
1

PGI® Compilers and Tools for
AMD Opteron Processor-based

CRAY Systems

Doug Miles – douglas.miles@st.com

STMicroelectronics
The Portland Group
www.pgroup.com

Cray User Group Meeting
May 2005

• CRAY/PGI Relationship

• PGI Compiler Architecture and Features

• Applications Porting/Tuning Resources

• PGI Compilers Basic Usage, Important Options

• Vectors are Back!

• Pending Tuning Issues, PGI Compilers Roadmap

Outline

• CRAY/PGI History – PGHPF/CRAFT for CRAY T3E (1996)

• PGI ASCI History – ASCI Red F90/C/C++ for Sandia (1997)

• PGI on Linux86 – Production F90/C/C++ compilers (1997)

• PGI on AMD Opteron – Cooperation with AMD (2002)

• ASCI + CRAY + Opteron Red Storm CRAY + PGI

• CRAY/PGI Agreement – CRAY resells and supports PGI
F95/C/C++ on Red Storm, CRAY XT3, CRAY XD1 (2004)

CRAY + PGI Relationship

• Development – Compiler development/QA by PGI

• CRAY Integration – Add’l CRAY testing and integration on
target HW and OS

• Applications, Benchmarking – Both

• Technical Support – Frontline support by CRAY, compiler bugs
to PGI for fixing and (if needed) help finding bug workarounds

• Release Schedules – Standard PGI release schedules; usually
2 per year (one major, one minor) and several “builds” of each
release for tech support / new OSs / etc; current release is 6.0-4

Who Does What?

5

PGF77 PGF95PGCC PGC++

Optimizing
Core:

Global Optimization
Inter-Procedural Opts
Auto-Parallel
OpenMP Parallel

Vectorization
Loop Tiling
Loop Unrolling
Function Inlining

PGHPF

SPARC
Local Regs
Scheduling

Profile Feedback
DSP Intrinsics
Heterogeneous Targets

IA32
Local Regs
Global Regs
SIMD
Peephole

X86-64
Local Regs
Global Regs
SIMD
Peephole

ST100
Local Regs
VLIW
SW Pipe
SIMD
Predication
Scheduling
Peephole

LXBE
Local Regs
Global Regs
VLIW
Scheduling
Peephole
Retargetable

UCODE2ST ILIST ILIST ILIST ILI

PGI Compilers

• Optimization – State-of-the-art optimization infrastructure

• Cross-platform – AMD & Intel, 32- & 64-bit, Linux & Windows

• Tools – F95/C/C++ debugger/profiler, doc’s, pgroup.com

• Comprehensive Linux Support – Red Hat 7.3 – 9.0,
RHEL 3.0/4.0, Fedora Core 2/3, SuSE 7.1 – 9.2, SLES 8/9

• Parallel – OpenMP/MPI supported in all languages and tools

• Infrastructure – NAG, VNI, ACML, TotalView, ISV App’s,
Research App’s, Research Tools, PAPI

PGI Compilers Key Features

Commercial Applications Porting to
64-bit x86 with PGI Compilers

• MCAE – ANSYS*, ADINA*, MSC.MARC*, NX NASTRAN

• Computational Chemistry – GAUSSIAN*

• Automotive – LS-DYNA*, PAM-CRASH, PAM-STAMP,
RADIOSS*, MADYMO

• CFD – STAR-CD*, Fluent POLYFLOW*, AVL Fire*

• Geophysical – Several Proprietary

• Math Libraries – ACML*, NAG*
*In production

Research Applications Pre-tested
with PGI Compilers

• Weather – MM5, WRF2, POP, MOM4, CAM

• Computational Chemistry – GAMESS, AMBER,
MOLPRO, CHARMM, PWSCF

• Bioinformatics – BLAST

• DOE/DOD – MCNP5, TBMD

• Libraries – ATLAS, OPENGL, NetCDF, MPICH, MPICH-GM

• License/Seat Mgmt
• Documentation
• Online FAQs
• Online User Forums
• Extensive App’s
porting and tuning
guides

pgroup.com

10

GAMESS
Application
Note on
pgroup.com

11

Basic Usage of PGI Compilers
• Compiler drivers – interpret options and invoke pre-processing,

compilers, IPA, assembler, linker

• Options precedence – if two or more options conflict, last option on
command line takes precedence

• Use –help – to list all options or see details on how to use a given
option, e.g. pgf95 –fastsse –help

• Use –Minfo – to see a compile-time listing of optimizations and
transformations performed by the compiler

• PGI User’s Guide – chapters 2 and 3 – 35 pages that will make you an
expert at using the PGI compilers

12

Important PGI Compiler Options
-fast Includes “-O2 -Munroll –Mnoframe -Mlre”
-fastsse Includes “-fast –Mvect=sse -Mcache_align”
-Mipa=fast Enable inter-procedural analysis (IPA) and optimization
-Mipa=fast,inline

Enable IPA-based optimization and function inlining
-Mpfi … -Mpfo Enable profile- and data-feedback based optimizations
-Minline Inline functions and subroutines
-Mconcur Try to auto-parallelize loops for SMP/Dual-core systems
-mp[=align] Process OpenMP/SGI directives and pragmas
-mcmodel=medium

Enable data > 2GB on AMD64/EM64T running 64-bit Linux
-Minfo Compile-time optimization/parallelization messages
-help Compiler options and usage

–fastsse –Mipa=fast usually best for “compile-and-go”

