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Abstract

Modern iterative solver packages have targeted super-
scalar computer architectures, and typically exhibit
poor out-of-box performance on vector processor ma-
chines. In this work, we describe initial work on algo-
rithmic modifications to the popular PETSc scientific
toolkit to improve the vectorizability of its iterative
linear system solvers. We describe our implementa-
tion of a PETSc matrix class that uses a simple vec-
torizable algorithm to perform sparse matrix-vector
multiplication with compressed sparse row (CSR) for-
mat matrices. Performance tests using our kernel in
codes that solve a variety of physics problems on the
Cray X1 indicate that speedups of an order of mag-
nitude or better for matrix-vector multiplication are
typical. Further work remains, however, as applica-
tions are still slowed by poor vectorization of precon-
ditioning operations.

1 Introduction

A great many systems of interest to scientists and
engineers are modeled by analytically intractable
boundary value problems. Scientific application
codes often approach such problems by considering
a discretized form of the governing partial differen-
tial equations (PDEs). In such codes, the bulk of
the computation usually lies in the solution of a lin-
ear system of equations Ax = b. The matrix A is
usually sparse, consisting of many zero elements. In
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practical applications, A also tends to be large, as
increasing the resolution of a simulation rapidly in-
creases the dimension of the matrix. One way to
solve such linear systems is through so-called direct
methods, which are essentially variations on Gaussian
elimination. Direct methods are general and robust,
but it can be difficult to limit fill-in (increase in the
number of nonzero elements) when using them, and
it can be extremely challenging to get good scala-
bility when solving huge matrix problems on many
parallel processors. Consequently, iterative methods
are popularly employed to solve such systems. These
methods are not guaranteed to always converge to
a solution, but they are comparatively easy to par-
allelize and usually require less time than a direct
method when a solution can be found.

The most widely used iterative methods are Krylov
subspace methods, which build a vector space from
which increasingly accurate approximate solutions
are extracted. Although understanding the theory
behind Krylov methods is non-trivial, these methods
are relatively easy to implement, as they involve only
matrix-vector products, dot products, and vector up-
dates. Krylov methods are rarely employed with-
out some form of preconditioning to improve conver-
gence. Preconditioning can be viewed as transform-
ing a linear system Ax = b into an equivalent system
M−1Ax = M−1b that has the same but more easily
found solution; obviously, it is desirable that M−1

approximate A−1 in some fashion. In the absence
of a preconditioner based on some specific knowledge
about the physics or other attributes of a given prob-
lem, some form of incomplete LU factorization (ILU)
is usually employed as a generic preconditioner.

Many scientific simulation codes spend the major-
ity of their time applying Krylov methods, specifically
in the matrix-vector multiply required at each itera-
tion and the sparse triangular solve required to ap-
ply the ILU preconditioner. Unfortunately, we have
found that most modern software packages for iter-
ative solution of linear systems were designed with

1



scalar computers in mind, and hence perform poorly
on vector architectures such as the Cray X1. In
this paper we present some initial results from on-
going work on algorithmic changes to improve the
vectorizability of kernels within the popular PETSc
toolkit. PETSc (the Portable, Extensible Toolkit
for Scientific Computation) is a suite of data struc-
tures and associated routines for the scalable solution
of problems arising from systems modeled by par-
tial differential equations [1]. It employs an object-
oriented design that shields application programmers
from underlying, complicated data-structures and
message passing by providing abstract objects. We
will demonstrate how we have integrated alternative
data structures and kernels for sparse matrix-vector
kernels into the PETSc object-oriented framework
to improve performance of applications that rely on
PETSc iterative solvers on the Cray X1.

2 Background: sparse matrix-

vector multiplication

Our initial efforts have focused on improving the
performance of sparse matrix-vector multiplications
(“mat-vecs”) on the Cray-X1, in which nearly all iter-
ative solvers spend a great deal of their time. Here we
present background on some common sparse matrix
storage formats and the algorithms used to compute
matrix-vector products with them. Readers desiring
further information can refer to [2, 9].

