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ABSTRACT: Bioinformatics algorithms are particularly well-suited for FPGA 
acceleration because of their natural parallelism and use of subword data types.  The 
Smith-Waterman algorithm is widely used in Bioinformatics and several FPGA-based 
accelerators have been marketed.  This paper will describe our experiences porting the 
Smith-Waterman algorithm to the CrayXD1Application Accelerator Coprocessor. 
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1. Introduction 
 

The use of FPGAs for the acceleration of scientific 
applications, also known as Reconfigurable Computing, 
is an exciting field of current research.  However, the 
characteristics of the application must be well matched to 
the characteristics of FPGAs and the acceleration 
platform, in this case the Cray XD1.  In this paper we will 
examine a typical bioinformatics algorithm, Smith-
Waterman, and describe how we accelerated it on the 
Cray XD1.  We will examine what issues need to be 
considered to achieve maximum performance in this 
system. We will also  describe our logical implementation 
on the FPGA and how it communicates with the host 
processor. 

Because FPGA programs (or “cores”) are currently 
more time-consuming to generate than applications coded 
in higher-level languages, it is best to select an 
application that has one or two computation-intensive 
routines that use the majority of the time in the algorithm. 
FPGAs are also more well suited to integer, character and 
subword operations than floating-point operations, 
because of the large size of floating-point units relative to 
the current generation of FPGAs.  Finally, it is important 
that the algorithm display a high degree of inherent 
parallelism to take advantage of the parallelism possible 
in an FPGA core. 

Many bioinformatics algorithms display the 
characteristics mentioned above. For this reason we chose 
a well known algorithm from bioinformatics, the Smith-
Waterman algorithm to demonstrate the speedups 
possible with FPGA acceleration. The Smith-Waterman 

algorithm has been accelerated usings FPGAs before by 
Compugen, TimeLogic and Starbridge, and using ASICs 
by Paracel. 

2. The Cray XD1 Applications Acceleration 
Coprocessor 

 
A unique feature of the Cray XD1 is the Application 

Acceleration Co-processor, shown in Figure 1.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Cray XD1 Chassis with Application Accelerator 
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A Xilinx Virtex-II Pro VP50 FPGA is mounted on a 
daughterboard or “Expansion Module” on each SMP 
blade of an XD1 chassis. The FPGA chip is used as a 
coprocessor to the two Opterons in the SMP in order to 
speed up applications, hence the name.  The expansion 
module contains 16 MB of high-speed QDR II static 
RAM as workspace for the FPGA. 

The Expansion Module also contains a second Rapid 
Array Processor (RAP) to improve total system 
bandwidth. The FPGA is directly connected to the second 
RAP via a Hypertransport-like link called Rapid 
Transport (RT).  This enables the FPGA to communicate 
with the local Opterons or the Rapid Array network with 
low latency and very high bandwidth- up to 3.2 Gbyte/sec 
bi-directional.  This close coupling between the FPGA 
coprocessor and the host processors is very important 
when an application is split between the Opteron and 
coprocessor.  In most typical systems the FPGAs are on a 
separate plug-in card on the PCI-X bus, and thus suffer 
increased latency and bandwidth restrictions. 

When partitioning the application workload between 
the Opteron and FPGA, it is helpful to think of them as 
two different processor types working together.  The 
Opteron is a fast, serial processor running at 2.4 GHz 
with 4-8 GB of RAM, optimised for floating-point work.  
The FPGA can be thought of as a slower but highly 
parallel processor running at 200 MHz with 16 MB of 
RAM, best suited for integer, logical and subword 
operations. 

3. The Smith-Waterman Algorithm 
The Smith Waterman dynamic programming 

algorithm is widely used in bioinformatics for biological 
sequence matching. It can be shown to give a provably 
optimum alignment, but it is an order of magnitude 
slower than heuristic methods such as BLAST. There is a 
rapid growth in the bioinformatics sequence databases 
and the scanning time to find sequence similarities is not 
getting shorter.  The need for faster sequence scanning 
times and higher quality answers has fuelled the 
development of Smith Waterman hardware accelerators. 

