
CUG 2005 Proceedings 1

Fortran 2003 and Beyond

 Bill Long, Cray Inc

ABSTRACT: The recently adopted Fortran standard includes many features that were not
present in the old Fortran 95 standard. Selected features are discussed as well as the status
of their implementation in the Cray compiler. The proposed feature list for the next standard,
Fortran 2008, is also discussed.

1. Introduction

Fortran was designed almost 50 years ago to be the

language of choice for scientific programming. It continues
to evolve through a series of revisions that incorporate more
modern programming paradigms while retaining the focus
on scientific computing and computational efficiency.

The current Fortran standard, commonly referred to as

Fortran 2003, was published in November, 2004. This
standard deletes and replaces the old standard, commonly
know as Fortran 95 or f95. The preliminary list of features
for the next standard, Fortran 2008, has been specified by
WG5, the ISO Fortran body.

The following sections describe some of the key

features of Fortran 2003 and Cray’s plans for
implementation. The key features proposed for Fortran 2008
are also discussed.

2. Fortran 2003 implementation status

The current cftn compiler release is version 5.4.0.3. The

5.5 release is scheduled for the end of 2005, with additional
releases in 2006. The implementation status of the features
described in section 3 below falls into three categories:
already implemented in 5.4.0.3, planned for 5.5 (end of
2005) or planned for 2006.

Features currently implemented

Basic syntax enhancements
PROTECTED attribute
VOLATILE attribute
INTENT attribute for pointers
mixed PUBLIC and PRIVATE component attributes

allocatable components
allocatable dummy arguments
allocatable function results
allocatable array assignment
ASSOCIATE construct
intrinsic modules
ISO_FORTRAN_ENV module
ISO_C_BINDING module
C interoperability
IMPORT statement
PROCEDURE statement
procedure declaration and abstract interfaces
procedure pointers
pointer assignment lower bounds
pointer rank remapping
FLUSH statement
IOMSG keyword in I/O statements
MAX and MIN with character arguments
NEW_LINE intrinsic
GET_COMMAND intrinsic
COMMAND_ARGUMENT_COUNT intrinsic
GET_COMMAND_ARGUMENT intrinsic
GET_ENVIRONMENT_VARIABLE intrinsic
IS_IOSTAT_END intrinsic
IS_IOSTAT_EOR intrinsic

Features planned for the end of 2005

parameterized derived types
keywords in derived type constructors
type specifiers in array constructors
allocatable character scalars
allocatable character assignment
IEEE_FEATURES module
IEEE_ARITHMETIC module
IEEE_EXCEPTIONS module
Cray IEEE extensions
Asynchronous I/O and WAIT statement
Stream I/O

CUG 2005 Proceedings 2

DECIMAL mode in I/O statements
Rounding mode in I/O statements
Keywords in READ and WRITE statements
Result KIND specifiers in intrinsics
Array reallocation - MOVE_ALLOC intrinsic

Features planned for 2006

Derived type extension
Type-bound procedures
Finalizers
polymorphic objects
SELECT TYPE construct
enhanced initialization expressions
user derived type I/O control
ISO character set support
text encoding selection in I/O

3. Fortran 2003 feature descriptions

Many features in Fortran 2003 were not part of f95 or
previous standards. The following sections describe the
principal new features.

Basic syntax enhancements

 Statement syntax in Fortran 2003 relaxes some of the

restrictions of f95. Names of objects (variables, procedures,
common blocks, types, etc.) may contain up to 63
characters, up from 31. The maximum number of
continuation lines for a single statement is 255, up from 39.
The Cray 5.4 compiler allows an unlimited number of
continuation lines. These changes were made based on user
comments that the old limits were too restrictive, especially
in the case of source code created by other programs.

Fortran 2003 allows the cleaner [] notation as an

alternative to (/ /) for an array constructor.

 Named constants as parts of a complex constant are

allowed. A simple example is:

real,parameter :: zero = 0.0, one = 1.0
complex :: eye
eye = (zero, one)

Fortran has always specified a minimal required
character set. Traditionally this consisted of all the
characters that are required by the basic language syntax.
The list of required characters is increased to include \ [] {

} ` ~ ^ | # @, even though not all of these have a syntax use
in the language.

PROTECTED attribute

Module data in f95 had a visibility outside the module

based on their declaration as either public or private. These
attributes apply the names of the objects, not their values. In
many cases it is useful to have the name visible outside the
module (public), but prevent procedures outside the module
from changing the value of the object. If the object never
changes value, it can be declared as a parameter. However,
this option is not useful for variables such as overall data
sizes that might be initialized at run time. The new
PROTECTED attribute applies to the object’s value.
Module objects with the protected attribute may be defined
by procedures in the module, but cannot be defined by
statements outside the module. If they are public objects,
they may be referenced outside the module. Example:

integer,protected :: ncpus

VOLATILE attribute

A variable with the volatile attribute may have its value

changed by mechanisms not visible to the local program
unit. Typically these are variables that may be defined by
external means like an asynchronous operating system
action or by other threads of a parallel program. Example:

integer,volatile :: flag

Intent for pointer dummy arguments

Dummy arguments with the pointer attribute could not

have an intent attribute in f95. Fortran 2003 has removed
this restriction. The intent specification for a pointer
argument applies to the association status of the pointer, and
not to the definition status of the target of the pointer. A
pointer with the intent(in) attribute cannot be pointer
associated with a (potentially) new target within the
procedure. A pointer with the intent(out) attribute enters the
procedure with a disassociated status. Example:

subroutine sub(p,dat)

integer,pointer,intent(in) :: p(:)
integer,target :: dat(10)

p = 1 ! OK
allocate(p(20)) ! Illegal

CUG 2005 Proceedings 3

p => dat ! Illegal

end subroutine sub

In the example above, both the allocate statement and

the pointer assignment of p to dat are illegal because they
change the target of the pointer p, which is declared with
intent(in).

Mixed public and private component attributes

Derived types defined in a module can be either public

or private. New rules allow individual components of the
type to be private or public. Also, an object of a private type
may be declared to be public. Private names of either the
type or some or all of the components are not available
outside the module. This can be an intentional programming
strategy of hiding the details of a structure from the module
user. Examples:

type,private :: foo

integer,public :: bar1
integer,private :: bar2

end type foo

type(foo),public :: x

Allocatable components

One of the least satisfactory aspects of f95 is the

requirement that dynamic sized components of a derived
type be declared as a pointer. Because a compiler cannot
determine all the possible aliases for pointer targets,
optimization of expressions involving pointers is restricted.
The new standard allows allocatable components, which do
not have this performance problem. Example:

type :: foo
 real,allocatable :: bar(:)
end type foo

Allocatable dummy arguments

The size needed for an actual argument associated with

a dummy argument may be computed inside the called
procedure. With f95, such an argument had to be a pointer,
resulting in the disadvantages of pointers being forced on
the programmer. Fortran 2003 allows allocatable dummy
arguments, resolving this shortcoming of f95. The storage
for an allocatable dummy argument is not automatically
deallocated at the end of the procedure. Example:

integer,allocatable :: db(:)
call sub(db,nwords)

subroutine sub(db,n)
 integer,allocatable :: db

integer :: n

read *, n
allocate(db(n))
read *, db

end subroutine sub

Allocatable function results

 Function results can be considered equivalent to an
additional argument to a subroutine. A natural extension of
the allocatable dummy argument feature is the allocatable
function result. This is included in Fortran 2003. Example:

function foo(x) result (foo_r)
 real,dimension(:),intent(in) :: x
 real,dimension(:),allocatable ::foo_r
…
end function foo

Allocatable array assignment

Fortran 2003 requires the specification of the meaning

of default assignment for structures with allocatable
components. Array assignment requires that the left hand
side variable be allocated and have the same size as the right
hand side expression. To avoid having the user explicitly
allocate an allocatable component before an assignment
statement, the default assignment rule specifies the
automatic allocation of the left hand side if necessary. If the
current left had side allocatable component is allocated with
the correct shape, then an array copy is done. If the left hand
side array is not allocated, it is allocated with the correct
shape and then the array copy is done. If the current left
hand side is allocate with the wrong shape, it is deallocated
and then reallocated with the correct shape and the array
copy is done.