13

350 !
351 ! Initialize vertex, similarity and coordinate arrays
352 !
353 Do Index = 1, NodeCount
354 IX = MOD (Index - 1, NodesX) + 1
355 IY = ((Index - 1) / NodesX) + 1
356 CoordX (IX, IY) = Position (1) + (IX - 1) * StepX
357 CoordY (IX, IY) = Position (2) + (IY - 1) * StepY
358 JetSim (Index) = SUM (Graph (:, :, Index) * &
359 & GaborTrafo (:, :, CoordX(IX,IY), CoordY(IX,IY)))
360 VertexX (Index) = MOD (Params%Graph%RandomIndex (Index) - 1, NodesX) + 1
361 VertexY (Index) = ((Params%Graph%RandomIndex (Index) - 1) / NodesX) + 1
362 End Do

Vectorizable Loop in SPECFP2K FACEREC
Data is REAL*4

Inner loop at line 358 is vectorizable, can used packed SSE instructions

14

% pgf95 -fastsse -Mipa=fast -Minfo -S graphRoutines.f90
…
localmove:

334, Loop unrolled 1 times (completely unrolled)
343, Loop unrolled 2 times (completely unrolled)
358, Generating vector sse code for inner loop
364, Generating vector sse code for inner loop

Generating vector sse code for inner loop
392, Generating vector sse code for inner loop
423, Generating vector sse code for inner loop

%

Use –Minfo to see Which Loops Vectorize

15

Scalar SSE: Vector SSE:

.LB6_1105:
lineno: 358

movlps (%esi,%ecx),%xmm2
movlps (%edx,%ecx),%xmm3
movhps 8(%esi,%ecx),%xmm2
movhps 8(%edx,%ecx),%xmm3
mulps %xmm2,%xmm3
movlps 16(%esi,%ecx),%xmm2
movhps 24(%esi,%ecx),%xmm2
addps %xmm3,%xmm0
movlps 16(%edx,%ecx),%xmm3
movhps 24(%edx,%ecx),%xmm3
addl $32,%ecx
mulps %xmm2,%xmm3
addps %xmm3,%xmm0
subl $8,%eax
jg .LB6_1105

.LB6_668:
lineno: 358

movss -12(%eax),%xmm1
movss -8(%eax),%xmm2
movss -4(%eax),%xmm3
decl %edx
mulss -12(%ecx),%xmm1
addss -572(%ebp),%xmm1
mulss -8(%ecx),%xmm2
addss %xmm2,%xmm1
mulss -4(%ecx),%xmm3
addss %xmm3,%xmm1
movss (%eax),%xmm2
addl $16,%eax
mulss (%ecx),%xmm2
addl $16,%ecx
addss %xmm2,%xmm1
testl %edx,%edx
movss %xmm1,-572(%ebp)
jg .LB6_668

Facerec Scalar: 104.2 sec
Facerec Vector: 84.3 sec

16

Maximizing Vectorization
• May need to split “large” loops by hand (or try –Mvect=nosizelimit)

• Don’t unroll loops by hand – re-roll if necessary to enable vectorization
and let the compiler unroll loops where needed (or use –Munroll)

• Fortran 90 POINTER may not be contiguous

• Index arrays can prevent vectorization, or make it inefficient

• Check asm code to see if movaps / movapd used

• Vectorization is not always profitable, especially double-precision

• Double-precision scalar vs vector peak speed is the same, but vectorized
loops have fewer instructions, can use aligned moves

17

Pending Compiler Tuning Issues
• C/C++ Inlining – funcs returning struct, funcs w/statics, alloca, operators

• C/C++ General – global optz across non-loop blocks, scalar replacement
of aggregates, better idiom recognition, mitigating load after store
penalties (primarily for EM64T), eliminate useless struct copies

• C++ – re-implement trap handler / --no_exceptions, EDG IL optz

• OpenMP PARALLEL DO iterations – alignment versus load balancing

• OpenMP thread CPU hopping – sched_setaffinity() a little flakey

• NUMA on AMD Opteron – ensure memory is node-local, need NUMA-
aware OpenMP runtime library

• Autoparallel on Dual-core – How effective can we make it?

• Prefetching – non-vector loops, prefetching for indirect, directives

• EM64T-specific Issues – seem to be a lot of them; characterizing

18

PGI Compilers & Tools Roadmap
• PGI 6.0-5 in June, PGI 6.1 in November
• More Performance Tuning

– C/C++ tuning – IPA, inlining, pointer opt’s, EDG IL opt’s, etc (6.1)
– Dual-core – Support/Tuning/OpenMP (6.0-5, more in 6.1)
– OpenMP – DYNAMIC, GUIDED, runtime efficiency (6.0-5), NUMA (6.1)
– AMD64, IA32, EM64T code generator tuning (6.1)
– F95 optimizations (6.1 – need examples of object-oriented F95!)
– Vectorizer – splitting, partial vect, transcendentals, conditionals, etc (6.1)
– Track/tune more end-user & ISV applications (ongoing)
– Hand-coded math libs (6.1)

• Language/Compiler Features – C99, OpenMP 2.5, SSE3, GNU asm (6.1)
• Tools Features – PGI Visual Fortran; VS05 integration on Win64
• Documentation – Can we simplify?
• Operating Systems – SuSE, Red Hat, 64-bit Windows

19

Questions?

	PGI® Compilers and Tools for �AMD Opteron Processor-based�CRAY Systems
	Outline
	CRAY + PGI Relationship
	Who Does What?
	PGI Compilers
	PGI Compilers Key Features
	Commercial Applications Porting to �64-bit x86 with PGI Compilers
	Research Applications Pre-tested �with PGI Compilers
	pgroup.com
	GAMESS�Application�Note on�pgroup.com
	Basic Usage of PGI Compilers
	Important PGI Compiler Options
	Vectorizable Loop in SPECFP2K FACEREC�Data is REAL*4
	Use –Minfo to see Which Loops Vectorize
	Maximizing Vectorization
	Pending Compiler Tuning Issues
	PGI Compilers & Tools Roadmap
	Questions?