Dynamic programming is a method which uses 
nearest neighbour scores to compute a new score as 
sequence characters are evaluated over a database 
sequence.  Higher scores identify goodness of sequence 
matches.  The nature of the dynamic programming 
algorithm make it a good fit for fine grained parallelism 
using FPGAs to implement multiple processing elements 
(PEs). 

Given two strings S1 and S2 of length s1 and s2 
where s1>s2.  We orient the shorter sequence S2 along 
the horizontal axis of scoring matrix S(y,x) and the longer 
sequence S1 along the vertical axis of scoring matrix 
S(y,x).  The longer sequence is generally associated with 
a database sequence and the shorter sequence is generally 
associated as the target sequence.  The scores matrix 

S(y,x) can be computed with the Smith Waterman 
dynamic programming algorithm described in the 
following equations, shown in Figure 2. 
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Figure 2.  Smith-Waterman Equations 
 

Sub(cy,cx) is a character substitution cost table that 
gives high scores for perfect match and lower scores for 
probable match.  H(y,x) and V(y,x) are gap penalties 
associated with opening a gap and extending a gap in the 
sequence substitution.  H(y,x) and V(y,x) is associated 
with opening gaps in the horizontal and vertical direction 
respectively. The value ‘eog’ is the cost of opening a gap 
and the value ‘e’ is the cost of extending a gap.  Each 
value computed in S(y,x) come from one of 3 possible 
neighbour computations:  

 
i) From the left or horizontal neighbour.  This 

would open a gap in the string S1 along the 
vertical axis of S(y,x). 

ii) From above or vertical neighbour.  This 
would open a gap in the string S2 along the 
horizontal axis of S(y,x). 

iii) From the upper left diagonal neighbour.  
This would mean a good match from 
character S1(y) and character S2(x). 

 
The resulting S(y,x) give the similarity of the two 

segments of S1 and S2 in each (y,x) position.  The 
sequence segment resulting in a similarity score in 
location S(y,x) can be determined by a traceback 
procedure which follows the path towards the origin 
S(0,0).  For each S(y,x) position, traceback along the path 
to the neighbour where the S(y,x) score was derived.  
This process is repeated until we arrive a an S(y,x) value 
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of 0.   Depending on the path which was taken, each 
traceback step represents a gap along string S1, a gap 
along string S2, or a match in characters from S1 & S2.  
The traceback resulting from the largest value of S(y,x) is 
considered the most optimal match of subsequences in the 
two given sequences. When the derived score is equal 
from more than one neighbour, the traceback path is 
considered to be equivalent along any of those neighbours 
and the path choice is arbitrary. 

An example with S1=”ACGAACCCTTGC” and 
S2=”ACGTATGC” is illustrated in Figure 3. 

 
 0 A C G T A T G C 

0 0 0 0 0 0 0 0 0 0 

A 0 2 0 0 0 2 0 0 0 

C 0 0 4 2 1 0 1 0 2 

G 0 0 2 6 4 3 2 3 1 

A 0 2 1 4 5 6 4 3 2 

A 0 2 1 3 3 7 5 4 3 

C 0 2 4 2 2 5 6 4 6 

C 0 0 2 3 1 4 4 5 6 

C 0 0 2 1 2 3 3 3 7 

T 0 0 0 1 3 2 5 3 5 

T 0 0 0 0 3 2 4 4 4 

G 0 0 0 2 1 2 2 6 4 

C 0 0 2 0 1 0 1 4 8 

 
 
Figure 3. Example of Smith-Waterman Algorithm 

In the example of Figure 3, eog=2, e=1, match=2, mis-
match=-1.  The best similarity sequence score is 8 found 
in location S(12, 8) with the traceback subsequence 
shown in Figure 4. 

A C G A A C C C T T G C 

 | |   |  |          |  | | 

A C G T A - - - - T G C 

 
 
Figure 4.  ACGAACCCTTGC match to ACGTA----TGC 

 

4.Implementation Decisions 
When porting any algorithm to the XD1 with FPGA, 

decisions have to be made about how to partition the 
algorithm between the two processors.  First, you have to 
identify code regions that are highly parallel, but small 
enough to fit multiple copies into the FPGA.  You have to 
keep in mind that the FPGA has relatively limited local 
storage, though it is very fast.  One of the most important 
considerations is the bandwidth between the FPGA and 
the Opteron.  Though this is higher for the XD1 than for 

many other systems, it is possible to generate far more 
data on the FPGA than can be sent back over the links to 
Opteron memory. 

