
FPGA Acceleration of
Bioinformatics on the XD1

A Case Study
Jim Maltby, Steve Margerm, Jeff Chow

Cray Inc.

Jim Maltby CUG 2005



Outline of Talk

• FPGAs and Bioinformatics on the XD1
• Smith-Waterman Algorithm
• Implementation Decisions
• Logic Design
• Performance Predictions
• Conclusions



FPGAs and Bioinformatics
• When to use FPGA on Cray XD1?

•Code has one or a few bottlenecks
• They must use a significant fraction of runtime
• They should not be too complex

•The bottlenecks are a good fit for FPGA
• Lots of inherent parallelism
• Lots of use per data touch and fit in QDRAM

• Like fft butterfly
• Bit fiddling and subword operations are best

• Bioinformatics is a good fit
•Genomic data is typically stored in 2 to 8 bit quantities
•Bioinformatics algorithms are often highly parallel
•There is little floating point
•Most ops are additions, masking or comparison



Why the XD1?

• One FPGA per Blade (two Opterons)
• Close coupling between FPGA and Opterons, 

direct access to network
• Many other solutions have a cluster of FPGAs on a 

remote (PCI-X?) link
• High-speed memory transfers to and from FPGA 

with high-level API
• Read/write registers
• Memory mapping



Cray XD1 System Architecture 
Compute
• 12 AMD Opteron 32/64 bit, 

x86 processors
• High Performance Linux
RapidArray Interconnect
• 12 communications 

processors
• 1 Tb/s switch fabric
Active Management
• Dedicated processor
Application Acceleration
• 6 co-processors

FPGA and 2nd RAP 
are on Expansion 

Module



High Bandwidth from FPGA to system

QDR SRAM

3.2 GB/s

Application Acceleration FPGA
Xilinx Virtex II Pro

AMD Opteron
HyperTransport

3.2 GB/s

2 GB/s2 GB/s

3.2 GB/s

RAP

3.2 GB/s

3.2 GB/s

3.2 GB/sRapidArray

Cray RapidArray Interconnect



Two processor choices
...
do for each array element

.

.

.
end
…

…

…

Map your algorithms to the 
appropriate processor

Map your algorithms to the Map your algorithms to the 
appropriate processorappropriate processor

Compute
Processor

Application Acceleration FPGA

DataSet 200 MHz

16 MB

parallel

2.4 GHz

4-8 GB

serial



The Smith-Waterman Algorithm

• Genomic comparison and alignment algorithm
• Similar to BLAST, but 10x slower
• Provably optimum- the “gold standard” for 

alignment algorithms
• Based on Dynamic Programming

• Two-step process
• Create scoring matrix and find maximum score

• “forward pass”
• Work back to determine alignment

• “traceback”



Smith-Waterman formulation
• Create a “scoring matrix” with one string along horizontal axis and one 

along vertical axis
• Calculate each cell according to the values of its neighbors above and 

to the left, according to the formula below:

eogVH
ySxS

and

xgivenafor
eogxyS
exyV

xyV

ygivenafor
eogxyS

exyH
xyH

where

sysxfor

eyV
exH
eogxyS
eogxyS

cxcySubxyS

xyS

−==
==

⎭
⎬
⎫

⎩
⎨
⎧

−−
−−

=

⎭
⎬
⎫

⎩
⎨
⎧

−−
−−

=

≤≤≤≤

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−−
−−
−−
−−

+−−

=

)0()0(
0)0,(),0(

:
),1(

),1(
max),(

)1,(
)1,(

max),(

:

21,11

)1(
,)1(

,),1(
,)1,(

),,()1,1(
,0

max),(

S(y-1,x-1) S(y-1,x)

S(y, x-1)
S(x,y)



S-W Example Scoring matrix

0 A C G T A T G C

0 0 0 0 0 0 0 0 0 0

A 0 2 0 0 0 2 0 0 0

C 0 0 4 2 1 0 1 0 2

G 0 0 2 6 4 3 2 3 1

A 0 2 1 4 5 6 4 3 2

A 0 2 1 3 3 7 5 4 3

C 0 2 4 2 2 5 6 4 6

C 0 0 2 3 1 4 4 5 6

C 0 0 2 1 2 3 3 3 7

T 0 0 0 1 3 2 5 3 5

T 0 0 0 0 3 2 4 4 4

G 0 0 0 2 1 2 2 6 4

C 0 0 2 0 1 0 1 4 8

• Alignment of ACGAACCCTTGC 
and ACGTATGC

• Maximum score is 8 (lower right 
corner of matrix)

• Trace back along the path that 
led to the optimum score 
(traceback information not 
shown)

• Final alignment is shown below:

Final Alignment
A C G A A C C C T T G C

|
| | | | | |

A C G T A - - - - T G C



Implementation Decisions
• How to partition algorithm between Opteron and 

FPGA
• Identify code regions which are highly parallel, but 

“small” enough to fit many copies in FPGA
• Remember FPGA has small but very fast memory
• Identify bandwidth limitations between Opteron and 

FPGA
• Determine external and internal FPGA data sizes

• Decide features to support in each core



Parallelization
Filling scoring matrix is parallel along 

antidiagonal, while traceback is serial…
SO…
Put forward pass on FPGA, traceback and 

alignment on Opteron.
BUT…
Scoring matrix would take longer to send 

back than it did to calculate!

Two solutions:
1. Send back traceback information only (2 

bits per cell)
2. Use FPGA for scoring only and 

regenerate matrix on Opteron for top 
scores

Currently, we use (2.)

