PGI® Compilers and Tools for
AMD Opteron Processor-based
CRAY Systems

Cray User Group Meeting
May 2005

Doug Miles — douglas.miles@st.com

STMicroelectronics
The Portland Group
WWW.pgroup.com

="'The Portland Group

Outline

« CRAY/PGI Relationship

PGl Compiler Architecture and Features

e Applications Porting/Tuning Resources

PGl Compilers Basic Usage, Important Options
e Vectors are Back!

 Pending Tuning Issues, PGl Compilers Roadmap

= " 'The Portland Group

R R
CRAY + PGI Relationship

 CRAY/PGI History — PGHPF/CRAFT for CRAY T3E (1996)

PGl ASCI History — ASCI Red F90/C/C++ for Sandia (1997)
PGl on Linux86 — Production FO0/C/C++ compilers (1997)

PGl on AMD Opteron — Cooperation with AMD (2002)

« ASCI + CRAY + Opteron Red Storm = CRAY + PGl

« CRAY/PGI Agreement — CRAY resells and supports PGI
FO5/C/C++ on Red Storm, CRAY XT3, CRAY XD1 (2004)

R RO
Who Does What?

e Development — Compiler development/QA by PGI

 CRAY Integration — Add’l CRAY testing and integration on
target HW and OS

* Applications, Benchmarking — Both

* Technical Support — Frontline support by CRAY, compiler bugs
to PGl for fixing and (if needed) help finding bug workarounds

* Release Schedules — Standard PGl release schedules; usually
2 per year (one major, one minor) and several “builds” of each
release for tech support / new OSs / etc; current release is 6.0-4

Global Optimization

Vectorization

PGl Compilers

= e D

Profile Feedback
DSP Intrinsics
Heterogeneous Targets

Optimizing Inter-Procedural Opts Loop Tiling
Core: Auto-Parallel Loop Unrolling
OpenMP Parallel Function Inlining
ST ILI ST ILI ST ILI ST ILI UCODE2
|A32 X86-64 | |[SPARC ST100 LXBE
Local Regs Local Regs Local Regs Local Regs Local Regs
Global Regs Global Regs Scheduling VLIW Global Regs
SIMD SIMD SW Pipe VLIW
Peephole Peephole SIMD Scheduling
Predication Peephole
Scheduling Retargetable

Peephole

R,
PGI Compilers Key Features

e Optimization — State-of-the-art optimization infrastructure
e Cross-platform — AMD & Intel, 32- & 64-bit, Linux & Windows
* Tools — F95/C/C++ debugger/profiler, doc’s, pgroup.com

« Comprehensive Linux Support — Red Hat 7.3 — 9.0,
RHEL 3.0/4.0, Fedora Core 2/3, SUSE 7.1 — 9.2, SLES 8/9

» Parallel — OpenMP/MPI supported in all languages and tools

 Infrastructure — NAG, VNI, ACML, TotalView, ISV App’s,
Research App’s, Research Tools, PAPI

Commercial Applications Porting to
64-bit x86 with PGl Compilers

« MCAE — ANSYS*, ADINA*, MSC.MARC*, NX NASTRAN
« Computational Chemistry — GAUSSIAN*

 Automotive — LS-DYNA*, PAM-CRASH, PAM-STAMP,
RADIOSS*, MADYMO

e CFD - STAR-CD*, Fluent POLYFLOW?*, AVL Fire*
 Geophysical — Several Proprietary
 Math Libraries — ACML*, NAG*

*In production

Research Applications Pre-tested
with PGl Compilers

 Weather — MM5, WRF2, POP, MOM4, CAM

« Computational Chemistry — GAMESS, AMBER,
MOLPRO, CHARMM, PWSCF

e Bioinformatics — BLAST

« DOE/DOD — MCNP5, TBMD

o Libraries — ATLAS, OPENGL, NetCDF, MPICH, MPICH-GM

“=""The Portland Group

The Portland Group PGl Parallel Fortran, C and C++ Compilers and Tools - Netscape

. File Edit Wew Go Bookmarks Tools window Help

q e @ @ [IE"'ttli'=."."W\"~'\a\'.|:|group..:.:u-.-.l.l

| [Cy search | ‘fga @

a 45 Home | EBookmarks %% Customize. ..

