Topology

HPC Challenge Benchmarks: Preliminary Results

No Data1.629No Datano data
EP:
.00569

3.247.2526128AMD
Opteron
1.4GHz

.4171.571.90.4055.29.1810MTA-2

10

No Data

50

.182

Global
FFT
GFLOP/s

.000086

.00438

12

.041

Global
Random
Access
GUPS/s

6.43

21.7

4

1.59

EP-STREAM
Triad (per proc)

GB/s

17.9823.74.2256IBM
eServer °

No Data96.19.4252Cray X-1
Oak Ridge

1611256Eldorado
(estimates)

--. 538.181MTA-2
Seattle

EP-DGEMM
GFLOP/s
(per proc)

Global
PTRANS
GB/s

Global
HPL
GFLOP/s
(per proc)

#ProcsComputer
System

° Base runs; optimized results are not published.

Even a small Eldorado system will be the GUPS champ

Code length for benchmarks w/o library calls

• HPCC MPI implementation:
RandomAccess 635
STREAM 509
PTRANS 923
Total 2067 lines

• MTA-2 shared memory implementation:
Total (for the three) 288 lines

Eldorado Timeline

ASIC
Tape-out

Prototype
Systems

Early
Systems

(moderate-size of 500-1000P)

2004 2005 2006

Integrated computing

Cray X1

Cray X1E

Scalable High-Bandwidth Computing

Cray XT3

2010
‘Cascade’

Sustained
Petaflops

20102010
‘‘CascadeCascade’’

SustainedSustained
PetaflopsPetaflops

Red Storm

200420042004

Cray XD1

200420042004

200420042004

200620062006

200520052005

200620062006

200520052005

200620062006

2006
‘Rainier’

Product
Integration

20062006
‘‘RainierRainier’’

ProductProduct
IntegrationIntegration

Eldorado Summary
• Unmatched features

• 128TB globally addressable shared memory
• Parallelism => Scaling, even when pointer chasing
• Easy MTA programming model, simple code
• Automatic parallelizing compiler

• Leverages Red Storm / XT3
• Chip swap: distributed memory shared memory!
• 10x less costly than MTA-2
• Scales-up to over 8000 processors

• Focused on specialized, mission critical applications
• Available mid-2006 at scale

• Major component of future computing by 2010
• Multithreading is becoming mainstream
• Integration into Cray’s Cascade system as LWP

Meanwhile, we encourage you to learn more!