The above assignment algorithm for allocatable

components is extended to all allocatable objects, not just
components. It is now allowed to assign a value to an
unallocated array. If that is done, the array is automatically
allocated with the correct shape before the data is moved.
Similarly, if the left hand side variable is allocated with the
wrong shape (not conforming to the f95 standard) then it is
reallocated with the correct shape rather than causing an
error. This new rule may result in different behavior for
programs that were illegal in f95, but seemed to work
anyway. This feature is incorporated in the Cray compiler,
but is not turned on be default. To enable this behavior,
specify the –ew option on the compile command.
Examples:

CUG 2005 Proceedings 4

type foo

integer,allocatable :: bar(:)
end type foo

type(foo) :: f1,f2
allocate(f1%bar(100))
f1%bar(:) = 1

f2 = f1

In this example, f2%bar is automatically allocated with

a size of 100, and the values of f1%bar are copied to
f2%bar.

real,allocatable :: a(:),b(:),c(:)

allocate(a(10),b(20))
a = 1.10
b = 1.20
c = a ! Line 1
c = b ! Line 2
c(:) = a(:) ! Line 3 – illegal

In the statement with comment Line 1, the array c is

allocated with a size of 10. In Line 2, c is reallocated with a
size of 20. The statement in Line 3 is illegal. The
expression c(:) is an array section and not an allocatable
array. The reallocation rules apply only to allocatable
objects.

ASSOCIATE construct

The ASSOCIATE construct provides a shorthand

notation for expressions and derived type objects that appear
in statements. Using an associate name can greatly simplify
the appearance of otherwise complicated statements. An
associate name is specified by an associate statement, and
can also be specified in a select type statement. The name is
identified with the associate expression at the entry to
associate construct or select type construct, and is not
affected by later redefinitions of a part of the expression.
The associate name assumes the type and type parameters of
the associate expression and has the scope of the construct.
It is unrelated to any object outside the construct that has the
same name. Example:

! Old code

do i=1,genome(ng)%chr(nc)%dblen

genome(ng)%chr(nc)%db(i) = &
iand(genome(ng)%chr(nc)%db(i),255)

end do

! New code

associate (x=>genome(ng)%chr(nc))
do i=1,x%dblen
 x%db(i) = iand(x%db(i),255)
end do

end associate

Intrinsic modules

Intrinsic modules are supplied as part of the language

and are intended to provide information to the programmer
that may be implementation dependent. Fortran 2003
specifies five intrinsic modules. The iso_c_binding module
contains definitions of constants and procedure interfaces
for the C interoperability features. The iso_fortran_env
module contains definitions of constants that characterize
memory and I/O sizes. The remaining three intrinsics
modules, ieee_features, ieee_exceptions, and
ieee_arithmetic, contain definitions of constants and
procedure interfaces to support the IEEE floating point
arithmetic standard. Details of these modules are in the
following sections. Examples for using each of the new
modules:

use,intrinsic :: iso_c_binding
use,intrinsic :: iso_fortran_env
use,intrinsic :: ieee_features
use,intrinsic :: ieee_exceptions
use,intrinsic :: ieee_arithmetic

iso_fortran_env module

The iso_fortran_env intrinsic module contains named

constants for characteristics of the hardware and I/O
systems use by the program. The standard specifies the
concept of a numeric storage unit (essentially the memory
associated with a default integer), a character storage unit
(the memory associated with a length one character), and a
file storage unit (the units used for the RECL values in I/O
statements). The sizes of these units, measured in bits, are
specified in the iso_fortran_env module as
numeric_storage_size, character_storage_size, and
file_storage_size. On Cray systems, the
numeric_storage_size is either 32 or 64 depending on
compiler options, and the character_storage_size and
file_storage_size are both 8. The module also specifies the
Fortran unit numbers corresponding to the * units in I/O
statements. These are input_unit, output_unit, and
error_unit. Finally, the module specifies the values returned
for end of file and end of record conditions in iostat
variables. These are iostat_end and iostat_eor. Note that on
Cray systems there are multiple end of file values,
depending of the type of end of file. The iostat_end
represents the most common end of file return value. In a

CUG 2005 Proceedings 5

later section intrinsic functions are described that provide a
better alternative to using iostat_end.

iso_c_binding module

The iso_c_binding intrinsic module contains definitions

for constants and types that provide a way to portably link
with programs written using the system’s C compiler. KIND
values are defined that link Fortran intrinsic data types to
corresponding C data types. For example, C_INT is defined
to be the kind value for which an integer(c_int) declaration
specifies a data object that has the same size as an int object
in C. Constants are defined for all the C data types that
have analogs in Fortran. If the Fortran processor does not
support a particular combination of type and kind, the
corresponding constant in the iso_c_binding module is –1.
The module also defines certain standard character constants
widely used in C programs, such as C_null_char, and
C_new_line. Finally, the module defines new types.
C_PTR and C_FUNPRT. These are used to specify
variables that can be used as actual arguments
corresponding to C data and function pointers.

C interoperability - C global objects

Names of objects in the data part of a module can be

linked to C global data using the bind(c) attribute. This
allows Fortran and C routines to have access to shared data
using standard syntax. The external name of the data
defaults to the Fortran name in lower case letters.
Optionally, the user can specify a different name with a
character constant. Data of any Fortran intrinsic type may
be shared. In addition, a derived type may be specified to
interoperate with C with certain restrictions. Interoperable
derived types must not have the SEQUENCE attribute,
allocatable or Fortran pointer components, or derived type
components that are not interoperable. Derived types can be
specified to replicate the form of a C structure. Examples
illustrating the new syntax:

! First example ----------

module global_data
use,intrinsic :: iso_c_binding
 type,bind(c) :: flag_type

 integer(c_long) :: ioerror_num
 integer(c_long) :: fperror_num
end type flag_type

type(flag_type),bind(c):: error_flags

end module global_data

! The name of error_flags is specified
! in C as

typedef struct{

 long ioerror_num;
 long fperror_num;
 } flag_type

flag_type error_flags;

! Second example --------

module global_data2
use,intrinsic :: iso_c_binding

integer(c_int),bind(c,name=’Fc’)::fc

common /block/ r,s
common /tblock/ t
real(c_float) :: r,s,t
bind(c) :: /block/, /tblock/

end module global_data2

! The corresponding C declarations are:

int Fc;
struct {float r,s;} block;
float tblock;

The first example illustrates specification of an
interoperable derived type and a data object of that type.
The value of c_long is obtained from the iso_c_binding
module.

The second example shows how to connect common block
variables to C global variables. The global symbol is the
name of the common block. The names of the entries in the
common block are local, and may be different in different
Fortran modules. As is the case with most attributes, the
bind(c) attribute can be used either as a qualifier in a type
declaration or as a separate statement. The separate
statement form must be used for common blocks.

C interoperability - Interoperating with C functions.