=) Netscape ~ |Enter Search Terms |:| Ol search S*Highlight

=] Mew Tab The Portland Group PGI Parallel Fortran, C ...]

3>

The Portland Group

Pricing Purchase

PGI® High-Performance
Compilers and Tools

PGI® High-Performance Compilers
Opbinnizing Fertran, C arnd C++ Compilers for 32-bit x86, S4-bit AMDES and 64-bit Intal®
EMERT procassor-basad Linux™® and Windows™ computer spstams

* pPLIE Workstation 6.0 for workstations with up to 4 CPUs,
Easily ruigrate applications from legacy UMIX* workstations
and servers to 3Z-bit or &4-bit Linux platforms.

* PGIE Server 6.0 for servers with up to 16 CPUs or threads,

* PGRI CDK™ 6.0 Cluster Developrment Kit™ for building and
programming a turn-key Linux Cluster,

Recent News

* Arnouncing PSI Warkstation 6,0, Read what's new,
* Register to download PSI evaluation cormpilers and tools for 64-bit
windows®,

Optimizing Performance with PGI Compilers
Quickly tune many popular applications, Nbravies and benchmarks
* SGAMESS. Molpro, MMS, POP, ATLAS, CHARMM, and more...

Purchasing and Upgrading
Doviniosd & frea I5-day el of PGT Workstation

* purchase locally in China, France, Germany, India, Ikaly, Japan and
Taiwan.

* Other regions incuding USA, purchase here online,

* Reguest 3 guote.

Dawnload

Generate License Keay
Documnentation

FAg

Tips & Techniques
Forurms=

why Choose PGI
Sther News

Hardware Partners

Software Partners

The Portland Group designs

and &64-bit IAZZ and AMDE4
processar-bazed workstatians,
servers and clusters.
Sales: sales@pgroup. cam
Support: trs@pgroup, corm
Phone: 503,682, 25806
FAX: S03.6832. 2637

@ STMicroeledronics 2005 | Legal informaation | Privacy Policy

DA F

group.com

License/Seat Mgmt
Documentation
Online FAQs

Online User Forums

Extensive App’s
porting and tuning
guides

PGl | Resources | 64-bit GAMESS Tips & Technigues - Netscape

&) Hew Tab [2 P6I | Resources | 64-bit GAMESS Tips & Te. . |

Version Information

This guide was created for the GAMESS MNovemeber 22, 2004 version and PGI Release 6.0 pgf90 and pgce
64-bit compilers on a 64-bit Linux system, Both AMD™ AMDE4/Opteron and Intel® Xeon with EM&4T are
supported,

Application Notes

Information about GAMESS can be found at the GAMESS home page. GAMESS is maintained by the
members of the Gordon research group at Iowa State University, From the GAMESS Home page:

"GAMESS is a program for ab initio quantum chemistry, Briefly, GAMESS can compute SCF wave functions
ranging from RHF, ROHF, UHF, GVB, and MCSCF, Correlation corrections to these SCF wave functions
include Configuration Interaction, second order perturbation theory, and Coupled-Cluster approaches, as
well as the Density Functional Theory approximation, Analytic gradients are available, for automatic
geometry optimization, transition state searches, or reaction path following. Cormputation of the energy
hessian permits prediction of vibrational frequencies. The chart below summarizes the program's present
capabilities for obtaining wave functions, applying correlation treatments, and computing derivatives, A
variety of molecular properties, ranging from sirmple dipole moments to frequency dependent
hyperpolarizabilities may be computed. Many basis sets are stored internally, and together with effective
care potentials, all elements up to Radon may be included in molec ules. Several graphics programs are
available for viewing of the final results. Many of the computational functions can be performed using direct
technigques, or in parallel on appropriate hardware."

Obtaining the Source Code

Information on obtaining the GAMESS source code can be found at the US Government's Ames Laboratory,
The ames lab requires you to register before downloading the source code.

Dependencies

Mo known dependencies,

Configuration and Set-up Information

Once unpacked, please read the enclosed documentation (*.D0C) files and the "readme.unix” file in the
"misc" directory. To build and run GAMESS, you will first need to edit several scripts {ddi/compddi, compall,
comp, lked, rungms, runall). Due to license restrictions on the source code, we cannot make available pre
configured versions of these files, Note that the line numbers may change with each release of GAMESS.

ddifcompddi 1. Line 17: set the "TARGET" to "amded”,

1. Line 15: set the "TARGET" to "arnda4d”.

2. Line 16: replace the "ful/mikefgamess" with the root directory of your GAMESS
package.

3. Line 36: Change the CCOMP flags for amded to:

if ($TARGET == amd&d) set CCOMP='pgocc -fastsse!

