
FPGA Acceleration of Bioinformatics on the XD1: A Case Study

James Maltby, Cray Inc, Steve Margerm and Jeffrey
Chow,Cray Canada

ABSTRACT: Bioinformatics algorithms are particularly well-suited for FPGA
acceleration because of their natural parallelism and use of subword data types. The
Smith-Waterman algorithm is widely used in Bioinformatics and several FPGA-based
accelerators have been marketed. This paper will describe our experiences porting the
Smith-Waterman algorithm to the CrayXD1Application Accelerator Coprocessor.

KEYWORDS: XD1, FPGA, Bioinformatics, Smith-Waterman

1. Introduction

The use of FPGAs for the acceleration of scientific
applications, also known as Reconfigurable Computing,
is an exciting field of current research. However, the
characteristics of the application must be well matched to
the characteristics of FPGAs and the acceleration
platform, in this case the Cray XD1. In this paper we will
examine a typical bioinformatics algorithm, Smith-
Waterman, and describe how we accelerated it on the
Cray XD1. We will examine what issues need to be
considered to achieve maximum performance in this
system. We will also describe our logical implementation
on the FPGA and how it communicates with the host
processor.

Because FPGA programs (or “cores”) are currently
more time-consuming to generate than applications coded
in higher-level languages, it is best to select an
application that has one or two computation-intensive
routines that use the majority of the time in the algorithm.
FPGAs are also more well suited to integer, character and
subword operations than floating-point operations,
because of the large size of floating-point units relative to
the current generation of FPGAs. Finally, it is important
that the algorithm display a high degree of inherent
parallelism to take advantage of the parallelism possible
in an FPGA core.

Many bioinformatics algorithms display the
characteristics mentioned above. For this reason we chose
a well known algorithm from bioinformatics, the Smith-
Waterman algorithm to demonstrate the speedups
possible with FPGA acceleration. The Smith-Waterman

algorithm has been accelerated usings FPGAs before by
Compugen, TimeLogic and Starbridge, and using ASICs
by Paracel.

2. The Cray XD1 Applications Acceleration
Coprocessor

A unique feature of the Cray XD1 is the Application

Acceleration Co-processor, shown in Figure 1.

Figure 1. Cray XD1 Chassis with Application Accelerator

CUG 2005 Proceedings 1 of 5

A Xilinx Virtex-II Pro VP50 FPGA is mounted on a
daughterboard or “Expansion Module” on each SMP
blade of an XD1 chassis. The FPGA chip is used as a
coprocessor to the two Opterons in the SMP in order to
speed up applications, hence the name. The expansion
module contains 16 MB of high-speed QDR II static
RAM as workspace for the FPGA.

The Expansion Module also contains a second Rapid
Array Processor (RAP) to improve total system
bandwidth. The FPGA is directly connected to the second
RAP via a Hypertransport-like link called Rapid
Transport (RT). This enables the FPGA to communicate
with the local Opterons or the Rapid Array network with
low latency and very high bandwidth- up to 3.2 Gbyte/sec
bi-directional. This close coupling between the FPGA
coprocessor and the host processors is very important
when an application is split between the Opteron and
coprocessor. In most typical systems the FPGAs are on a
separate plug-in card on the PCI-X bus, and thus suffer
increased latency and bandwidth restrictions.

When partitioning the application workload between
the Opteron and FPGA, it is helpful to think of them as
two different processor types working together. The
Opteron is a fast, serial processor running at 2.4 GHz
with 4-8 GB of RAM, optimised for floating-point work.
The FPGA can be thought of as a slower but highly
parallel processor running at 200 MHz with 16 MB of
RAM, best suited for integer, logical and subword
operations.

3. The Smith-Waterman Algorithm
The Smith Waterman dynamic programming

algorithm is widely used in bioinformatics for biological
sequence matching. It can be shown to give a provably
optimum alignment, but it is an order of magnitude
slower than heuristic methods such as BLAST. There is a
rapid growth in the bioinformatics sequence databases
and the scanning time to find sequence similarities is not
getting shorter. The need for faster sequence scanning
times and higher quality answers has fuelled the
development of Smith Waterman hardware accelerators.

Dynamic programming is a method which uses
nearest neighbour scores to compute a new score as
sequence characters are evaluated over a database
sequence. Higher scores identify goodness of sequence
matches. The nature of the dynamic programming
algorithm make it a good fit for fine grained parallelism
using FPGAs to implement multiple processing elements
(PEs).