Interoperation with C functions with standard syntax is

a major new feature of Fortran 2003. To correctly link with
a C function, as caller or callee, the compiler needs to know
the correct interface information. This is specified by
extensions to the interface block syntax. The bind(c)
attribute identifies an external procedure as conforming to
the C calling conventions. The external routine could be
written in a language other than C, as long as the interface
conforms to the C rules. The constants from the

CUG 2005 Proceedings 6

iso_c_binding module are used in dummy argument
declarations. A new attribute, VALUE, is optional for
dummy arguments. If a dummy argument with the value
attribute is defined within the subroutine, the corresponding
actual argument is not changed. The value attribute
effectively causes the argument to be passed by copy-in
value. The dummy arguments in an interface for a bind(c)
procedure must be interoperable with C data types. It is
always possible to write a corresponding C prototype for
describe the function interface. Example:

use,intrinsic :: iso_c_binding
interface

function foo(ptr,val) &
 bind(c,name=’Foo’) &
 result(bar)
 import :: c_int, c_long
 integer(c_int) :: ptr, bar
 integer(c_long),value :: val
end function foo

end interface
integer(c_int) :: x,n
integer(c_long) :: y

…
n = foo(x,y)

Corresponding C interface:

int Foo(int *ptr, long val);

C interoperability - Intrinsics

Five new intrinsic functions are provided as part of the

iso_c_binding module. These are used to create and test C
style pointers that are sometimes needed as actual
arguments to C functions.

C_LOC(fortran_data_arg) returns a type(C_PTR)

pointer to the data argument.

C_ASSOCIATED(cp1, [cp2]) returns true if the C

pointer cp1 is associated, or if the two arguments are
associated with the same target. This is analogous to the
associated intrinsic function for Fortran pointers.

C_F_POINTER is a subroutine that associates the

target of a C data pointer with a Fortran pointer.

C_FUNLOC(fortran_proc_arg) returns a

type(C_FUNPTR) pointer to the Fortran procedure
argument.

C_F_PROCPOINTER is a subroutine that associates

the target of a C function pointer with a Fortran procedure
pointer.

IMPORT statement

Interface blocks are their own scoping units and thus to

not have direct access to definitions in the surrounding host
scoping unit. This has been especially cumbersome when
derived type definitions are required in the dummy
argument declarations in the interface. Past standards have
required that the definitions are either repeated in the
interface or accessed by a USE of a module containing the
definition. If the interface is in the same module as the type
definition the USE option is not available. The new
standard provides a solution to this problem with the import
statement. The import statement allows importing type
information from the surrounding host. Example:

type :: foo

integer :: foo_int
end type foo

interface

function bar(x) result(bar_res)
 import foo
 type(foo) :: x
 integer :: bar_res
end function bar

end interface

PROCEDURE statement

The PROCEDURE statement is an extension of the

module procedure statement from f90, used to define a
generic interface. The specific procedures do not have to be
contained in the module, as is the case with the module
procedure statement. Interfaces for the procedures do need
to be visible. Example:

interface sgemm

procedure sgemm_44, sgemm_48
procedure sgemm_84, sgemm_88
procedure cgemm_44, cgemm_48
procedure cgemm_84, cgemm_88

end interface

interface dgemm

procedure sgemm_44, sgemm_48
procedure sgemm_84, sgemm_88
procedure cgemm_44, cgemm_48
procedure cgemm_84, cgemm_88

end interface

The example illustrates a mechanism for making the

BLAS matrix multiply routine completely generic. The
numbers at the ends of the specific routine names indicate
the kind values for integer and real (or complex) arguments.
Interfaces for the generic names cgemm and zgemm would

CUG 2005 Proceedings 7

be written in the same way. Interfaces for all of the specific
routines need to be visible.

Procedure declarations and abstract interfaces

The procedure statement can declare names to be of

external procedures and identify an interface. An abstract
interface specifies the interface information for a
hypothetical procedure, and hence the procedure name itself
is not made external. Abstract interfaces are used as
templates for the interfaces for actual procedures. A
procedure statement may reference either an abstract
interface or a normal interface. Examples:

abstract interface

function fun_r(x)
 real,intent(in) :: x
 real :: fun_r
end function fun_r

end interface

procedure(fun_r) :: gamma, Bessel

interface
subroutine sub_r(x)
 real :: x
end subroutine sub_r

end interface

procedure(sub_r) :: sub
procedure(real) :: psi

The declarations for gamma and Bessel use the abstract

interface fun_r. The declaration for sub uses the explicit
interface for sub_r. The declaration for psi uses an implicit
interface, and is equivalent to real,external :: psi.

Procedure pointers

The procedure statement may be used to declare

procedure pointers. The pointer name may be used in place
of the target name in CALL statements, function references,
or as an actual argument. Procedure pointers may be
components of derived types. Examples, assuming the
abstract interface for fun_r above:

procedure(fun_r),pointer :: &
 special_fun => null()
special_fun => gamma

The name special_fun is effectively an alias for gamma.

Prior to the pointer assignment statement, special_fun was
default initialized to disassociated.

type proc_ptr
procedure(fun_r),pointer :: special

end type proc_ptr

type(proc_ptr) :: special(10)

ans = special(i)%fun(arg)

The second example defines a list of 10 procedure

pointers, and the syntax for referencing a procedure pointer.

Pointer assignment lower bounds

Pointer assignment of a pointer array to a target array

section in f95 always resulted in the lower bound of the
pointer array of one. Fortran 2003 allows the specification
of the lower bound in the pointer as part of the pointer
assignment syntax. This feature simplifies programming by
allowing the pointer and its target to have corresponding
subscript values. Example:

real,pointer :: p(:)
real,target :: t(100)

p => t(2:5) ! old syntax
p(2:) => t(2:5) ! new syntax

Executing the old syntax for of the pointer assignment

associates p(1) with t(2). The new syntax form associates
p(2) with t(2).

Pointer rank remapping

Pointers of any rank can have rank-1 targets through

pointer remapping. The rank-1 target may be more useful in
some circumstances, such as an argument to an f77 function,
while the higher rank version may be clearer in computation
expressions. Example:

real,pointer :: p(:,:)
real,target :: t(100)

p(1:10,1:10) => t

The data in the array t can be referenced either through

t as a length 100 vector, or through p as a 10 by 10 array.

FLUSH statement

File I/O is typically buffered in memory before actual

transfers to or from disks take place. The Cray library has
provided a flush subroutine to force a read or write of the
memory buffers before they are full. Fortran 2003 provides
a portable syntax for this operation as a Fortran statement.
Example:

CUG 2005 Proceedings 8

flush 10

flush(unit=10, iostat = n)

The first form of the flush statement parallels the backspace
and endfile statements. The second form also accepts iomsg
and err keywords. The value returned for the iostat variable
is zero if no error occurs, a positive value if there was an
error, and a negative value if the flush operation is not
supported for the specified unit. If the iostat value indicates
an error, and the iomsg optional keyword is supplied, then
the iomsg value is set to a printable error message. The
optional err keyword is similar to err on other I/O
statements, specifying a statement number as a branch target
if there is an error.

Error message text

A new keyword, iomsg, is provided for most I/O

statements. If there is a error, end of file, or end of record,
in the execution of the I/O operation, the character variable
specified by iomsg is set to a text message describing the
error or condition. This message could be used to provide
more useful output in the case of an error. This option is
typically used in conjunction with iostat to ensure that an
error condition does not abort the program before the user
has a chance to print the iomsg value. Example:

character(1024) :: msg

read(10,iomsg=msg,iostat=n) x

Intrinsic procedures implemented in cftn 5.4.0.3

Several of the intrinsic functions have additional

features and there are some new intrinsics. The intrinsics
that are part of the C interoperability feature were described
earlier. Additional intrinsics that are not yet implemented
are described in later sections.

The MIN and MAX functions are extended to accept

character arguments.

The NEW_LINE function returns the character used as
a record separator in stream files and in C text files. On
almost every system, including the Cray, this is achar(10).

Six new intrinsic procedures are provided to obtain
information about the execution environment.

GET_COMMAND returns as a character value the

entire command that was issued to execute the program.