. Line 17: set the "TARGET" to "amded"”,

Line 18: replace the "Aful/mike/gamess" with the root directory of your GAMESS
package,

Line 47: If you wish to use a BLAS library, i.e. "-lblas" or "-lacml", set "BLAS3=trus",
. On line 533 set the OPT to

set OPT = '—fastsse'

. On line 536, remove "-Mprof=func” from OPT.
. On line 538, wou can use either pgf?7 or pgfa0. add "-Mfixed" if you prefer pgfan.

1. Line 17: set the "TARGET" to "amd&4”.
s o1 L P

Nl L PRI r nac

o Bow e

GAMESS
Application
Note on

group.com

Basic Usage of PGI Compilers

« Compiler drivers — interpret options and invoke pre-processing,
compilers, IPA, assembler, linker

 Options precedence — if two or more options conflict, last option on
command line takes precedence

« Use —help —to list all options or see details on how to use a given
option, e.g. pgf95 —fastsse —help

« Use —-Minfo — to see a compile-time listing of optimizations and
transformations performed by the compiler

« PGI User’s Guide — chapters 2 and 3 — 35 pages that will make you an
expert at using the PGI compilers

- 1m.poqr aﬁn !qupl em D |o|nI S

-fast Includes “-02 -Munroll —Mnoframe -Mlre”
-fastsse Includes “-~-fast —Mvect=sse -Mcache align”
-Mipa=fast Enable inter-procedural analysis (IPA) and optimization
-Mipa=fast,inline

Enable IPA-based optimization and function inlining
-Mpf1 ... -MpTFo Enable profile- and data-feedback based optimizations
-Minline Inline functions and subroutines
-Mconcur Try to auto-parallelize loops for SMP/Dual-core systems

-mp[=align] Process OpenMP/SGI directives and pragmas
—mcmode I=med 1um
Enable data > 2GB on AMD64/EM64T running 64-bit Linux

-Minfo Compile-time optimization/parallelization messages
-help Compiler options and usage

‘ —fastsse —Mipa=fast usually best for “compile-and-go” I

Vectorizable Loop in SPECFP2K FACEREC
Data is REAL*4

350!

351! [Initialize vertex, similarity and coordinate arrays

352!

353 Do Index =1, NodeCount

354 IX = MOD (Index - 1, NodesX) + 1

355 Y = ((Index - 1) / NodesX) + 1

356 CoordX (IX, 1Y) = Position (1) + (IX - 1) * StepX

357 CoordY (IX, 1Y) = Position (2) + (1Y - 1) * StepY

358 JetSim (Index) = SUM (Graph (;, :, Index) * &

359 & GaborTrafo (;, ;, CoordX(1X,1Y), CoordY (1X,1Y)))

360 VertexX (Index) = MOD (Params%Graph%RandomIndex (Index) - 1, NodesX) + 1
361 VertexY (Index) = ((Params%Graph%Randomindex (Index) - 1) / NodesX) + 1
362 End Do

‘ Inner loop at line 358 is vectorizable, can used packed SSE instructions I

Use —Minfo to see Which Loops Vectorize

% pgf95 -fastsse -Mipa=fast -Minfo -S graphRoutines.fo0

localmove:
334, Loop unrolled 1 times (completely unrolled)
343, Loop unrolled 2 times (completely unrolled)
358, Generating vector sse code for inner loop
364, Generating vector sse code for inner loop

Generating vector sse code for inner loop

392, Generating vector sse code for inner loop
423, Generating vector sse code for inner loop