The most widely-used general format for storing
sparse matrices is the compressed sparse row (CSR)
format, also known as compressed row storage (CRS),
Yale sparse matrix, or AIJ format. The format is very
space-efficient, storing only nonzero entries. In CSR,
the matrix is stored in three arrays, which we denote
val, col ind, and row ptr. The array val stores the
nonzero elements in row by row fashion, from row 1
to n. The integer array col ind contains the column
index of each entry in val, i.e., if val(k) = aij then
col ind(k) = j. The integer array row ptr is used
to track the beginning of each row of the matrix in
the arrays val and col ind, i.e., the row ptr(i) is
the position in val and col ind where the ith row
begins. For example, the matrix

A =




11 0 0 14 0
21 22 0 24 0
31 0 33 34 35
0 0 43 44 0
0 0 0 0 55




(1)

is represented in CSR format in Figure 1.

Matrix-vector multiplication for CSR format is
fairly straightforward. The multiplication proceeds
in row by row fashion, moving through the val and
col ind values with unit stride. Figure 2 describes
the algorithm. The algorithm performs acceptably on
scalar computer architectures, but tends to perform
poorly on vector machines. This is because vectoriza-
tion across the row index J is limited by the number
of nonzeros (IEND − ISTART + 1) per row, and with
most discretization schemes, this number is usually
only a fraction of the vector register length. For ex-
ample, using a “star”-type finite difference stencil in
three dimensions results in only seven nonzeros per
row.

If the number of nonzeros per row is fairly con-
stant, the ELLPACK-ITPACK format (ELL) [6] can
yield much better performance than CSR on vector
machines. ELL stores the matrix in two rectangular
arrays, val and col ind, of dimension N × NZMAX,
where N is the number of rows and NZMAX is the max-
imum number of nonzero elements per row. To con-
struct the ELL data structure, all nonzero elements
of the matrix are shifted left, and then columns of
the shifted “matrix” are stored consecutively in val.
Rows that have fewer than NZMAX nonzeros will re-
sult in padding with zeros on the right to give all
rows in val equal length. Element (i, j) of col ind
stores the column number of element (i, j) of val.
Note that, for entries in col ind that correspond
to zero elements, the “column number” is chosen to
equal the row number. This is somewhat arbitary,
because when forming a matrix-vector product, the
corresponding element from the vector will be mul-
tiplied by zero. Figure 2 illustrates the ELL storage
scheme for the matrix in Equation 1.

The advantage of ELL format is that matrix mul-
tiplication is easily vectorized with a vector length
essentially equal to the number of rows N. This algo-
rithm is presented in Figure 4. A drawback of this
algorithm is that it generates a significant amount of
memory traffic because the complete vector Y will be
repeatedly read in and written out again. A simple
variant of this algorithm that can decrease memory
traffic is shown in Figure 5. This algorithm employs
a “strip-mining” approach, working with an array YP
of small enough size to fit into vector registers, thus
avoiding repeatedly moving Y to and from memory.

The ELL format enables good mat-vec perfor-
mance on vector machines, but it has limited appli-
cability: it is highly wasteful in terms of both storage
and computation if the number of nonzeros differs
widely per row. In the worst-case scenario, a ma-
trix in which one row is full but all others are very
sparse will require two full N×N arrays consisting al-
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val 11 14; 21 22 24; 31 33 34 35; 43 44; 55
col ind 1 4; 1 2 4; 1 3 4 5; 3 4; 5

row ptr 1 3 6 10 12 13

Figure 1: The matrix (1) stored in CSR format.