Another important consideration is the data sizes for 
the internal and external data used by the FPGA.  Since it 
is not restricted to any particular size, any number of bits 
may be used. 

When porting the Smith-Waterman algorithm, it can 
be seen that filling the scoring matrix (“forward pass”) is 
highly parallel, while the “traceback” is inherently serial. 
Filling the scoring matrix also represents the vast majority 
of the workload.  It would then make sense to put the 
forward pass on the FPGA while putting the traceback 
and alignment on the Opteron.  Unfortunately, bandwidth 
limitations prevent sending the entire scoring matrix back, 
since this would take longer than it took to calculate.  The 
local memory of the FPGA would also limit how large a 
comparison could be done in a single pass.  The matrix 
grows in size as the product of the length of the two 
strings, and can get quite large. It was decided to use the 
FPGA for scoring only, and for high-scoring matches that 
required an alignment the scoring matrix could be re-
generated on the Opteron.  This would seem inefficient, 
but in most library searches only one in 10,000 matches 
will need an alignment also. 

For external data sizes we chose four bits for 
nucleotides and eight bits for amino acids.  Internally, the 
scoring matrix is stored as 32 bits while the gap penalties 
and substitution matrix are stored as eight bits.  The 
traceback information is stored in two bits. 

5. Logic Design 
We implemented the Smith-Waterman algorithm in 

an FPGA core called SWA, for Smith Waterman 
Accelerator.  The SWA top level architecture consists of 
the RT Core, QDR II Core and a User Application block.  
The User Application Block contains all of the FPGA 
source code unique to the SWA application.  The RT 
Core and QDR II core are standard IP blocks provided by 
Cray Inc. to enable communication with other devices 
over the fabric and access to the external QDR II RAMs. 

The User Application Block consists of three sub-
blocks: the RT Client, the Smith Waterman Processing 
Element (SWPE), and the Smith Waterman Control 
Element (SWCE).  The RT Client provides a set of 
control and status registers for the design that allow an 
external device connected to the fabric (in this case the 
local node) to initialize and configure the SWA FPGA.  
The SWPE block computes a single similarity score and 
provides traceback information given two sequence 
characters. The SWCE controls the sequence characters 
and handles the transfer of computed information 
between the SWPE and memory. 

The RT Core provides the fabric request interface 
which allows the local node to access the registers in the 
RT Client. 
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The following figure shows the architecture of the 
SWA FPGA design. 
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Figure 5.  Architectural Block Diagram 

 
The Smith Waterman Processing Element (SWPE) 

block implements the scoring function of the Smith 
Waterman algorithm.  Each SWPE can compute one 
score for the scoring matrix.  The SWPE is arranged in a 
linear unidirectional systolic array as shown in Figure 6. 

. . .
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SWPE(s2)
“C”

Traceback

Score

SWPE(1)
“A”

Traceback

Score

SWPE(2)
“C”

Traceback

Score

 CGT. . . AGCA
S1 =

Figure 6.  Smith-Waterman Systolic Array of Processing 
Elements 

In Figure 6 database stream S1 is clocked into the SWPE 
one character at a time.  When character S1(1) enters 
SWPE(1), the score and traceback information is 
computed for location S(1,1).  The next computations 
occur when S1(1) enters SWPE(2) and S1(2) enters 
S1(1). The score and traceback information is computed 
for S(2,1) and S(1,2).  This process continues until all 
characters of S1 enter SWPE(1) and exit SWPE(s2).  The 

complete S(y,x) matrix is computed with elements along 
the minor diagonal computed in parallel as shown in 
Figure 7.  