%

"The Portland Group

Scalar SSE: Vector SSE:
.LB6 668: .LB6 1105:
lineno: 358 # lineno: 358

movss -12(%eax),%xmm1l
movss -8(%eax),%xmm?2
movss -4(%eax),%xmma3

movlps (%esi,%ecx),%xmm?2
movlps (%edx,%ecx),%xmm3
movhps 8(%esi,%ecx),%xmm?2

decl %edx movhps 8(%edx,%ecx),%xmm3
mulss -12(%ecx),%xmm1 mulps %xmm2,%xmm3

addss -572(%ebp),%xmm1l movlps 16(%esi,%ecx),%xmm?2
mulss -8(%ecx),%xmm?2 movhps 24(%esi,%ecx),%xmm2
addss %xmm2,%xmm1 addps %xmm3,%xmmO0

mulss -4(%ecx),%xmm3 movlps 16(%edx,%ecx),%xmm3
addss %xmm3,%xmm1 movhps 24(%edx,%ecx),%xmm3
movss (%eax),%xmm?2 addl $32,%ecx

addl $16,%eax mulps %xmm2,%xmm3

mulss (%ecx),%xmm2 addps %xmm3,%xmm0

addl $16,%ecx subl $8,%eax

addss %xmm2,%xmm1 jg .LB6 1105

testl %edx,%edx
movss %xmm1,-572(%ebp) Facerec Scalar: 104.2 sec

Jg .LB6_668 Facerec Vector: 84.3 sec

R RO,
Maximizing Vectorization

 May need to split “large” loops by hand (or try —Mvect=nosizelimit)

« Don’t unroll loops by hand — re-roll if necessary to enable vectorization
and let the compiler unroll loops where needed (or use —Munroll)

e Fortran 90 POINTER may not be contiguous
* Index arrays can prevent vectorization, or make it inefficient

 Check asm code to see if movaps / movapd used

« Vectorization is not always profitable, especially double-precision

* Double-precision scalar vs vector peak speed is the same, but vectorized
loops have fewer instructions, can use aligned moves

e
Pending Compiler Tuning Issues

« C/C++ Inlining — funcs returning struct, funcs wi/statics, alloca, operators

« C/C++ General — global optz across non-loop blocks, scalar replacement
of aggregates, better idiom recognition, mitigating load after store
penalties (primarily for EM64T), eliminate useless struct copies

e« C++ —re-implement trap handler / --no_exceptions, EDG IL optz
e OpenMP PARALLEL DO iterations — alignment versus load balancing
« OpenMP thread CPU hopping — sched_setaffinity() a little flakey

« NUMA on AMD Opteron — ensure memory is node-local, need NUMA-
aware OpenMP runtime library

o Autoparallel on Dual-core — How effective can we make it?

« Prefetching — non-vector loops, prefetching for indirect, directives

« EMG64T-specific Issues — seem to be a lot of them; characterizing

R R R
PGl Compilers & Tools Roadmap

e PGI6.0-5in June, PGI 6.1 in November
 More Performance Tuning

C/C++ tuning — IPA, inlining, pointer opt’s, EDG IL opt’s, etc (6.1)
Dual-core — Support/Tuning/OpenMP (6.0-5, more in 6.1)

OpenMP — DYNAMIC, GUIDED, runtime efficiency (6.0-5), NUMA (6.1)
AMDG64, 1A32, EM64T code generator tuning (6.1)

FO5 optimizations (6.1 — need examples of object-oriented F95!)
Vectorizer — splitting, partial vect, transcendentals, conditionals, etc (6.1)
Track/tune more end-user & ISV applications (ongoing)

Hand-coded math libs (6.1)

« Language/Compiler Features — C99, OpenMP 2.5, SSE3, GNU asm (6.1)
 Tools Features — PGl Visual Fortran; VS05 integration on Win64

« Documentation — Can we simplify?
 Operating Systems — SUSE, Red Hat, 64-bit Windows

Questions?

= The Portland Group

	PGI® Compilers and Tools for �AMD Opteron Processor-based�CRAY Systems
	Outline
	CRAY + PGI Relationship
	Who Does What?
	PGI Compilers
	PGI Compilers Key Features
	Commercial Applications Porting to �64-bit x86 with PGI Compilers
	Research Applications Pre-tested �with PGI Compilers
	pgroup.com
	GAMESS�Application�Note on�pgroup.com
	Basic Usage of PGI Compilers
	Important PGI Compiler Options
	Vectorizable Loop in SPECFP2K FACEREC�Data is REAL*4
	Use –Minfo to see Which Loops Vectorize
	Maximizing Vectorization
	Pending Compiler Tuning Issues
	PGI Compilers & Tools Roadmap
	Questions?