1 DO I=1,N
2 ISTART = ROW_PTR(I);IEND = ROW_PTR(I+1)-1
3 YI = 0.0
4 DO J=ISTART,IEND
5 YI = YI + VAL(J) * X( COL_IND(J) )
6 ENDDO
7 Y(I) = YI
8 ENDDO

Figure 2: Matrix multiply in CSR format

val(:,1) 11 14 0 0
val(:,2) 21 22 24 0
val(:,3) 31 33 34 35
val(:,4) 43 44 0 0
val(:,5) 55 0 0 0

col ind(:,1) 1 4 1 1
col ind(:,2) 1 2 4 2
col ind(:,3) 1 3 4 5
col ind(:,4) 3 4 4 4
col ind(:,5) 5 5 5 5

Figure 3: The ELLPACK-ITPACK (ELL) representation of the matrix from Equation 1.

1 Y(1:N) = 0.0
2 DO J=1,NZMAX
3 Y(1:N) = Y(1:N) + VAL(1:N,J)*X( COL_IND(1:N,J) )
4 ENDDO

Figure 4: Matrix multiply in ELLPACK format

1 DO I=1,N,NB
2 IEND = MIN(N,I+NB-1)
3 M = IEND-I+1
4 YP(1:M) = 0.0
5 ! ----------------------------------------------
6 ! Consider YP(1:M) as vector registers
7 ! NB is multiple of the size of vector registers
8 ! ----------------------------------------------
9 DO J=1,NZ

10 YP(1:M) = YP(1:M) + VAL(I:IEND,J) * X( COL_IND(I:IEND,J) )
11 ENDDO
12 Y(I:IEND) = YP(1:M)
13 ENDDO

Figure 5: “Strip-mined” variant of matrix multiply in ELLPACK format
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most entirely of zeros! The jagged diagonal (JAD)
format is a generalization of the ELL format that ad-
dresses this shortcoming. Construction of the JAD
data structure begins by determining a permutation
vector perm that orders the rows of the matrix by
decreasing number of nonzero elements. A number
of “jagged diagonals” are then constructed from the
permuted matrix PA as follows: The first jagged di-
agonal consists of the leftmost element of the first row
of PA, followed by the leftmost element of the next
row, and so on for each row. The second jagged di-
agonal is constructed similarly from the next to left-
most element of each row of PA, and so on. The
jagged diagonals are then stored consecutively in an
array jdiag. An integer array col ind of the same
dimension stores the column index for each element
of jdiag, and an array jd ptr denotes where each
jagged diagonal begins in jdiag. Figure 6 depicts
the JAD data structure for the example matrix 1.
Long vector lengths for matrix-vector multiplication
are easily obtained with JAD by vectorizing down
along the rows (see the algorithm in Figure 7). One
drawback of JAD is that construction of the jagged
diagonals often starts with the CSR data structure,
so significant extra storage is needed to copy the ma-
trix into the JAD structure.

3 The CSRP matrix-vector
multiplication algorithm

The vectorizable sparse matrix-vector multiplication
algorithm that we have used to speed up PETSc is the
CSRP (CSR with Permutation) algorithm originally
described in [4]. It works with a matrix stored in CSR
format, and computes an additional permutation vec-
tor that is used to group together rows with the same
number of nonzeros. The matrix-vector product is
computed one group at a time, with the computa-
tion for each group being carried out in a manner
similar to the ELLPACK algorithm. Unlike in the
ELLPACK algorithm, however, the data remain in
place and are accessed indirectly using the permuta-
tion vector. Although this involves non-unit stride
access to the data, the CSRP algorithm neverthe-
less yields considerably better performance than the
standard CSR multiply because of much better vector
lengths. Note that if the extra storage can be spared,
the groups can be copied into ELLPACK format to
allow unit-stride access to the val and col ind ar-
rays, improving performance. Figure 8 depicts the
CSRP algorithm.