 0 A C G T A T G C 

0                   

A   2 0 0 0 2 0 0 0 

C   0 4 2 1 0 1 0 2 

G   0 2 6 4 3 2 3 1 

A   2 1 4 5 6 4 3 2 

A   2 1 3 3 7 5 4 3 

C   2 4 2 2 5 6 4 6 

C   0 2 3 1 4 4 5 6 

C   0 2 1 2 3 3 3 7 

T   0 0 1 3 2 5 3 5 

T   0 0 0 3 2 4 4 4 

G   0 0 2 1 2 2 6 4 

C   0 2 0 1 0 1 4 8 

 
 

Figure 7.  Parallel Computation of the Smith-Waterman 
Algorithm 

 
The SWPE generates one 32 bit score and one 2 bit 

traceback per character comparison.  Based on the 
number of SWPE which could fit on an FPGA, a large 
amount of data is generated in parallel.  The RT interface 
can transfer slightly less than one quadword (64 bits) 
every 5 nanoseconds (200 MHz) to user ram.  Therefore, 
more scoring matrix information is generated than the 
memory bandwidth to the user space.  Even if the the 
traceback information only were sent back, this would 
become the dominant time usage in the algorithm.  
Therefore we decided to re-generate the matrix in 
Opteron memory in the (relatively rare) cases in which it 
was needed. 

 
The actual SWPE block implementing the equations 

given in Figure 2 is shown below, on the next page. 
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Figure 8.  Smith-Waterman Processing Element 
 
The SWPE block illustrated in Figure 8 shows all the 

components needed to implement the SW equations.  The 
target sequence (S2) is expected to be shorter than the 
database (DB) sequence (S1).  The SWPE is architected 
to have each character of the shorter sequence contained 
within the PE.  The longer sequence is clocked through 
the all the PEs.  This structure minimizes the number of 
times that the PEs need to be reloaded to extend the target 
sequence in situations where the target sequence is longer 
than the amount of PEs.  The reloading process would 
require computations to stop and new target characters 
reprogrammed into the PE.  The PEs are designed to have 
the target characters implemented as memory elements so 
that the FPGA configuration file does not need to be 
reloaded. 
 

6. Performance Predictions 
Performance of a Smith-Waterman algorithm is 

usually measured in Cell Updates Per Second (CUPS), or 
the number of cells in the scoring matrix that can be 
calculated per second.  For our architecture, this rate can 
be calculated as: 

 
Rate = FPGA freq. X clocks/cell X no. of SWPEs 
 
For our current SWA core, the FPGA frequency is 80 

MHZ, the number of clock cycles per cell update is 1, and 
the number of SWPES in the core is 32.  This leads to a 
theoretical rate of 2.6 Billion CUPS.  By overlapping 

computation and communications, we have been able to 
achieve 2.5 Billion CUPS on a real benchmark problem.  
For comparison, we ran the same benchmark problem on 
the Opteron only using the public-domain Smith-
Waterman program SSEARCH34, part of the FASTA 
package.  It achieved about 100 Million CUPS on the 
same benchmark.  Thus, by using the FPGA we were able 
to achieve a 25-fold speedup over the Opteron alone.  

The current core with 32 SWPEs only occupies about 
60% of the FPGA, so it will be possible to fit more 
SWPEs on the current Virtex II Pro chip.  However, a 
significant opportunity for speedup will occur in Q4 ’05, 
when the new Xilinx Virtex 4 FPGAs become available 
on the XD1.  These chips contain approximately three 
times as many gates as the current Virtex IIs, and run at a 
somewhat increased clock frequency.  With these new 
FPGAs it may well be possible to achieve 10 Billion 
CUPS or more. 

 

7. Conclusions 
The FPGA Application Acceleration Coprocessor on 

the Cray XD1 can offer a significant speedup over the 
Opteron processor alone on selected algorithms.  It is 
necessary that the application have sufficient parallelism , 
proper workload distribution and appropriate data types 
for FPGA acceleration. A typical bioinformatics 
algorithm, Smith-Waterman, has shown these 
characteristics and many others are possible. 

Careful attention must be paid to how the algorithm 
is partitioned between the Opteron and FPGA to achieve 
best use of the two processors.  Bandwidth between the 
Opteron and the coprocessor is important, as well as 
appropriate choice of internal and external data sizes. 

This new model of computing offers a real 
opportunity for high performance applications, 
particularly as newer and more capable FPGA chips 
become commercially available. 
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