Given two strings S1 and S2 of length s1 and s2
where s1>s2. We orient the shorter sequence S2 along
the horizontal axis of scoring matrix S(y,x) and the longer
sequence S1 along the vertical axis of scoring matrix
S(y,x). The longer sequence is generally associated with
a database sequence and the shorter sequence is generally
associated as the target sequence. The scores matrix

S(y,x) can be computed with the Smith Waterman
dynamic programming algorithm described in the
following equations, shown in Figure 2.

eogVH
ySxS

and

xgivenafor
eogxyS

exyV
xyV

ygivenafor
eogxyS

exyH
xyH

where
sysxfor

exyV
exyH

eogxyS
eogxyS

cxcySubxyS

xyS

−==
==

⎭
⎬
⎫

⎩
⎨
⎧

−−
−−

=

⎭
⎬
⎫

⎩
⎨
⎧

−−
−−

=

≤≤≤≤

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−−
−−

−−
−−

+−−

=

)0()0(
0)0,(),0(

:
),1(

),1(
max),(

)1,(
)1,(

max),(

:
21,11

),1(
,)1,(
,),1(
,)1,(

),,()1,1(
,0

max),(

Figure 2. Smith-Waterman Equations

Sub(cy,cx) is a character substitution cost table that
gives high scores for perfect match and lower scores for
probable match. H(y,x) and V(y,x) are gap penalties
associated with opening a gap and extending a gap in the
sequence substitution. H(y,x) and V(y,x) is associated
with opening gaps in the horizontal and vertical direction
respectively. The value ‘eog’ is the cost of opening a gap
and the value ‘e’ is the cost of extending a gap. Each
value computed in S(y,x) come from one of 3 possible
neighbour computations:

i) From the left or horizontal neighbour. This

would open a gap in the string S1 along the
vertical axis of S(y,x).

ii) From above or vertical neighbour. This
would open a gap in the string S2 along the
horizontal axis of S(y,x).

iii) From the upper left diagonal neighbour.
This would mean a good match from
character S1(y) and character S2(x).

The resulting S(y,x) give the similarity of the two

segments of S1 and S2 in each (y,x) position. The
sequence segment resulting in a similarity score in
location S(y,x) can be determined by a traceback
procedure which follows the path towards the origin
S(0,0). For each S(y,x) position, traceback along the path
to the neighbour where the S(y,x) score was derived.
This process is repeated until we arrive a an S(y,x) value

CUG 2005 Proceedings 2 of 5

of 0. Depending on the path which was taken, each
traceback step represents a gap along string S1, a gap
along string S2, or a match in characters from S1 & S2.
The traceback resulting from the largest value of S(y,x) is
considered the most optimal match of subsequences in the
two given sequences. When the derived score is equal
from more than one neighbour, the traceback path is
considered to be equivalent along any of those neighbours
and the path choice is arbitrary.

An example with S1=”ACGAACCCTTGC” and
S2=”ACGTATGC” is illustrated in Figure 3.

 0 A C G T A T G C

0 0 0 0 0 0 0 0 0 0

A 0 2 0 0 0 2 0 0 0

C 0 0 4 2 1 0 1 0 2

G 0 0 2 6 4 3 2 3 1

A 0 2 1 4 5 6 4 3 2

A 0 2 1 3 3 7 5 4 3

C 0 2 4 2 2 5 6 4 6

C 0 0 2 3 1 4 4 5 6

C 0 0 2 1 2 3 3 3 7

T 0 0 0 1 3 2 5 3 5

T 0 0 0 0 3 2 4 4 4

G 0 0 0 2 1 2 2 6 4

C 0 0 2 0 1 0 1 4 8

Figure 3. Example of Smith-Waterman Algorithm

In the example of Figure 3, eog=2, e=1, match=2, mis-
match=-1. The best similarity sequence score is 8 found
in location S(12, 8) with the traceback subsequence
shown in Figure 4.

A C G A A C C C T T G C

 | | | | | | |

A C G T A - - - - T G C

Figure 4. ACGAACCCTTGC match to ACGTA----TGC

4.Implementation Decisions
When porting any algorithm to the XD1 with FPGA,

decisions have to be made about how to partition the
algorithm between the two processors. First, you have to
identify code regions that are highly parallel, but small
enough to fit multiple copies into the FPGA. You have to
keep in mind that the FPGA has relatively limited local
storage, though it is very fast. One of the most important
considerations is the bandwidth between the FPGA and
the Opteron. Though this is higher for the XD1 than for

many other systems, it is possible to generate far more
data on the FPGA than can be sent back over the links to
Opteron memory.

