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A Comparison of Several Direct Sparse Linear Equation 
Solvers for CGWAVE on the Cray X1 

Fred T. Tracy and Thomas C. Oppe , U.S. Army Engineer 
Research and Development Center Major Shared Resource 
Center 

ABSTRACT: A number of sparse direct linear equation solvers are compared for the so-
lution of sets of linear equations arising from the wave climate analysis program 
CGWAVE developed at the Coastal and Hydraulics Laboratory at the U.S. Army Engi-
neer Research and Development Center. CGWAVE is a general-purpose, state-of-the-art 
wave-prediction model. It is applicable for estimation of wave fields in harbors, open 
coastal regions, and coastal inlets, and for around islands and fixed or floating struc-
tures.  CGWAVE generates systems of simultaneous, linear equations with complex coef-
ficients that are difficult to solve by iterative methods. The vendor-supplied solvers 
SSGETRF/SSGETRS and SSTSTRF/SSTSTRS are compared with SuperLU, UMFPACK, 
and a direct, banded, out-of-core solver that utilizes reordering of the nodes to reduce 
the size of the bandwidth. The latter solver was optimized for the ERDC Major Shared 
Resource Center Cray X1. 
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1. CGWAVE 
CGWAVE [1, 2] is a general-purpose, state-of-the-art 

wave-prediction model. It is applicable for estimation of 
wave fields in harbors, open coastal regions, and coastal 
inlets, and for around islands and fixed or floating struc-
tures. Thus, the results from CGWAVE can have signifi-
cant military application. Figure 1 shows a generic compu-
tational domain. Both monochromatic and spectral waves 
can be simulated with the CGWAVE model. CGWAVE is a 
finite element model interfacing with the Corps of Engi-
neers' Surface-Water Modeling System (SMS) [3] for 
graphics and efficient creation of finite element mesh gen-
eration and other input data. 
 CGWAVE was used to model harbors of military inter-
est in various parts of the world to create a database for 
use by Department of Defense (DoD) organizations. This 
information is vital for planning and execution of military 
operations, training, and exercises. 

Suitability 

 CGWAVE is particularly suited for performing wave 
simulations in regions with arbitrarily shaped (man-made 

or natural) boundaries and arbitrary depth variations. In-
trinsic limitations do not exist on the shape of the domain, 
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Figure 1. Computational domain 

 
the angle of wave incidence, or the degree and direction of 
wave reflection and scattering that can be modeled. 
CGWAVE is one of the DoD’s harbor-wave simulation 
models. It is used (a) in the planning and execution of op-
erations in ports and harbors and (b) design/modifica-tion 
of commercial ports, marinas, and yacht basins. Engineers 
conducting studies on navigation, channel deepening, 
and fluid-structure interaction problems can also use 
CGWAVE. 
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Governing equations 

 CGWAVE is based on the solution of the elliptic mild-
slope equation (MSE) for modeling surface-gravity waves 
in coastal areas. The MSE represents integration over wa-
ter columns of the three-dimensional Laplace’s equation 
used in the classical potential wave theory. The governing 
equation is as follows: 
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where η̂ is the complex surface elevation function from 

which the wave height can be determined, σ  is the wave 
frequency under consideration (radians/sec), C is the 
phase velocity, Cg is the group velocity, k is the wave 
number, and d is the local water depth. 
 CGWAVE provides an estimate of the spatial varia-
tion in the wave field from the time incident waves enter 
the model domain in the deep ocean to the time they move 
through inlets/entrances and start impacting various mari-
time activities inside ports, harbors, and estuaries. The 
wave-field data model provides (a) wave height, direction, 
and speed, (b) pressure, and (c) wave-radiation stresses. 

2.  Linear solvers  
Whether finite differences or finite elements are used 

for the discretization of the governing equations and 
boundary conditions of CGWAVE, the numerical treat-
ment leads to a system of simultaneous, linear equations 
 

bAx =                 (2) 
 
that must be solved. Here, A is a nonsymmetric, complex 
matrix of coefficients, x is the vector of unknown complex 
potentials, and b is a vector of known complex terms. The 
matrix A has a symmetric structure and is usually extremely 
large. Because this system of equations has challenged 
iterative solvers with varying success [4], direct solvers 
are investigated in this paper. 