4 A CSRPERM matrix class
for PETSc

PETSc is written in C, but utilizes a fully object-
oriented programming model, employing its own
function tables and dispatch mechanism. All PETSc
objects are derived from an abstract base object,
such as the Mat (matrix) object. The Mat object
has a variety of instantiations, corresponding to dif-
ferent storage formats. The most widely-used in-
stantiation is the AIJ (compressed sparse row stor-
age) matrix type, which is actually implemented us-
ing two matrix classes, MATSEQAIJ and MATMPIAIJ.
MATSEQAIJ stores a matrix residing on a single pro-
cessor, while MATMPIAIJ stores a matrix across sev-
eral processors (as a collection of MATSEQAIJ matri-
ces that hold the local portions of each matrix). We
have seamlessly integrated support for our CSRP al-
gorithm into PETSc by creating a CSRPERM matrix
type consisting of two classes, MATSEQCSRPERM and
MATMPICSRPERM that inherit most of the attributes
and methods of MATSEQAIJ and MATMPIAIJ, respec-
tively. Our CSRPERM classes need only override a se-
lect few methods supported by AIJ.

In PETSc, a Mat object A is built into a partic-
ular type by calling MatSetType(Mat mat, MatType
matype). If the matrix type is MATSEQCSRPERM, then
PETSc will call our internal MatCreate SeqCSRPERM
routine, shown in Figure 9. One can see that
all this routine does is build a matrix of type
MATSEQAIJ, then call our internal routine that con-
verts a MATSEQAIJ matrix into a MATSEQCSRPERM one.
Figure 10 displays some fragments of the conversion
routine. In lines 7–8, we create a Mat SeqCSRPERM
data structure, which will store all of the additional
data needed by the CSRP algorithm, and stash its
address in the ‘spptr’ field, which is provided in the
generic Mat type specifically as a means of pointing to
extra data needed by new matrix implementations.
In lines 12–16 we set the function pointers for the
AIJ methods we need to override. We must override
duplicate and destroy because those methods must
know about the extra data required by the CSRP al-
gorithm. We override mult and multadd to replace
those kernels with our CSRP mat-vec, and we over-
ride assemblyend because that is where the calcula-
tion of the permutation vector (and, optionally, ar-
rangement of data into ELL blocks) must occur.

A call to MatCreate SeqCSRPERM (and the sub-
sequent call to the conversion routine), creates an
empty MATSEQCSRPERM object but does not do any
setup of the actual matrix data structure. In or-
der to allow overlap of communication and com-
putation, actual matrix assembly in PETSc occurs
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jdiag 31 21 11 43 55; 33 22 14 44; 34 24; 35
col ind 1 1 1 3 5; 3 2 4 4; 4 4; 5

jd ptr 1 6 10 12 perm 3 2 1 4 5

Figure 6: The matrix (1) stored in JAD format.

1 Y(1:N) = 0.0
2 DO J=1,NUM_JD
3 K1 = JD_PTR(J)
4 K2 = JD_PTR(J+1) - 1
5 LEN = JD_PTR(J+1) - K1
6 Y(1:LEN) = Y(1:LEN) + JDIAG(K1:K2) * X( COL_IND(K1:K2) )
7 ENDDO

Figure 7: Matrix multiply in JAD format

1 DO IGROUP=1,NGROUP
2 JSTART = XGROUP(IGROUP)
3 JEND = XGROUP(IGROUP+1)-1
4 NZ = NZGROUP(IGROUP)
5 ! ------------------------------------------------------------
6 ! Rows( IPERM(JSTART:JEND) ) all have same NZ nonzeros per row
7 ! ------------------------------------------------------------
8 DO I=JSTART,JEND,NB
9 IEND = MIN(JEND,I+NB-1)

10 M = IEND - I + 1
11 IP(1:M) = ROW_PTR( IPERM(I:IEND) )
12 YP(1:M) = 0.0
13 ! -----------------------------------------
14 ! Consider YP(:), IP(:) as vector registers
15 ! -----------------------------------------
16 DO J=1,NZ
17 YP(1:M) = YP(1:M) + VAL( IP(1:M) ) * X( COL_IND(IP(1:M)) )
18 IP(1:M) = IP(1:M) + 1
19 ENDDO
20 ENDDO
21 Y( IPERM(I:IEND) ) = YP(1:M)
22 ENDDO

Figure 8: Matrix multiply for CSR with permutation. IPERM is the permutation vector, and XGROUP points
to the beginning indices of groups in IPERM.