COMMAND_ARGUMENT_COUNT returns an
integer with the number of arguments in the command
issued to execute the program.

GET_COMMAND_ARGUMENT returns the specified

command line argument as a character value.

GET_ENVIRONMENT_VARIABLE returns the

definition of an input environment variable as a character
value.

IS_IOSTAT_END returns true if the argument is one of

the iostat values corresponding to an end of file condition.
Cray systems do provide for more than one end of file
value. One of the values is IOSTAT_END from the
iso_fortran_env module. However, the IS_IOSTAT_END
function is a more general and robost method for checking
end of file values.

IS_IOSTAT_EOR returns true if the argument is one of

the iostat values corresponding to an end of record
condition. On Cray systems there is only one end of record
value, which is the value of IOSTAT_EOR from the
iso_fortran_env module.

Parameterized derived types

A major goal of f90 was the ability to write codes with

parameterized precision and user specified generic
procedures. For codes that required derived types, this
sometimes required defining a set of nearly identical types
that differed only in the kind parameters of the components.
Fortran 2003 allows specification of parameterized types.
Type parameters may be either kind type parameters or
length type parameters. The value of a kind type parameter
must be known at compile time. These are typically used to
specify kind values in declarations. Length type parameters
may be deferred until run time. Length type parameters are
typically used to specify sizes of arrays or character
variables. An example of a tri-diagonal matrix type might
look like:

type(k,n) :: tridiag
 integer,kind :: k

integer,len :: n
real(k) :: upper(n-1)
real(k) :: diag(n)
real(k) :: lower(n-1)

end type tridiag

integer,parameter::rk=8

type(tridiag(8,20)) :: mat20
type(tridiag(rk,:)) :: mat(:)

allocate(type(tridiag(rk,20) :: mat(4))

CUG 2005 Proceedings 9

The definition of the type tridiag involves both kind and

length parameters, k and n. These must be declared as
integer in the type using the KIND and LEN attributes. The
variable mat20 is declared as a tridiagonal matrix with 64
bit elements and 20 elements on the diagonal. The
declaration of mat uses deferred length parameters. The
actual length parameter value is specified in the allocate
statement where the array of 4 tridiagonal matricies is
created.

Keywords in derived type constructors

Derived type constructors are extended to allow the use

of the component names as keywords, similar to the syntax
for procedure references. Example:

type foo

integer :: ii
integer,allocatable :: bar(:)

end type foo

type(foo) :: fobj

fobj = foo(ii = 1, bar = null())

Type specs in array constructors

Array constructors may be used to define an array of

constant values. The type and type parameters of the array
constant are based on the type and type parameters of the
elements. Allowing explicit type specifications in the
constructors applies a type cast to each of the constants in
the array. This specifies the type and type parameters of the
array independent of the forms of the constants. Example:

character(7) :: names(3)

names=[character(7):: &
 ‘Brian’,’Melanie’,’Jeff’]

Without the type specification in the array constructor,

the compiler will complain that the lengths of the character
constants do not match, and hence the length parameter for
the array constant is not defined.

Allocatable character scalars

Scalar objects of type character can be allocatable. This

feature is valuable in contexts where the size of a character

is determined by runtime data. The actual size of the
variable is specified in the allocate statement. Example:

character(len = :),allocatable :: string

allocate (character(16) :: string)

Allocatable character assignment

The new rules for assignment of allocatable arrays

described earlier also apply to allocatable character scalars.
If the length of an allocatable character scalar variable does
not match the length of the expression to which it is being
assigned, the variable is reallocated with the correct length
before data is copied. Note that this is very different from
the assignment for non-allocatable characters where
different lengths were also allowed, but carried implied
truncation or padding of the right hand side expression. The
new assignment rule for allocatable characters effectively
provides a varying length string facility in Fortran.
Example:

.character(len = :),allocatable :: string

allocate (character(16) :: string)
string=’0123456789abcdef’

string(:) = ‘pad’ ! Line 1
string = ‘short’ ! Line 2

The statement with the Line 1 comment results in a 16-

character result padded with 13 spaces on the right because
the left hand size is a substring and not an allocatable
character variable. The statement with the Line 2 label uses
the new assignment rule for allocatable characters, and
reallocates string to have length 5.

IEEE features

Support for IEEE floating point arithmetic is a major

new feature in Fortran 2003. This is optional in the sense
that the features are not required on systems that do not have
hardware support for particular modes or functions. The
IEEE_FEATURES intrinsic module contains constants that
are defined if the processor supports the indicated feature.
The full list of constants is

ieee_datatype
ieee_nan
ieee_inf
ieee_denormal
ieee_rounding
ieee_sqrt

CUG 2005 Proceedings 10

ieee_halting
ieee_inexact_flag
ieee_invalid_flag
ieee_underflow_flag

Undefined constants correspond to unsupportable

features. A USE of the module with an ONLY clause can
detect the absence of a feature at compile time.

 IEEE arithmetic control

The IEEE_ARITHMETIC intrinsic module defines a

type, ieee_class_type, and constants of that type
corresponding to the possible values of ieee floating point
numbers:

ieee_signaling_nan
ieee_quiet_nan
ieee_negative_inf
ieee_negative_normal
ieee_negative_denormal
ieee_negative_zero
ieee_positive_zero
ieee_positive_denromal
ieee_positive_normal
ieee_positive_inf
ieee_other_value

The module also defines a type, ieee_round_type, and

constants of that type corresponding to the ieee rounding
modes:

ieee_nearest
ieee_up
ieee_down
ieee_to_zero
ieee_other

IEEE arithmetic functions

The IEEE_ARITHMETIC intrinsic module also defines

a set of functions to inquire about support for various
features, get and set rounding modes, and perform ieee
conforming operations. If the ieee_support_standard
routine returns false, referencing the other routines may not
be meaningful. The functions defined in the module are:

ieee_support_datatype
ieee_support_denromal
ieee_support_divide
ieee_support_inf
ieee_support_io
ieee_support_nan
ieee_support_rounding
ieee_support_sqrt
ieee_support_standard

ieee_support_underflow_control

ieee_class
ieee_copy_sign
ieee_is_finite
ieee_is_nan
ieee_is_normal
ieee_is_negative
ieee_logb
ieee_rem
ieee_rint
ieee_scalb
ieee_unordered
ieee_value

ieee_selected_real_kind

ieee_get_rounding_mode
ieee_set_rounding_mode
ieee_get_underflow_mode
ieee_set_underflow_mode

IEEE exception control

The IEEE_EXCEPTIONS intrinsic module defines two

new data types: ieee_flag_type, and ieee_status_type. The
ieee_status_type should be used to declare a variable that
holds the current value of the floating point status. The
constants of type ieee_flag_type defined in the module are:

ieee_overflow
ieee_divide_by_zero
ieee_invalid
ieee_underflow
ieee_inexact

The module also includes several routines to get and set

values of exception flags:

ieee_support_flag
ieee_support_halting
ieee_get_flag
ieee_set_flag
ieee_get_halting_mode
ieee_set_halting_mode
ieee_get_status
ieee_set_status

 If the ieee_support_flag or ieee_support_halting
routines return false for a particular flag, referencing the
corresponding get and set routines is not meaningful.

CUG 2005 Proceedings 11

Cray IEEE extensions

The IEEE module procedures provide a mechanism for

controlling and recording exceptions that result from
floating point operations as well as controlling the rounding
of inexact operations. In the hardware of the X1 series
systems, two processor registers are used by these routines:
C0, the floating point control register (FPCR), and C1, the
floating point status register (FPSR).

There are five types of exceptions for floating point

operations (with examples):

Overflow (huge(x)*1000.)
Underflow (tiny(x)*0.0001)
Divide_by_zero (1./0.)
Invalid (0./0., or NaN-NaN)
Inexact (1./3.)

