
Programming for High Performance
Computing in Modern Fortran

Bill Long, Cray Inc.

17-May-2005

5/17/05 2

Concepts in HPC

ß Efficient and structured layout of local data

 - modules and allocatable arrays

ß Efficient operations on local data

 - array operations and loop nest optimizations

ß Efficient and easy to use parallel programming

 - co-arrays

ß Tips on things to avoid

5/17/05 3

Modules - replacement for common and include

ß Modules have specification and procedure parts

ß Specification part may contain

 - named constants (parameters)

 - type definitions

 - data declarations (global data, like common blocks)

 - allocatable objects

 - private objects (names are public or private)

 - public objects

 - protected data (data values are protected)

 - explicit procedure interfaces and generic interfaces

5/17/05 4

Modules continued

ß Procedure parts contain module procedure definitions

 - Interfaces for module procedures are explicit

 - Module procedures have access to all objects in the

 specification part of the module by host association

 - Protected data definable only by a local module procedure

 - Inlining of module procedures is default for X1 compiler

ß Public objects accessed by a USE statement

5/17/05 5

Allocatable arrays

ß Allocatable arrays provide dynamic memory management

ß More efficient than pointers because aliasing issues avoided

ß Makes better use of memory; avoids oversized arrays

 (Arrays in general are a good thing for HPC, of course)

5/17/05 6

Old Fortran example

 integer,parameter :: n1 = 207, n2 = 331, n3 = 501

 real(8) :: grid1(n1,n2,n3),grid2(n1,n2,n3)

 common /gridcb/ grid1,grid2, m1,m2,m3

 call read_data(filename)

 do k=1,m3

 do j=1,m2

 do i=1,m1

 grid2(i,j,k) = grid1(i,j,k)

 end do

 end do

 end do

5/17/05 7

Example using modules and allocatable arrays

 module grids
 real(8),allocatable,dimension(:,:,:) :: grid1,grid2
 integer,protected :: m1,m2,m3
 contains
 subroutine read_data(filename)
 ! reads in m1,m2,m3 from file
 allocate(grid1(m1,m2,m3),grid2(m1,m2,m3))
 ! read in the data for grid1
 end subroutine read_data
 end module grids
!----------------------
 use grids
 call read_data(filename)
 grid2(:,:,:) = grid1(:,:,:)

5/17/05 8

Advantages of the new style

ß Use only the amount of memory needed

ß Assignment performance is much better - loop collapse

ß Values of m1,m2,m3 are protected against accidental definition

ß Only write the declarations once, then USE in each program unit
needing access to the data

ß read routine and the data are packaged together for easier
maintenance

5/17/05 9

Disadvantage of the new style

ß If you modify the code in the read_data subroutine, the module
changes. The make file will cause all files that USE the module to be
recompiled.

5/17/05 10

Submodules (f08 feature)

ß Parent module contains procedure interface information

ß Actual code for the procedure in a submodule of the parent

ß Use separate files for parent and various submodules

ß Programmer only USE’s the parent

ß Changes to procedure code avoids compile cascade

ß Simplifies management of very large projects with many programmers

5/17/05 11

Parallel programming - Co-arrays (f08 feature)

ß With the addition of co-arrays Fortran becomes a fundamentally
parallel language.

5/17/05 12

Parallel programming models

 Shared memory models
 OpenMP
 autotasking
 multithreading

 Distributed memory models
 MPI and PVM
 general, hard to use, performance can be poor
 shmem
 single sided, take advantage of symmetric addresses
 co-arrays
 syntax implementation of shmem

5/17/05 13

co-array syntax - basic

Program consists of multiple identical IMAGES (SPMD model)

real :: X(100)[*], S[*]

 X is the array on this image
 X(:)[4] is the array on image # 4

 S is the scalar on this image
 S[4] is the scalar on image #4

THIS_IMAGE() returns the number of this image
NUM_IMAGES() returns the number of images

5/17/05 14

co-array syntax - allocatable co-arrays

Allocatable co-arrays are allowed. Must allocate on each image with
the same size.

real :: A(:)[:]

allocate(A(100)[*])

The allocate contains an implicit barrier. Unsaved allocatable co-arrays
are deallocated on exit from a procedure; the implicit deallocate also
contains a barrier.