1 PetscErrorCode MatCreate_SeqCSRPERM(Mat A)
2 {
3 PetscObjectChangeTypeName((PetscObject)A,MATSEQCSRPERM);
4 MatSetType(A,MATSEQAIJ);
5 MatConvert_SeqAIJ_SeqCSRPERM(A,MATSEQCSRPERM,MAT_REUSE_MATRIX,&A);
6 return(0);
7 }

Figure 9: The constructor routine that is registered with PETSc for the MATSEQCSRPERM class.
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1 PetscErrorCode MatConvert_SeqAIJ_SeqCSRPERM(Mat A,MatType type,
2 MatReuse reuse,Mat *newmat)
3 {
4 Mat B = *newmat;
5 Mat_SeqCSRPERM *csrperm;
6 ...
7 ierr = PetscNew(Mat_SeqCSRPERM,&csrperm);CHKERRQ(ierr);
8 B->spptr = (void *) csrperm;
9 ...

10 /* Set function pointers for methods that we inherit from AIJ but
11 * override. */
12 B->ops->duplicate = MatDuplicate_SeqCSRPERM;
13 B->ops->assemblyend = MatAssemblyEnd_SeqCSRPERM;
14 B->ops->destroy = MatDestroy_SeqCSRPERM;
15 B->ops->mult = MatMult_SeqCSRPERM;
16 B->ops->multadd = MatMultAdd_SeqCSRPERM;
17 ...
18 ierr = PetscObjectChangeTypeName((PetscObject)B,MATSEQCSRPERM);CHKERRQ(ierr);
19 *newmat = B;
20 PetscFunctionReturn(0);
21 }

Figure 10: Portions of the internal routine for converting a MATSEQAIJ into a MATSEQCSRPERM.

in two steps: invoking the assemblybegin method
starts the process, and a matching assemblyend call
finalizes the process. Because creating the CSR-
PERM information proceeds from an AIJ (CSR) data
structure, the MATSEQCSRPERM assembly can use the
MATSEQAIJ routines to first construct an AIJ matrix
and then proceed from there. The assemblybegin
method for MATSEQCSRPERM is identical to that for
MATSEQAIJ. The assemblyend method, depicted in
Figure 11, simply calls the assemblyend method for
the MATSEQAIJ class (a pointer to which has been
stashed by the MatConvert call), and then constructs
the permutation for MATSEQCSRPERM using a bucket
sort. (Note that the inode.use attribute is set to
false before the MATSEQAIJ assembly; this ensures
that the AIJ “inode” matrix-vector multiplication
routines, which take advantage of rows with identi-
cal nonzero structure, will not be preferred over our
MATSEQCSRPERM routines.)

Creating the parallel CSRPERM class,
MATMPICSRPERM, is fairly trivial. Because the
CSRPERM scheme only needs to be applied locally
on each processor, the distributed CSRPERM class
can be implemented by making only a trivial change
to its parent MATMPIAIJ class. A MATMPIAIJ object
is simply a collection of MATSEQAIJ objects that
store the local portions of the matrix. Similarly, a
MATMPICSRPERM is a collection of MATSEQCSRPERM ob-
jects: MATMPICSRPERM inherits from MATSEQCSRPERM,

simply changing the types for the local matrix
portions from MATSEQAIJ to MATSEQCSRPERM.

The implementations of the MATCSRPERM types are
registered with PETSc inside the MatRegisterAll
call that occurs at PETSc initialization. This
makes it possible for existing PETSc codes to se-
lect our MATCSRPERM routines in place of the default
MATAIJ ones at runtime by using the PETSc op-
tions database: specifying the command line option
“-mat type csrperm” will cause all matrices that de-
termine their type from the options database to be of
type MATCSRPERM.