The X1 hardware flushes the results of operations that

underflow to 0. Denormal values are not supported on the
X1. Typically underflows and inexact operations are not
recorded or trapped by default.

There are four hardware rounding modes:

Round to nearest (the default)
Round up
Round down
Round towards zero

The FPCR contains three sets of bits to specify the

following:

Is recording of an exception enabled? (5 bits)
Does a trap on an exception occur? (5 bits)
What is the current rounding mode? (4 bits)

The FPSR contains two sets of bits that record the

results of floating point operations, under control of the
corresponding bits in the FPCR:

Did an exception signal (i.e. occur)? The bit for a

particular exception will be set only if the corresponding
recording bit is set in the FPCR. (5 bits)

Trap bits in the FPSR trigger an exception fault. If an

exception occurs and the corresponding trap bit in the FPCR
is set, then the bit for that exception will be set in the trap
field of the FPSR and the hardware will cause an interrupt
and branch to a trap handler in the operating system. That
handler can look at the contents of the FPSR trap field to
determine what exception caused the trap. (5 bits)

The routines in the IEEE modules that access the FPSR
always include an “lsync fp” instruction to ensure that all
the outstanding floating-point operations have completed
before the status bits are accessed.

Certain combinations of the settings of the control

register bits are used frequently. The Cray version of the
IEEE_EXCEPTIONS module includes 3 additional
predefined constants of type ieee_status_type that can be
used as the argument to the ieee_set_status subroutine. All
three of these cause all 10 bits in the FPSR register to be
cleared and the rounding mode to be set to round to nearest.
These constants affect the FPCR as follows:

ieee_cri_silent_mode: no recording, no traps

ieee_cri_nostop_mode: all exceptions record, no traps

ieee_cri_default_mode: record and trap for overflow,

divide_by_zero, and invalid. Do not record or trap
underflow or inexact.

A user would typically save the current state of both

registers with a call to the ieee_get_status subroutine, and
then set one of the modes above by calling ieee_set_status.
Later, the original status can be restored by calling
ieee_set_status with the value returned from the original call
to ieee_get_status.

Asynchronous I/O and WAIT statement

Fortran 2003 contains syntax support asynchronous

input and output operations. An asynchronous read or write
statement initiates the operation but allows the program to
continue before the operation is finished. A separate WAIT
statement forces the program to wait until the operation is
completed. The functionality is essentially the same as that
provided by the old buffer in and buffer out statements.
Example:

open(10,…,asynchronous=’yes’,…)

read(10,…,asynchronous=’yes’,id=idw,…)
…
wait(10, id = idw)

Without the id clause in the wait statement all currently

outstanding operations on the unit must complete. Executing
a close or inquire operation on the unit has an implied wait
if the file was opened as asynchronous.

Stream I/O

CUG 2005 Proceedings 12

Part of the improved interoperability with C includes
support for stream I/O. Files opened for stream I/O do not
have internal record structure information. Formatted files
may have embedded newline characters, matching the
convention used by C programs to delimit records.
Unformatted files do not contain internal record size
information. The current location within the file can be
obtained or specified with a POS= keyword in the I/O
statement. Example:

open (unit=10, … access = ‘stream’, …)

DECIMAL mode in I/O statements

Support for the use of a comma, rather than a period, as

the character that separates the fractional part and whole
number part of a formatted real number is included as part
of the internationalization features of Fortran 2003. A new
DECIMAL keyword for the open statement is used to
specify the mode. A DECIMAL keyword may be specified
in a read or write statement, overriding the value specified
in the open statement. Example:

open(unit=10, …, decimal=”comma”, …)

open(unit=11, …, decimal=”point”, …)

The internal value of 4.3 would be written to unit 10 as

“4,3”, and to unit 11 as “4.3”. The default mode is “point”.
If the comma mode is used then list directed I/O operations
use a semi-colon for the value separator.

Rounding mode in I/O statements

When real values are written to a file the conversion

between the internal binary form and the external character
string is usually inexact. The method used to determine the
value of the final character(s) is determined by a convention
on rounding. Fortran 2003 gives the user control over what
rounding mode is used. The mode is specified with the
ROUND keyword in the open statement. The keyword may
also be supplied in a read or write statement which overrides
the value specified in the open statement. The supported
values for the rounding value are ‘up’, ‘down’, ‘zero’,
nearest’, ‘compatible’, and ‘processor_defined’. The ‘zero’
mode means round toward zero. For systems that support
IEEE arithmetic, the ‘nearest’ mode must conform to the
IEEE nearest rounding rules. The ‘compatible’ mode differs
from ‘nearest’ for the case where the actual value is exactly
half way between possible output values. The ‘compatible’
mode rounds such values away from zero. This is designed
for compatibility with some systems. The ‘nearest’ mode on
IEEE machines rounds tie cases to even which is the
standard science rounding convention. Example:

open (unit=10, …, round=’down’, …)

write (10, ‘(g20.7)’, round=’nearest’) x

Keywords in read and write statements

Six of the keywords that can be specified in open

statements to describe I/O modes may also be specified in a
read or write statement. The value specified in the read or
write statement overrides the corresponding value specified
in the open statement, and affects only the I/O performed by
that statement. The allowed changeable mode keywords
are BLANK, DECIMAL, DELIM, PAD, ROUND, and
SIGN. Example:

write (unit=10,fmt=*,decimal=’comma’) x

Result KIND specifiers in intrinsics

Several of the intrinsics that return integer results now
include an optional KIND argument to specify the precision
of the result. This overcomes an existing problem of the
result being too big to fit in a default integer. The SIZE
intrinsic is a typical example of a function with a new KIND
argument.

Array reallocation – MOVE_ALLOC intrinsic

The goal of array reallocation is to end up with a new

array that is larger or smaller than the old array of the same
name, and containing (possible not all of) the values from
the old array. This is now possible with fewer statements
and memory operations by using the new MOVE_ALLOC
intrinsic subroutine. MOVE_ALLOC effectively changes
the address of an allocatable object descriptor. Example:

integer,allocatable :: x(:),tmp(:)

allocate(x(20))
! Want to expand x to 40 elements

! Old method
allocate(tmp(20))
tmp = x
deallocate(x)
allocate(x(40))
x(1:20) = tmp
deallocate(tmp)

! New method
allocate(tmp(40))
tmp(1:20) = x

CUG 2005 Proceedings 13

call move_alloc(tmp,x)

Because the x argument to move_alloc is intent(out) the

old storage for x is deallocated in move_alloc.

Derived type extension

Derived types are often extended from a general base

type to a larger type that contains additional components for
a more specific case. In f95 this was typically done by
defining a new type for the specific case and including a
component of the base type. This technique requires a
multiple part reference for the components of the base type.
If the specific type is extended again, the complexity of
references to the parent types increases. Fortran 2003
allows explicit extension of a type such that the parent
components are also components of the extended type. The
parent components are “inherited” by the extended type.
This eliminates the reference part explosion, and is also
more in keeping with the style of modern object oriented
programming. Example:

type :: dna
 integer,allocatable :: ascii_text(:)

integer :: length
end type dna

type(extends(dna)) :: ocdna

integer :: ssdid
integer :: ssdsize
integer :: state

end type ocdna

The derived extended type ocdna (out of core version of

dna) contains five components, the three specified along
with the two inherited from the parent type dna. There is
also an implied component named dna that allows indirect
access to the parent types in the f95 style. This can be useful
in cases there dummy argument type matching requires an
object of the parent type.

Most derived types may be extended, although

sequence and bind(c) types are not extendable. A type can
inherit components from only one parent, commonly known
as single inheritance. However, several extended types may
have the same parent.

Two new intrinsic functions support type extension.