Another important consideration is the data sizes for
the internal and external data used by the FPGA. Since it
is not restricted to any particular size, any number of bits
may be used.

When porting the Smith-Waterman algorithm, it can
be seen that filling the scoring matrix (“forward pass”) is
highly parallel, while the “traceback” is inherently serial.
Filling the scoring matrix also represents the vast majority
of the workload. It would then make sense to put the
forward pass on the FPGA while putting the traceback
and alignment on the Opteron. Unfortunately, bandwidth
limitations prevent sending the entire scoring matrix back,
since this would take longer than it took to calculate. The
local memory of the FPGA would also limit how large a
comparison could be done in a single pass. The matrix
grows in size as the product of the length of the two
strings, and can get quite large. It was decided to use the
FPGA for scoring only, and for high-scoring matches that
required an alignment the scoring matrix could be re-
generated on the Opteron. This would seem inefficient,
but in most library searches only one in 10,000 matches
will need an alignment also.

For external data sizes we chose four bits for
nucleotides and eight bits for amino acids. Internally, the
scoring matrix is stored as 32 bits while the gap penalties
and substitution matrix are stored as eight bits. The
traceback information is stored in two bits.

5. Logic Design
We implemented the Smith-Waterman algorithm in

an FPGA core called SWA, for Smith Waterman
Accelerator. The SWA top level architecture consists of
the RT Core, QDR II Core and a User Application block.
The User Application Block contains all of the FPGA
source code unique to the SWA application. The RT
Core and QDR II core are standard IP blocks provided by
Cray Inc. to enable communication with other devices
over the fabric and access to the external QDR II RAMs.

The User Application Block consists of three sub-
blocks: the RT Client, the Smith Waterman Processing
Element (SWPE), and the Smith Waterman Control
Element (SWCE). The RT Client provides a set of
control and status registers for the design that allow an
external device connected to the fabric (in this case the
local node) to initialize and configure the SWA FPGA.
The SWPE block computes a single similarity score and
provides traceback information given two sequence
characters. The SWCE controls the sequence characters
and handles the transfer of computed information
between the SWPE and memory.

The RT Core provides the fabric request interface
which allows the local node to access the registers in the
RT Client.

CUG 2005 Proceedings 3 of 5

The following figure shows the architecture of the
SWA FPGA design.

QDR II Core

User Application

RT Client

Control

re
q

re
sp

da
ta

SW Array

SWPE
1

SWPE
2

SWPE
n

. . .

Traceback

Score Score

Traceback

RT Core

co
nt

ro
l

st
at

us

Figure 5. Architectural Block Diagram

The Smith Waterman Processing Element (SWPE)

block implements the scoring function of the Smith
Waterman algorithm. Each SWPE can compute one
score for the scoring matrix. The SWPE is arranged in a
linear unidirectional systolic array as shown in Figure 6.

. . .
SWPE(s2-2)

“T”

Traceback

Score

SWPE(s2-1)
“G”

Traceback

Score

SWPE(s2)
“C”

Traceback

Score

SWPE(1)
“A”

Traceback

Score

SWPE(2)
“C”

Traceback

Score

 CGT. . . AGCA
S1 =

Figure 6. Smith-Waterman Systolic Array of Processing
Elements

In Figure 6 database stream S1 is clocked into the SWPE
one character at a time. When character S1(1) enters
SWPE(1), the score and traceback information is
computed for location S(1,1). The next computations
occur when S1(1) enters SWPE(2) and S1(2) enters
S1(1). The score and traceback information is computed
for S(2,1) and S(1,2). This process continues until all
characters of S1 enter SWPE(1) and exit SWPE(s2). The

complete S(y,x) matrix is computed with elements along
the minor diagonal computed in parallel as shown in
Figure 7.

 0 A C G T A T G C

0

A 2 0 0 0 2 0 0 0

C 0 4 2 1 0 1 0 2

G 0 2 6 4 3 2 3 1

A 2 1 4 5 6 4 3 2

A 2 1 3 3 7 5 4 3

C 2 4 2 2 5 6 4 6

C 0 2 3 1 4 4 5 6

C 0 2 1 2 3 3 3 7

T 0 0 1 3 2 5 3 5

T 0 0 0 3 2 4 4 4

G 0 0 2 1 2 2 6 4

C 0 2 0 1 0 1 4 8

Figure 7. Parallel Computation of the Smith-Waterman
Algorithm

The SWPE generates one 32 bit score and one 2 bit

traceback per character comparison. Based on the
number of SWPE which could fit on an FPGA, a large
amount of data is generated in parallel. The RT interface
can transfer slightly less than one quadword (64 bits)
every 5 nanoseconds (200 MHz) to user ram. Therefore,
more scoring matrix information is generated than the
memory bandwidth to the user space. Even if the the
traceback information only were sent back, this would
become the dominant time usage in the algorithm.
Therefore we decided to re-generate the matrix in
Opteron memory in the (relatively rare) cases in which it
was needed.