5 Performance evaluation on
the Cray X1

We have evaluated the performance of our CSRPERM
implementation on Phoenix, a 512-MSP Cray X1 at
the National Center for Computational Sciences at
Oak Ridge National Laboratory. The X1 is organized
into nodes consisting of four Multi-Streaming Pro-
cessors (MSPs) that share a cache-coherent memory.
Each MSP, in turn, consists of four tightly-coupled
Single-Streaming Processors (SSPs) that share a
2MB L2 cache. Applications can be compiled to run
in either SSP mode or MSP mode. In SSP mode,
each SSP runs a separate MPI task. In MSP mode
(the default), an MPI task occupies an entire MSP;
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1 PetscErrorCode MatAssemblyEnd_SeqCSRPERM(Mat A, MatAssemblyType mode)
2 {
3 PetscErrorCode ierr;
4 Mat_SeqCSRPERM *csrperm = (Mat_SeqCSRPERM*) A->spptr;
5 Mat_SeqAIJ *a = (Mat_SeqAIJ*)A->data;
6 ...
7 a->inode.use = PETSC_FALSE;
8 (*csrperm->AssemblyEnd_SeqAIJ)(A, mode);
9

10 /* Now calculate the permutation and grouping information. */
11 ierr = SeqCSRPERM_create_perm(A);
12 PetscFunctionReturn(0);
13 }

Figure 11: The assemblyend method for the MATSEQCSRPERM matrix type.

the compiler handles automatic creation and synchro-
nization of threads to use the resources of all four
SSPs to perform the work in loops that can be “mul-
tistreamed”.

In [4], we tested our CSRPERM implementation on a
number of sparse matrices, some of which are sum-
marized in Table 1. Table 2 shows the performance
(in Mflops/s) of sparse matrix-vector multiply for
the original CSR algorithm, versus the vectorizable
CSRP and CSRPELL algorithms. The CSRP algo-
rithm is roughly an order of magnitude faster than
the original CSR algorithm. The CSRPELL algo-
rithm can perform even better because the data rear-
rangement allows unit-stride memory access, though
this comes at the expense of storing another copy of
the matrix.

In addition to measuring the performance of our
algorithms using a simple driver that loads a ma-
trix and performs repeated mat-vecs, we have inves-
tigated its effect on the overall performance of some
different applications. (In all cases we copy groups
of rows to the ELL format.) Two of these applica-
tions are “toy” example codes that are provided with
the PETSc distribution. The first is ksp ex2, which
solves a simple Laplace problem on a 2D grid using
a five-point finite-difference stencil. The second is
snes ex14, which solves a solid fuel ignition prob-
lem on a 3D domain with a 7-point finite-difference
stencil, using a Newton-Krylov method. In both
of these examples, the default linear system solver
is GMRES(30) preconditioned with ILU(0). Table
3 summarizes the wall-clock time required to run
ksp ex2 on a 300 × 300 grid using one MSP, while
Table 4 shows the wall-clock time required to run
snes ex14 on a 32 × 32 × 32 grid using one MSP.
For ksp ex2, the wall clock time required to reach
a solution using the default solver is cut almost in

half when using our vectorized matrix-vector mul-
tiplication kernel in place of the default one. This
speedup comes from reducing the total time spent
forming matrix-vector products from 219 seconds to
2 seconds. Almost all of the execution time when
using the CSRPERM mat-vec is spent in applying the
ILU(0) preconditioner, an operation that does not
vectorize well on the X1. Because the CSRPERM kernel
makes mat-vecs so inexpensive compared to the pre-
conditioner application, we also tried using a point
Jacobi (diagonal scaling) preconditioner. This pre-
conditioner is much faster to apply, but is also much
weaker than ILU(0), so many more iterations of GM-
RES(30) are required for convergence — thus work is
shifted from applying the preconditioner to perform-
ing mat-vecs. When point Jacobi is used instead of
ILU(0), the vectorized routine allows us to cut the to-
tal wall-clock time to only 37 seconds. (1423 seconds
are required when point Jacobi is used without the
CSRPERM mat-vec.) snes ex14 shows similar trends
in performance, though the improvements are some-
what less dramatic.