The EXTENDS_TYPE_OF is true if the type of the first
argument is an extension of the type of the second
argument. The SAME_TYPE_AS function returns true if
the two arguments have the same type.

Type-bound procedures

Procedures can be bound to a type, automatically

carrying along interface information with each variable of
that type. Type-bound procedures are part of the overall
OOP features of Fortran 2003. Procedures are declared with
PROCEDURE, GENERIC, or FINAL statements. The type
contains only the declaration for the procedure. The actual
procedure is defined elsewhere. The interface for the
procedure must be visible to the type definition. A type-
bound procedure may have an implied argument of the
containing type, specified with the PASS attribute,
Example:

type strange_int

 integer :: n
contains

 generic :: operator(+)=> strange_add
end type

The interface for strange_add must be either supplied

by an interface block, or by defining the function in an
accessible module.

Finalizers

Finalizers are a special type of type-bound procedure

that is executed when an object of the containing derived
type becomes undefined. A variable may become undefined
by various means, including the initial state of an intent(out)
dummy argument, of the state of a unsaved local variable at
procedure exit. Finalizers are specified with the FINAL
declaration. Example:

type foo
 real,pointer :: bar(:)
contains
 final :: foo_cleanup
end type

subroutine foo_cleanup(x)
 class(foo) :: x
 deallocate(x%bar)
end subroutine foo_cleanup

Polymorphic objects

The CLASS type specifier is used to declare

polymorphic objects. These declarations must be for dummy
arguments, or the declared object must have the allocatable
or pointer attribute. The primary use of polymorphic objects
is as dummy arguments. Actual arguments of the type
specified, or any extension of that type, are type compatible
with the corresponding dummy argument. Assuming the

CUG 2005 Proceedings 14

subprogram uses only components from the base type, all
extensions of that type will also have those components and
hence be a reasonable type for actual arguments. The
specification of a polymorphic dummy argument allows the
routine to be called with arguments of the base type or any
of the extended types. It is possible to declare something
CLASS(*), or unlimited polymorphic. Such an object is
type compatible with any type object. Use of an unlimited
polymorphic object is limited to allocate statements or
statements within a select type construct, where more
information about the actual type can be determined.
Example:

function strange_add (a,b) result (c)

class(strange_int),intent(in) :: a,b
type(strange_int) ::c

c%n = iand(a%n+b%n, 1)

end function strange_add

This function is assumed to be in the same module that

defines the type strange_int above.

Select Type construct

The select type construct allows alternate execution

paths based on the actual type of a polymorphic object. The
selection clauses are TYPE IS, CLASS IS, or CLASS
DEFAULT. If the type of the argument specified in the
select type statement matches one of the types specified in a
TYPE IS clause statement, then the code block following
that statement is executed. If none of the TYPE IS types
match the type of the selector, then the CLASS IS clauses
are tried. The most extended type that matches is selected. If
none of the CLASS IS statements has a compatible type, the
CLASS DEFAULT block is executed. CLASS IS (*) is not
allowed because it is redundant with CLASS DEFUALT.
Example, assuming the definition of strange_int from
above:

type,extends(strange_int) ::strange_mint

integer :: m
end type strange_mint

class(strange_int) :: a,b,c

select type(a)
type is (strange_int)

c%n = iand(a%n+b%n,1)
class is (strange_int)

i = min(a%m.b%m)
c%n = iand(a%n + b%n, 2**i-1)
c%m = i

end select

Enhanced initialization expressions

The values of initialization expressions must be

computable at compile time and are commonly used to
provide kind values or values of parameters. The
restrictions on these expressions have been relaxed in
Fortran 2003. In particular, most of the language intrinsic
functions may be referenced in initialization expressions.
This feature is especially useful in the portable definitions
of parameters. Example:

real,parameter :: pi = acos(-1.0)

Derived type I/O control

The default mechanism for handling a derived type

variable in an I/O list is to effectively expand the item into a
list of items, one for each component of the type. Fortran
2000 allows the user to specify subroutines that handle the
I/O operations to be performed in a derived type variable.
Up to four routines may be specified with these generic
names: read(formatted), write(formatted),
read(unformatted), and write(unformatted). These are
typically type-bound procedures and are invoked for
formatted I/O if the format contains a corresponding DT
format specifier. Examples:

type :: dna

integer,allocatable :: ascii_text(:)
integer :: length

contains
generic :: write(formatted) => fw_dna

end type dna

type(dna) :: hs_chr20
…
write (10,’(dt)’) hs_chr20

In printing out the dna string for human chromosome

20, only the text should appear, and not the length. In this
case the default derived type I/O would not provide the
desired result. It would be possible to write out the
individual component, but this is not in the OOP spirit. The
form of the user written function, fw_dna, must have a
specific interface since this will be called by an I/O library
routine. Interfaces are detailed in the standard for all 4 of
the possible routines. For this example:

subroutine fw_dna(dtv, &
 unit, &
 iotype, &
 vlist, &
 iostat, &
 iomsg)

CUG 2005 Proceedings 15

class(dna),intent(in) ::dtv ! hs_char20
integer,intent(in) :: unit ! 10
character(*),intent(in):: iotype ! “DT”
integer,intent(in) :: vlist
integer,intent(out) :: iostat
integer,intent(inout) :: iomsg

! Write out the first dtv%length
! characters in dtv%ascii_list.
! Set iostat based on results of the
! write.
! Set iomsg if iostat was non-zero.
! The vlist argument is not used in
! this example

end subroutine fw_dna

ISO character set support

As part of the internationalization of Fortran the new

standard provides a standard method for declaring character
variables based on the ISO 10646 standard. The ISO 10646
character set defines 32 bit characters and includes
characters for most of the world’s languages. A new
selected_char_kind intrinsic is provided to return the kind
value appropriate for the 10646 character set, or to indicate
that is it not supported by the compiler. Selected_char_kind
accepts three argument values: “ASCII”, “DEFAULT”, and
“ISO_10646”. For Cray systems, “ASCII” and
“DEFAULT” will return the same result value since the
default character set is ASCII. Example:

integer,parameter :: usc4 = &
 selected_char_kind(‘iso_10646’)

character(len=5,kind=usc4) :: c

c = usc4_” “

Text encoding

Support for character variables containing ISO 10646

characters is complemented by I/O support for files
containing a standard encoding, called Unicode, of the ISO
10646 characters. Records from a file containing these
characters should be transferred to and from character
variables with the ISO kind type. The encoding keyword
values are ‘utf-8’ and ‘default’. The default is ‘default’ and
corresponds to ASCII on Cray systems. Example:

open(unit=10, …, encoding=’utf-8’, …)

4. Fortran 2008

With the completion of the Fortran 2003 standard, the

attention of the Fortran standardization process has turned to
the next standard, tentatively referred to as Fortran 2008.
Proposals have been submitted to WG5, the ISO level
policy setting committee for Fortran, over the past two
years. A meeting of WG5 was held in Delft, The
Netherlands, during the week of May 9, 2005 to decide on
an initial list of features for the next standard. Proposals that
were submitted were put into one of 4 groups. The Group A
proposals were the highest priority and should be put into
the next standard. The group B proposals were desirable
and should be included if time permits in the document
editing process. Group C proposals were those on which
consensus could not be reached, and Group D proposals
were rejected at this time. A second WG5 meeting will be
held in February, 2006, to access the editing progress and
set the final list. Before that meeting there will be two
meetings of J3, the body tasked with writing the standard
document, where creating the edits needed to add the new
features will be the main focus. The likelihood that all of
the Group A features will be in the final standard is very
high. The fate of the Group B features will be determined
by the amount of time available.

