
AMOS and UPC
Phil Merkey

Michigan Tech



Definition

A memory operation is atomic in case the only 
observable states for the memory are the state 
before the operation began or the state after 
the operation has completed.

It is as if it happens at the memory location.



Definition

• Link Load / Store Conditional
• Fetch_and_Add     afadd(&p, v)
• return p, set p = p + v 
• Compare and Swap   acswap(&p, cmp, replace)
• return p, if( cmp==p ) { p = replace }



Link Lists
Standard use of compare and swap

P Qc



Link Lists
Standard use of compare and swap

P Qc

load c, pointer to Q



Link Lists
Standard use of compare and swap

P Qc

load c, pointer to Q

D  r points to Dc



Link Lists
Standard use of compare and swap

P Qr

load C, pointer to Q

D  r points to D

cswap(&P, c, r)

c



UPC machines with AMOS

• Cray T3E: fetch_and_add(&p,v)
• Cray X1: 
• _amo_aadd(&p, v)  //atomic add (long v)
• _amo_afadd(&p,v)  // fetch and add
• _amo_aax(&p, A, X) // p=p&A^X
• _amo_afax(&p,A,X)
• _amo_acswap(&p, c, r) //compare and swap



UPC machines with AMOS

• MuPC: 
• _upc_faop(opcode, &p, v)
• _upc_cas(&p, &c, &r)
• _upc_dcas(&p, &c1, &r2, &c2, &r2)
• _upc_maskswap(&p, v, mask)
• _upc_ffaop(opcode, &p, v)



Affinity and Blocking

T0 T1 TN-1

i

shared [1] float x[MaxN];
shared [BLK] float y[MaxN];

X0 X1 XN-1XT XT+1

y0y1...yBLK-1 yBLK...y2BLK-1 ...yN*BLK-1...
i i

mask mask mask



MuPC

mupcrun

Runtime 
system

User Code

Runtime 
system

User Code

Runtime 
system

User Code

Runtime 
system

User Code



Why not just use locks?

old = _amo_cswap(&A[k], C, R);

Is sort of equivalent to:

_upc_lock( lockforA[k]);
     old = A[k];
     if(C==old) 

     A[k] = R;
_upc_unlock( lockforA[k]);

But there are issues.



Why not just use locks?

• Locks are ugly and not cool
• You need a lock for each element of A[]
• Or a lock per thread if you can           

partition the writes by thread
• Or some other way to hash                    

into a table of locks
• There are issues with the memory model.



Memory Model

• strict ~= sequential consistency           
“every thread sees this memory operation in 
program order wrt to other strict references”
• relaxed ~= weak consistency                          

“just a C program within a thread”

• Important to implementors---legal issue
• Performance issues
• Interaction with I/O and Collectives and AMOs

Every memory reference is either strict or relaxed.



Memory Models

relaxed
...

relaxed
strict

relaxed
...

relaxed
strict

relaxed
...

relaxed

relaxed
...

relaxed
strict

relaxed
...

relaxed
strict

relaxed
...

relaxed

relaxed
...

relaxed
strict

relaxed
...

relaxed
strict

relaxed
...

relaxed



Why not just use locks?

old = _amo_cswap(&A[k], C, R);

Is sort of equivalent to:

strict null reference
_upc_lock( lockforA[k]);
     old = A[k];
     if(C==old) 

     A[k] = R;
_upc_unlock( lockforA[k]);
strict null reference



Relative Costs

• T3E
• afadd == aadd 
• upc_lock is done with afadd
• a afadd about the same as an add
• X1
• amos don’t vectorize
• aadd  twice as fast as afadd
• don’t know how upc_lock works 
• Beowulf (think simulator)
• the current caching strategies are ⊥ amos

No Head-to-Head Comparison is Meaningful



Relative Costs

Pick a modest number of threads 16-64
For array sizes from 1 to 1024
loop                                                   // baseline 
    array[ random ]++
-----------
loop                                                   // atomic
    afaad(&array[ random ] , 1)
-----------
loop                                                   // locks
    upc_lock( lockarray[ random ] )
    array[random]++
    upc_unlock( lockarray[ random ] )



Relative Costs

buckets updates
raw +=1

slow down
w/ locks

1024 98% 3x
32 50% 5x
1 20% 20x

T3E:

afadd is 2x over raw +=

buckets updates
raw +=1

slow down
w/ locks

1024 98% 3x
32 50% 5x
1 20% 100x

X1:

amos don’t vectorize, afadd is 2x over aadd



PIC Code



PIC Code



PIC Code

As the particles move their affinity changes



Improving Affinity

n_T = desired affinity of particle new position

newindex[0:THREADS-1] = counter for each thread

for all my particles, P
   n_T =  desired affinity of P
   n_idx[P] = amo_afadd( &newindex[n_T], 1 )
   if out of bounds, work harder

for all my particles, P 
    move P to new home



PIC Code

Each particle contributes (mass or charge) to the cell 
that contains it.



Interpolation

for each particle, P
       ffaop( Op, Grid[nw], Fract(nw, P) )
       ffaop( Op, Grid[ne], Fract(ne, P) )
       ffaop( Op, Grid[sw], Fract(sw, P) )
       ffaop( Op, Grid[se], Fract(se, P) )

barrier

Fract(corner, particle) = the contribution to said corner



Announcement

MuPC’s  atomic floating point fetch and 
add is the fastest on the planet.

Announcement