Besides the two simple example codes, we also
tested our CSRPERM routines in two full-scale appli-
cation codes. The first code is PFLOTRAN, a par-
allel, fully-implicit code for multiphase groundwater
(Darcy) flow and reactive transport coauthored by
Richard Mills and Peter Lichtner (of Los Alamos Na-
tional Laboratory). It uses a structured finite-volume
mesh and employs a Newton-Krylov method to solve
a nonlinear system of equations at each time step. We
used the flow module, PFLOW, to solve a 3D flow and
heat transport problem from the Nevada Test Site on
a 95× 65× 50 grid with three degrees of freedom per
grid point. This is a very difficult problem involving
convective plumes. We ran the problem in SSP mode
using 512 SSPs. GMRES(30) is used for the inner
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Table 1: Description of matrices

Name N Nonzeros Description
astro 5706 60793 Nuclear Astrophysics problem from Bradley Meyer

bcsstk18 11948 149090 Stiffness matrix from Harwell Boeing Collection
7pt 110592 760320 7 point stencil in 48 × 48 × 48 grid
7ptb 256000 7014400 4 × 4 blocks 7-pt stencil in 40 × 40 × 40 grid

Table 2: Performance (in Mflops/s) of sparse matrix multiply using CSR, CSRP and CSRPELL in PETSc.

SSP MSP
Problem CSR CSRP CSRPELL CSR CSRP CSRPELL

astro 26 163 311 14 214 655
bcsstk18 28 315 340 15 535 785

7pt 12 259 295 8 528 800
7ptb 66 331 345 63 918 1085

Method Total MatMult PCApply
plain, block-Jacobi/ILU(0) 451.3 218.9 227.6
vec, block-Jacobi/ILU(0) 235.8 1.6 229.5

vec, point-Jacobi 36.9 14.6 1.1
plain, point-Jacobi 1423.0 1400.0 1.1

Table 3: Performance of the ksp ex2 code on one MSP. In the “Method” column, “plain” indicates that
the default AIJ matrix-multiplication is used, while “vec” indicates that our CSRP algorithm is used. GM-
RES(30) is used as the iterative solver with the preconditioner indicated in the “Method” column. “Total”
is the total time to solve the problem, while “MatMult” and “PCApply” indicate the amount of time spent
performing matrix-vector multiplies and preconditioner applications, respectively. Timings are in seconds.

Method Total MatMult PCApply
plain, block-Jacobi/ILU(0) 26.1 10.5 11.3
vec, block-Jacobi/ILU(0) 15.5 0.1 11.0

vec, point-Jacobi 5.3 0.7 0.1
plain, point-Jacobi 36.5 32.6 0.1

Table 4: Performance of the snes ex2 code on one MSP. Column headings are as described for Table 3.
Timings are in seconds.
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solves in the Newton-Krylov iteration. Table 5 dis-
plays the performance we observed. When the linear
systems are preconditioned with block Jacobi (one
block per processor) using ILU(0) on the blocks, us-
ing the vectorized matrix-vector multiply routine cuts
the total runtime by only a few minutes, or a little less
than 20%. This is not surprising because the appli-
cation spends relatively little of its time performing
mat-vecs; getting appreciable speedup requires vec-
torizing the preconditioner as well. We tried shifting
more of the work to matrix-vector products by us-
ing a point Jacobi preconditioner, but this ended up
increasing the execution time because the precondi-
tioner is poorly suited to this problem.