The Group A features are:

Submodules
Co-arrays
DO Concurrent construct
Contiguous attribute
Intent(scratch) attribute
internal procedures as arguments and targets
pointer valued functions as actual arguments
require 64-bit integer support
standard form of ‘call system()’
rank up to 15
additional math intrinsics
enhanced STOP statement
decimal arithmetic
allow empty contains section
allow type(intrinsic-type)
allow ASCII as arguments to lexical intrinsics
move ENTRY to the obsolescent list
move statement functions to the deleted list

The Group B features are:

Parameterized modules
BITS intrinsic data type
C interoperability with allocatable and pointers
C interoperability with optional arguments
EXIT from additional labeled constructs

CUG 2005 Proceedings 16

non-null pointer initialization
pointer valued function ref on lhs
assignment for allocatable polymorphics
additional intrinsics from libm and HPF
CSV file support
parameter size from initialization expression
generic resolution from pointer/allocatable
generic resolution from procedure/variable
conformance to the IEEE 754R standard
separate definition of complex parts
IO_UNIT data type

In the following sections the Group A and Group B

features will be discussed in more detail. The Group C and
D proposals will not be discussed.

5. Fortran 2008 Group A features
Submodules

Submodules, also referred to as Enhanced Module

Facilities, have already been specified in detail in ISO/IEC
TR 19767:2004. Submodules provide a mechanism to
separate the interface and implementation parts of a module
procedure. Submodules are described in more detail in a
companion paper in the CUG 2005 proceedings:
“Programming for High Performance Computing in Modern
Fortran”. Submodules enhance programmer productivity
and help reduce program maintenance costs, especially for
large projects.

Co-arrays

Co-arrays provide a direct and simple syntax for

exchanging data between images of a parallel execution, and
intrinsic image synchronization procedures. The inclusion of
co-arrays in Fortran 2008 fundamentally changes Fortran
into a parallel language, recognizing that in that time frame
most systems will contain multiple processor cores. Co-
arrays are the most significant new feature in the Fortran
2008 standard. They are discussed in more detail in a
companion paper in the CUG 2005 proceedings:
“Programming for High Performance Computing in Modern
Fortran”. Co-arrays are a significant programmer
productivity feature as well as a performance feature of
Fortran 2008.

DO Concurrent construct

The DO CONCURRENT construct is a variant of the

DO construct. It uses a loop control syntax like that of the
FORALL construct, but allows a much wider class of
statements than does FORALL. The iterations of the
construct may be executed in any order, or in parallel. The
concurrent construct provides a portable mechanism to

replace vendor specific directives with the same basic
meaning. The goal is to provide the compiler with
significant optimization flexibility that could not be deduced
from the form of the loop statements. The DO
CONCURRENT construct is a performance feature.

Contiguous attribute

A pointer or assumed-shape variable declared with the

contiguous attribute may be assumed to occupy a
contiguous region of memory. This allows the compiler to
use some optimizations, such as loop collapse, that are
otherwise available only to allocatable, explicit-shape, or
assumed-size arrays. The contiguous attribute is a
performance feature.

Intent(scratch) attribute

Specifying intent(scratch) for a dummy argument

indicates that the initial value of the associated actual
argument on entry is not needed and that the final value of
the argument need not be stored. This is a performance
feature.

Internal procedures as arguments and pointer targets

In previous versions of Fortran, an internal procedure

could be referenced only from the host scoping unit or
another internal procedure in the same host. Fortran 2008
relaxes that restriction and allows internal procedures to be
used as actual arguments and to be the targets of procedure
pointers. This is a programmer productivity feature.

Pointer valued functions as actual arguments

If a pointer is supplied as an actual argument

corresponding to a dummy argument that is not a pointer,
the dummy argument is associated with the target of the
pointer actual argument. If the dummy argument has the
intent(out) attribute then the target of the pointer actual
argument shall be definable. If the actual argument is a
function reference that returns a pointer result, then the
dummy argument is still associated with the target of that
pointer. However, the current wording of the Fortran
standard does not allow this in the case where the dummy
argument has intent(out) because the actual argument has
the form of an expression. This feature is intended to correct
that conflict in the wording of the standard, and explicitly
allow the pointer valued function reference as the actual
argument. This feature is a maintenance correction to the
current standard.

CUG 2005 Proceedings 17

Require 64-bit integer support

Essentially all compilers currently support a 64-bit

integer type, though it is not explicitly required by the
standard. This feature makes that requirement explicit, so
that programmers can specify 64-bit integers and remain
within coding guidelines that require standard conformance.
If the processor’s default integer is already 64-bits, then
there is no effective change in the standard. If the default is
different, usually 32 bits, than the new standard will require
a second integer kind be supplied. This feature standardizes
existing practice.

Standard form of ‘call system()’

Most processors provide a mechanism to trigger the

execution of another program, often by calling a subroutine
named ‘system’. The proposal is to require an intrinsic
subroutine named EXECUTE_COMMAND_LINE that
provides a portable means to execute a separate program.
This feature standardizes a common and useful capability.

Rank up to 15

The rank of an array, or the combined rank and co-rank

of a co-array, is extended to 15 with this feature. It has been
several decades since the rank limit was changed from 3 to
7. With much larger modern systems, it seemed reasonable
to increase the limit again. This is nominally a programmer
productivity feature.

Additional math intrinsics

Intrinsic hyperbolic, inverse hyperbolic, and inverse trig

functions with complex arguments are added so that the list
of Fortran math intrinsics is aligned with those required by
C99. This is primarily a maintenance update to Fortran.

Enhanced STOP statement

The STOP statement currently allows an optional

trailing integer value of up to 5 digits. This proposal relaxes
the limit on the size of the integer and allows named integer
constants (parameters). In addition, for a processor-defined
range of values, expected to be small, the value is actually
returned by the program as its exit status. This is a
programmer productivity feature.

Decimal arithmetic

The pending IEEE 754R standard includes support for

decimal floating-point formats and arithmetic. This feature

will provide a means for obtaining KIND values for REAL
decimal objects. The proposal is to add a RADIX=
argument to the selected_real_kind() intrinsic function. On
systems that do not support decimal arithmetic in hardware,
the implementation will likely return a negative value from
selected_real_kind if radix=10 is specified. At this time only
IBM has expressed its intention to support radix 10 reals.
This is part of a larger Group B feature to track the evolving
754R standard.

Allow empty contains section

A contains statement separates the specification part of

a module from the procedure part. It is also used to separate
parts of a derived type. This proposal is to allow a contains
statement even if the part that comes after is empty. This
was a request from authors of automatic code generators.

Allow type(intrinsic-type)

The type() statement is used to declare variable of a

derived type. Derived type names shall not be the same as
an intrinsic type name, so there is no syntax conflict to
allow, for example, ‘type(real)’ to be an alternate spelling
for ‘real’. This proposal removes the restriction that intrinsic
type names are not allowed in type() statements. This was a
request from authors of automatic code generators.

Allow ASCII as arguments to lexical intrinsics

Four intrinsic functions, LLT, LLE, LGE, and LGT,

provide character comparisons according to the ordering of
the ASCII character set, independent of the kind of the
default character set. The arguments are currently restricted
to be default character. This proposal expands this to also
allow ASCII character arguments in the case where they are
not the default. While this is very unusual today, in the
future some systems might use the ISO characters as the
default kind. This is a maintenance update to the standard.

Move ENTRY to the obsolescent list

The Fortran standard maintains a list of obsolescent

features in Annex B. These features are still part of the full
standard, but are candidates for deletion in some future
release. This proposal moves the ENTRY statement to the
list of obsolescent features. This is a maintenance update to
the standard.