5/17/05 15

co-array syntax - pointer components

Pointer components provide access to non-symmetric data. Useful for
accessing remote dummy arguments

type ca_pointers
 real,pointer :: a(:),b(:,:)
end type ca_pointers

type(ca_pointers) :: image[*]

image%a => a !set up local pointers to local data
image%b => b
call sync_all()
c(:) = image[4]%a(:) ! get values in A on image 4

5/17/05 16

co-array syntax - allocatable components

Allocatable components provide a way to share objects with different
sizes on each image

type ca_vla
 real,allocatable :: V(:)
end type ca_vla

type(ca_vla) :: image[*]

allocate(image%V(n)) ! local allocate - no barrier
call sync_all()
v1 = image[4]%V(1)

5/17/05 17

sync routines

With a few exceptions, the images execute asynchronously.
If syncs are needed, the user supplies then explicitly.

call sync_all() ! barrier on all images

call sync_team(team_list) ! barrier on the images listed in the
 ! team_list array.

call flush_memory() ! forces memory operation ordering on local image.
 ! included in sync_all and sync_team

call notify_team(team_list) ! check into a barrier, but do not wait
call wait_team(team_list) ! wait for others to check into a barrier

5/17/05 18

Advantages of co-arrays

Very easy to write code - the communication is explicit in the syntax.

No initialize or finalize routines are required

Very few function names to remember - mostly sync routines

Makes use of the Fortran language rules
 built in support for derived types and all intrinsic types
 supports strided and gather/scatter data transfers simply
 type conversions on assignment follow Fortran rules

Optimized implementations can reduce communication overhead

5/17/05 19

Example code - MPI version

 if(Left>=0) then

 call MPI_IRecv(neg_f,(my*mz*iorder/2),MPI_REAL8,Left,1,gcomm,&

 req(1),ierr)

 call MPI_ISend(f(1,1,1),1,xrows_type,Left,2,gcomm,req(2),ierr)

 endif

 if(Right>=0) then

 call MPI_IRecv(pos_f,(my*mz*iorder/2),MPI_REAL8,Right,2,gcomm,&

 req(3),ierr)

 nm = mx + 1 - iorder/2

 call MPI_ISend(f(nm,1,1),1,xrows_type,Right,1,gcomm,req(4),ierr)

 endif

5/17/05 20

Example code - Co-array version

 call sync_all()

 if(Left>0) then

 neg_f(:,:,:)[Left] = f(1:iorder/2,:,:)

 endif

 if(Right>0) then

 nm = mx + 1 - iorder/2

 pos_f(:,:,:)[Right] = f(nm:nm+iorder/2-1,:,:)

 endif

 call sync_all()

5/17/05 21

Happy Users

“Very cool! As far as I am concerned, co-array programming is easy
even when retro-fitting it to another code. It makes sense too. “

 - ORNL

 “It is such an intuitively obvious extension of Fortran90 for parallel
programming that I think everybody should be using it.”

 -ARSC

5/17/05 22

Implementation considerations

SMP machines:

 Treat co-dimensions like extra ordinary dimensions

Distributed memory machines with global addressing:

 Modify the addresses of the remote data with image number
 and just issue load and store instructions

Clusters:

 Compiler converts syntax into shmem calls (worst case).
 Still have all the ease of use advantages.

5/17/05 23

Implementation on single cpu systems

ß THIS_IMAGE() == 1

ß NUM_IMAGES() == 1

ß Ignore the []

ß Ignore the sync routines

ß Only need to parse the syntax

5/17/05 24

Additional co-arrays reading

ß AHPCRC Bulletin 2004 - Vol. 14 No. 4 and references therein,
especially the article by Jef Dawson (Their web site,
www.ahpcrc.org/publications, does not have this one up yet.)

ß Cray’s Fortran Language Reference manual for X1.

ß J3 paper 05-183r1 from meeting 172 at j3-fortran.org

5/17/05 25

Misc programming tips for performance

ß \begin{soap_box}

ß Avoid pointers if target is fixed - use allocatable instead

ß Do not manually unroll loops - let the compiler do it for you

ß Avoid BLAS1 calls - these are one-line array assignments

ß Avoid really long argument lists

ß Just say no to MPI

ß \end{soap_box}

5/17/05 26

Really Last Slide!

ß Thanks to Ted Stern for valuable discussions

ß Thanks to ORNL users for the code examples (abstracted here)

ß Contact information:

 Bill Long

 longb@cray.com