The second full-scale application code we tested
our CSRPERM routines in is M3D [8], a three dimen-
sional, unstructured finite-element magnetohydrody-
namics code from Princeton Plasma Physics Labo-
ratory (PPPL). M3D uses an operator-splitting ap-
proach and solves several elliptic equations at each
time step. We used 16 MSPs to run a problem that
follows the time evolution in a tokamak of an in-
stability known as a resistive tearing mode—this in-
volves magnetic field line reconnection and is driven
by gradients in the toroidal plasma current. The lin-
ear systems are solved using GMRES with an addi-
tive Schwarz preconditioner with one level of over-
lap; ILU(3) is applied to each subdomain. Table
6 summarizes the performance observed. As in the
PFLOTRAN case, our vectorized mat-vec reduces to-
tal execution time only slightly (by about 11%). The
speedup for the matrix-vector multiplication is con-
siderable (about 8.7 times), but a significantly larger
fraction of the the work done by the application is
in applying the preconditioner. This prompted us to
try using a simple point Jacobi preconditioner with
our vectorized mat-vec. Doing so does not reduce
the execution time by any significant amount com-
pared to using the non-vectorized mat-vec with the
additive Schwarz/ILU(3) preconditioner. However,
when point Jacobi is used, roughly half the execu-
tion time is spent performing orthogonalization with
the GMRES basis. It might be the case that execu-
tion time could be improved considerably if we use a
Krylov solver based on a short-term recurrence, such
as TFQMR or BiCGSTAB, or if we simply use a more
reasonable (i.e., smaller) basis size for restarted GM-
RES.

6 Summary and future direc-
tions

We have described our progress towards improving
the performance of the PETSc toolkit for solving
PDEs on the Cray X1. Our initial work has fo-
cused on improving the performance of sparse matrix-
vector multiplication, an important kernel in iterative
solvers. We have presented a simple, vectorizable al-
gorithm that can calculate sparse matrix-vector prod-
ucts using the standard CSR storage format. The
computation does involve non-unit stride access to
the data, but nonetheless provides speedups that are
typically an order of magnitude or better compared
to the standard CSR multiply. At the cost of extra
memory for a data copy, non-unit stride access can
be eliminated, further improving performance. We
have implemented a PETSc matrix type, CSRPERM,
that is derived from the standard AIJ matrix type
but uses our vectorizable matrix-multiplication algo-
rithm. This type can be used with existing PETSc
codes with little or no modification to those codes.

Performance tests indicate that our algorithm pro-
vided in CSRPERM speeds up sparse matrix-vector mul-
tiplication considerably, but experiments with full-
fledged application codes indicate that further work
is needed in other areas. Preconditioning of linear
systems presents the biggest hurdle, as many popular
preconditioners such as incomplete factorizations vec-
torize very poorly in their standard implementations.
There are several possible means to speed up the tri-
angular solves required to apply incomplete factor-
ization preconditioners. Multicoloring can speed up
both the triangular solves as well as the computation
of the factorization. It has been used successfully
with applications on the Earth Simulator [7], though
it can slow convergence significantly for some prob-
lems. Another approach is to perform the forward
and backward triangular solve in a block-recursive
manner so that much of the work can be cast into
the form of a matrix-vector multiply. Yet another
possibility is to consider an expansion of the inverses
of the factors and to take only a small number of
terms in the series [10]; this can result in a very vec-
torizable solve operation with little degradation in
accuracy. Of course, it may be the case that other
preconditioners should be preferred over incomplete
factorizations. Sparse approximate inverses [3, 5], for
instance, may be preferable because once the precon-
ditioner is constructed, applying it is as simple as
performing a matrix-vector multiplication.
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Method Total MatMult PCApply
plain, block-Jacobi/ILU(0) 26.9 4.7 6.2
vec, block-Jacobi/ILU(0) 22.2 1.8 6.2

vec, point-Jacobi 33.7 10.3 0.3
plain, point-Jacobi 54.0 30.5 0.3

Table 5: Performance of the PFLOTRAN code on 512 SSPs. Column headings are as described for Table 3.
Timings are in minutes.

Method Total MatMult PCApply
plain, additive Schwarz/ILU(3) 42.0 7.8 17.1
vec, additive Schwarz/ILU(3) 37.3 0.9 17.1

vec, point-Jacobi 41.8 6.6 0.6
plain, point-Jacobi 94.3 57.3 0.6

Table 6: Performance of the M3D code on 16 MSPs. Column headings are as described for Table 3. Timings
are in minutes.
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