CUG 2005 Proceedings 18

Move statement functions to the deleted list

The Fortran standard maintains a list of deleted features
in Annex B. The normative text describing these features is
removed from the main standard and vendors are no longer
required to support them in a standard conforming compiler.
As a practical matter, they are usually still used in older
codes and vendors do not actually delete them. This
proposal moves statement functions to the deleted list.
While having no practical affect on users, it will simplify
maintaining the text of the standard as other new features
are added. This is a maintenance update to the standard.

6. Fortran 2008 Group B features

Parameterized modules

Parameterized modules provide generic programming

functionality to Fortran, and complete the object oriented
programming aspects of the language introduced in Fortran
2003. A parameterized module can have arguments that
correspond to actual arguments that are constants or type
specifiers. The dummy arguments are treated like macros in
the definition of the module. When an instance of the
module is created through a USE or instantiate statement,
the actual arguments are substituted and the resulting
module is compiled for later use as an ordinary module. The
model for this feature comes from Ada. It addresses the
same need as the template facility in C++. This is a large
feature aimed at programmer productivity.

BITS intrinsic data type

A new intrinsic data type, BITS, provides support for

sequences of bits. The bit_size of a data object is set at
compile time but is not restricted to word sizes. A separate
kind parameter determines alignment of the data to ensure
that an efficient implementation is possible. The current
BOZ (binary, octal, hexadecimal) constants will be of type
BITS. Assignment of integer, real, or complex data to a
BITS variable just moves the bits with no format change.
Argument association and pointer association involving
BITS objects also do not change the bit patterns of the data.
The operators .and., .or., .xor., and .not. are defined for
BITS objects and perform the usual bit-wise operations.
Comparison operators (<, <=, ==, /=, >=, and >) are defined
for BITS objects and treat a 1 as larger than 0, with the
comparison starting with the leftmost bits in the object. List-
directed I/O uses Z format for BITS objects. Several new
intrinsic functions are included as part of this feature,

including popcnt, leadz, poppar, trailz, faster shift intrinsics,
and intrinsics for mask generation. This is a large feature
that is aimed at high performance in non-numeric
computations, improved programmer productivity, and
standardization of several existing extensions.

C interoperability with allocatables and pointers

The current C interoperability feature in Fortran does

not allow interoperation with allocatable, pointer, or
assumed-shape Fortran objects. This feature provides a set
of C function prototypes that a C programmer could use to
interoperate with these classes of Fortran objects. Vendors
would provide the actual library routines described by the
prototypes. These routines effectively provide a mechanism
for C programmers to create and extract information from
the Fortran processor’s dope vectors. This feature should
improve program portability and programmer productivity.

C interoperability with optional arguments

Fortran subprograms with optional arguments are not

currently interoperable with C. This feature extends C
interoperability to include Fortran optional dummy
arguments. This feature should improve program portability
and programmer productivity.

EXIT from additional labeled constructs

The EXIT statement allows a user to branch to the

statement following the end of a DO construct. This allows
users to avoid GOTO statements and the associated
statement numbers. This feature extends the use of EXIT to
similar use in labeled IF, select case, select type, and
associate constructs. Exits from the critical construct in the
co-arrays feature would also be allowed. Constructs such as
FORALL that do not currently allow a GOTO statement
would not allow EXIT either. This is a maintenance update
and supports improved code maintainability.

Non-NULL pointer initialization

The only value allowed for a pointer initialization is a

reference to the NULL() intrinsic. This feature would allow
other valid pointer targets as initialization values. Both data
and procedure pointers are included in the proposal. This is
a programmer productivity feature.

Pointer valued function ref as left-hand-side

A pointer on the left hand side of the equals sign in an

ordinary assignment statement causes the value of the
expression on the right had side of the equals sign to define

CUG 2005 Proceedings 19

the target of the pointer. This feature extends the same
functionality to the case where the left hand side is a
reference to a function that returns a pointer. This
functionality is equivalent to pointer assigning the function
result to a temporary pointer and then using that temporary
as the left hand side of the assignment. This is a
maintenance feature to make use of pointers more consistent
in the standard.

Assignment for allocatable polymorphic variable

An allocatable array used as the variable in an

assignment will be automatically allocated or reallocated if
its current shape does not match that of the expression. This
feature extends that idea to polymorphic allocatable
variables. In the current standard, a polymorphic allocatable
variable gets its dynamic type when it is allocated with an
allocate statement. With this new feature, if the current
dynamic type of the variable does not match the actual type
and type parameters of the expression then the variable is
allocated or reallocated with the correct dynamic type and
type parameters before the assignment is done. This feature
improves the internal consistency of the standard and
improves programmer productivity.

Additional intrinsics from limb and HPF

Selected special functions available in libm (Bessel

functions, error function, and the gamma function) often
appear in Fortran programs and are standardized as
language intrinsics by this feature. The function names
become generic, simplifying coding. In addition, the
functionality provided by selected bitwise reduction
functions and prefix and suffix reduction functions from
HPF is added through new language intrinsics by this
feature. This feature mainly standardizes the functionality of
existing extensions.

CSV file support

Comma Separated Value (CSV) files are commonly

produced and consumed by applications like spreadsheets.
Fortran can already read such files with list-directed input
statements. This feature specifies a new form for an output
file that ensures the values are written as a comma-separated
list without repeat factors. This will ease the use of Fortran
in conjunction with such applications.

Parameter size from initialization expression

The length of a character parameter may be specified as

* with the actual length taken from the length of the
initialization expression. This feature extends that
capability to the shape of a parameter array. The array’s

actual shape is taken from the shape of the initialization
expression. This is a programmer productivity feature.

Generic resolution from pointer/allocatable

In the specific interfaces that make up a generic

interface, the dummy argument characteristics must differ
according to a set of rules that ensures that an actual
reference to the generic name can be resolved to only one of
the specific names. This feature relaxes those rules such
that a dummy argument declared with the pointer attribute is
distinguished from an otherwise similar dummy argument
with the allocatable attribute. This is a maintenance update
to the standard.

Generic resolution from procedure/variable

This feature is similar to the one above, except that the

generic resolution rules are relaxed such that a dummy
argument declared to be a procedure is distinguished from
an otherwise similar argument that is a data object. This is a
maintenance update to the standard.

Conformance to the IEEE 754R standard

The current standard contains a large section (Section

14) that provides optional conformance with the IEEE 754
floating point standard. That standard is being updated to
IEEE 754R. At this time the 754R standard is not
completed, but this feature proposes to modify Section 14 as
needed to conform to the new standard when it is available.
The current timetable calls for the content of 754R to be
available in November, 2005. This is a maintenance update
of the standard.

Separate definition of complex parts

This feature specifies a notation that will allow the real

or imaginary part of a complex variable to appear on the left
of the equals sign in an assignment. This allows each part to
be defined separately. This is a programmer productivity
feature.

IO_UNIT data type

A long-standing problem encountered when using

Fortran I/O is not knowing which I/O unit numbers are
available for use. This feature introduces a derived type
defined in the iso_fortran_env module. A variable of that
type can be used instead of an integer file number. An
OPEN statement that included a FILE specifier would return
a value to a variable of this type that is then used in later I/O
statements to refer to the file. The expectation is that the
derived type will have the form of a system dependent file

CUG 2005 Proceedings 20

handle that is directly usable by the I/O library. Since the
system supplies the IO_UNIT value, the user does not need
to keep track of unit numbers. This is a programmer
productivity feature.

Acknowledgments
The author would like to thank the Cray Fortran

compiler group for early implementation of many of the
Fortran 2003 features as well as input on the future
implementation schedule.

About the Author
Bill Long represents Cray as a primary member of the

J3 Fortran standard committee. He is also the primary
author of the Cray Bioinformatics Library, most of which is
written in Fortran 2003. Bill can be reached at Cray Inc.,
1340 Mendota Heights Road, Mendota Heights, MN 55120,
Email: longb@cray.com.