The actual SWPE block implementing the equations

given in Figure 2 is shown below, on the next page.

CUG 2005 Proceedings 4 of 5

Target
Character

(S2)

Substitution
Scores Lookup

Table

DB Character
(S1)

4

+
8

Diagonal

Gap H

Prev H

Prev V

Gap V

Max

8 bit signed gap

Max

-
eog

- e

-
eog

- e Max

0

gaph

Score

Traceback

32

32

32

32

32

Score In

Gap H In

Smith Waterman Processing Element

Score

2

32

32

4

Char In
Char Out

Valid Flag In

Valid Flag Out

Valid Flag

Sync Preset = 0

Sync Preset = -(max)

Sync Preset = 0

Figure 8. Smith-Waterman Processing Element

The SWPE block illustrated in Figure 8 shows all the

components needed to implement the SW equations. The
target sequence (S2) is expected to be shorter than the
database (DB) sequence (S1). The SWPE is architected
to have each character of the shorter sequence contained
within the PE. The longer sequence is clocked through
the all the PEs. This structure minimizes the number of
times that the PEs need to be reloaded to extend the target
sequence in situations where the target sequence is longer
than the amount of PEs. The reloading process would
require computations to stop and new target characters
reprogrammed into the PE. The PEs are designed to have
the target characters implemented as memory elements so
that the FPGA configuration file does not need to be
reloaded.

6. Performance Predictions
Performance of a Smith-Waterman algorithm is

usually measured in Cell Updates Per Second (CUPS), or
the number of cells in the scoring matrix that can be
calculated per second. For our architecture, this rate can
be calculated as:

Rate = FPGA freq. X clocks/cell X no. of SWPEs

For our current SWA core, the FPGA frequency is 80

MHZ, the number of clock cycles per cell update is 1, and
the number of SWPES in the core is 32. This leads to a
theoretical rate of 2.6 Billion CUPS. By overlapping

computation and communications, we have been able to
achieve 2.5 Billion CUPS on a real benchmark problem.
For comparison, we ran the same benchmark problem on
the Opteron only using the public-domain Smith-
Waterman program SSEARCH34, part of the FASTA
package. It achieved about 100 Million CUPS on the
same benchmark. Thus, by using the FPGA we were able
to achieve a 25-fold speedup over the Opteron alone.

The current core with 32 SWPEs only occupies about
60% of the FPGA, so it will be possible to fit more
SWPEs on the current Virtex II Pro chip. However, a
significant opportunity for speedup will occur in Q4 ’05,
when the new Xilinx Virtex 4 FPGAs become available
on the XD1. These chips contain approximately three
times as many gates as the current Virtex IIs, and run at a
somewhat increased clock frequency. With these new
FPGAs it may well be possible to achieve 10 Billion
CUPS or more.

7. Conclusions
The FPGA Application Acceleration Coprocessor on

the Cray XD1 can offer a significant speedup over the
Opteron processor alone on selected algorithms. It is
necessary that the application have sufficient parallelism ,
proper workload distribution and appropriate data types
for FPGA acceleration. A typical bioinformatics
algorithm, Smith-Waterman, has shown these
characteristics and many others are possible.

Careful attention must be paid to how the algorithm
is partitioned between the Opteron and FPGA to achieve
best use of the two processors. Bandwidth between the
Opteron and the coprocessor is important, as well as
appropriate choice of internal and external data sizes.

This new model of computing offers a real
opportunity for high performance applications,
particularly as newer and more capable FPGA chips
become commercially available.

About the Authors
Jim Maltby is an applications engineer at the Seattle,

Washington facility of Cray, Inc. Steve Margerm and
Jeffrey Chow are hardware engineers at Cray Canada in
Burnaby, BC.

CUG 2005 Proceedings 5 of 5

	1. Introduction
	3. The Smith-Waterman Algorithm
	4.Implementation Decisions
	5. Logic Design
	6. Performance Predictions
	7. Conclusions
	About the Authors