 0 A C G T A T G C 

0                   

A   2 0 0 0 2 0 0 0 

C   0 4 2 1 0 1 0 2 

G   0 2 6 4 3 2 3 1 

A   2 1 4 5 6 4 3 2 

A   2 1 3 3 7 5 4 3 

C   2 4 2 2 5 6 4 6 

C   0 2 3 1 4 4 5 6 

C   0 2 1 2 3 3 3 7 

T   0 0 1 3 2 5 3 5 

T   0 0 0 3 2 4 4 4 

G   0 0 2 1 2 2 6 4 

C   0 2 0 1 0 1 4 8 

 



Data sizes and features

• Input data can be 4-bit (Nucleotides) or 8-bit 
(Amino acids)
• We are generating two separate FPGA cores

• Keep other data as small as possible
• Scoring matrix, max score – 32 bit
• Traceback – 2 bits
• Gap penalties and substitution matrix – 8 bits

• Support only single affine gap model



Logic Design

• Systolic array of SWPEs (Smith 
Waterman Processing Elements)

• Each calculates one cell, for one 
letter of the query string

• The database string is streamed 
into the array, as shown below:

QDR II Core

User Application

RT Client

Control

re
q

re
sp

d
a

ta

SW Array

SWPE
1

SWPE
2

SWPE
n

. . .

Traceback

Score Score

Traceback

RT Core

co
n
tr

o
l

st
a

tu
s

. . .
SWPE(s2-2)

“T”

Traceback

Score

SWPE(s2-1)
“G”

Traceback

Score

SWPE(s2)
“C”

Traceback

Score

SWPE(1)
“A”

Traceback

Score

SWPE(2)
“C”

Traceback

Score

 CGT. . . AGCA
S1 =

Overall Architecture

Systolic array of SWPEs



• Single SWPE 
Logic Design

eogVH
ySxS

and

xgivenafor
eogxyS
exyV

xyV

ygivenafor
eogxyS
exyH

xyH

where

sysxfor

eyV
exH
eogxyS
eogxyS

cxcySubxyS

xyS

−==
==

⎭
⎬
⎫

⎩
⎨
⎧

−−
−−

=

⎭
⎬
⎫

⎩
⎨
⎧

−−
−−

=

≤≤≤≤

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−−
−−
−−
−−

+−−

=

)0()0(
0)0,(),0(

:
),1(
),1(

max),(

)1,(
)1,(

max),(

:

21,11

)1(
,)1(

,),1(
,)1,(

),,()1,1(
,0

max),(

Target
Character

(S2)

Substitution
Scores Lookup

Table

DB Character
(S1)

4

+
8

Diagonal

Gap H

Prev H

Prev V

Gap V

Max

8 bit signed gap

Max

-
eog

- e

-
eog

- e Max

0

gaph

Score

Traceback

32

32

32

32

32

Score In

Gap H In

Smith Waterman Processing Element

Score

2

32

32

4

Char In
Char Out

Valid Flag In

Valid Flag Out

Valid Flag

Sync Preset = 0

Sync Preset = -(max)

Sync Preset = 0



FPGA to Program Interface

• For individual or small transfers, use FPGA 
registers
• fpga_wrt_appif_value() and fpga_read_appif value()
• Gap penalties, data sizes, flags and max score

• For large data transfers, write directly into FPGA 
memory map with fpga_memmap()
• Substitution table, database and query strings



SWA Memory Map
• Use fpga_memmap() to get pointer, then 

memcpy() or similar to transfer data

8 MB

Character Space

Bulk Write Table Space

Element Array Input Space

E
le

m
en

t A
rr

ay
 R

eg
io

n

Substitution Table Space

Query character 1

Query Character 2

Query Character 3

Query Character N

4 KB

Substitution Table 1

Substitution Table 2

Substitution Table 3

Substitution Table N

4 KB

Bulk Write Tables

Element Array Input

4
MB

Data layout in FPGA memory space



Performance Predictions
• Rate = FPGA freq. X clocks/cell X # SWPEs

• Current unoptimized (working!) design:
• 80 MHz X 1 X 32 = 2.6 Billion Cell Updates Per 

Second (GCUPS) – 60% of chip used
• With optimization:

• 100 MHZ x 1 x 50 = 5.0 GCUPS
• With future Virtex 4 FPGA

• 100 MHZ x 1 x 150 = 15 GCUPS
• SSEARCH34 on Opteron delivers about 100M 

CUPS
• 25x speedup now, more in future



Future work

• Nucleotide core is working, but needs to be 
optimized for longer query strings

• Generate amino acid core (very similar)

• Interface SWA cores to libraries and applications
• Cray Bioinformatics Library
• SSEARCH
• EMBOSS



Conclusions
• The FPGAs on the XD1 can offer a real speedup 

for bioinformatics algorithms
• Careful partitioning of your algorithm is necessary 

for best use of the FPGA feature
• Pay attention to parallelism, complexity and 

memory usage
• Bandwidth, bandwidth bandwidth!

(But if you’re here at CUG you already knew that…)



Thank you!

jmaltby@cray.com
(206) 701-2107

mailto:Jmaltby@cray.com

	FPGA Acceleration of Bioinformatics on the XD1
	Outline of Talk
	FPGAs and Bioinformatics
	Why the XD1?
	Cray XD1 System Architecture
	High Bandwidth from FPGA to system
	Two processor choices
	The Smith-Waterman Algorithm
	Smith-Waterman formulation
	S-W Example
	Implementation Decisions
	Parallelization
	Data sizes and features
	Logic Design
	
	FPGA to Program Interface
	SWA Memory Map
	Performance Predictions
	Future work
	Conclusions
	Thank you!jmaltby@cray.com(206) 701-2107