Direct linear solvers 

 Five direct linear solvers were tested with three 
CGWAVE data sets. Threshold pivoting values of 0.1 and 
1.0 (classic partial pivoting) were used in the tests re-
ported in this paper. Timings for the U.S. Army Engineer 

Research and Development Center (ERDC) Major Shared 
Resource Center (MSRC) Cray X1 and SGI Origin 3900 
(O3K) were acquired whenever possible. All computations 
were accomplished using 64-bit arithmetic and, when pos-
sible, compiled with high optimization (e.g., using the –O3 
flag). A description of each of the solvers is as follows: 
 
1. Name:    Bansol 
 

Source:    ERDC MSRC 
 
Description:  Out-of-core, banded solver. It uses an  

initial bandwidth reduction step. Com- 
plex coefficients are used. This solver  
was optimized using directives for the  
X1[5]. 

 
2. Name:    SSGETRF, SSGETRS 
 

Source:    Cray X1 SciLib library 
 
Description:  General unsymmetric sparse solver.  

Phases include (a) fill-reduction reor- 
dering, (b) symbolic factorization, (c)  
execution sequence and memory man- 
agement, (d) numerical factorization,  
and (e) back substitution. Real coeffi-
cients are used. 

 
3. Name:    SSTSTRF, SSTSTRS 
 

Source:    Cray X1 SciLib library 
 
Description:  Symmetric structure sparse solver. No  

pivoting is done. Phases include (a) fill- 
reduction reordering, (b) symbolic fac- 
torization, (c) execution sequence and  
memory management, (d) numerical  
factorization, and (e) back substitution.  
Real coefficients are used. 

 
4. Name:    SuperLU [6] 
 

Source: http://www.eecs.berkeley.edu/ 
demmel/SuperLU.html 

 
Description:  General unsymmetric sparse solver. 

Phases include (a) equilibrate A, (b)  
preorder the rows of A, (c) order the 
columns of A, (d) compute the LU fac-
torization of A, and (e) apply back sub-
stitution. Real coefficients are used. 

 
5. Name:    UMFPACK [7] 
 

Source:  http://www.cise.ufl.edu/research/ 
sparse/umfpack 
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Description:  General unsymmetric sparse solver.  

Uses the unsymmetric pattern multifron-
tal method. The symmetric approximate 
minimum degree ordering routine [8, 9] 
added. Phases include (a) preorder and 
symbolic analysis, (b), numerical factori-
zation, and (c) back substitution. 

 
 In all but Bansol, real data are used, so the N complex 
equations are turned into a set of 2N real equations. 

Test problems 

 Table 1 gives a description of the data sets from 
CGWAVE used in this study. One can note a small data 
set with a small bandwidth, a medium data set with a large 
bandwidth, and a large data set with a small bandwidth. 
The infinity norms of the solutions and right-hand sides 
vary a significant amount as well. These three problems 
are therefore a good representation of CGWAVE data. 
 

Data Set ID a p11run24 event43 
Nodes 130,255 265,119 496,286 
Old half band- 
Width 

719 1,487 1,829 

New half band- 
Width 

719 1,487 583 

∞bmx  7.58 0.000443 2.92 

∞
b  596.0 0.0288 108.0 

  Table 1. Data set properties 

Bansol test results 

 Table 2 gives the timing and accuracy results for the 
Cray X1 for the banded out-of-core solver for threshold 
values of 0.1 and 1.0, and Table 3 gives the O3K results. 
The following key is used to conserve space in the table: 
 
Th   - threshold value 
BR   - bandwidth reduction time 
WDB  - writing data in blocks time 
LUC  - LU factorization computation time 
LUIO  - LU factorization IO time 
BSC  - Back substitution computation time 
BSIO  - Back substitution IO time 
Total  - Total time for solution 
xbm  - Benchmark solution for comparison 

 
Conclusions that can be drawn from these results are 

as follows: 
 
1. The multistreaming directives added to the X1 version 

of the test code significantly reduced the run time. 
 

2. Since the test data were derived from a finite element 
analysis, the A matrix is diagonally dominant. Thus, 
the full partial pivoting computation did not take 
much more time than the Th = 0.1 run. 

 
 Th a p11run24 Event43 

BR  0.7 1.6 3.2 
WDB  73.7 317.6 246.1 

0.1 189.1 1,416.1 415.8 LUC 
1.0 187.8 1,415.9 413.9 
0.1 141.7 762.9 581.5 LUIO 
1.0 194.2 773.5 678.9 
0.1 6.7 11.6 12.0 BSC 
1.0 6.7 10.9 12.2 
0.1 64.0 300.9 286.3 BSIO 
1.0 79.6 311.6 316.2 
0.1 478.7 2,812.4 1,543.5 Total 
1.0 538.7 2,826.9 1,665.6 

0.1 5.59 
(10-13) 

1.88 
(10-15) 

5.07 
(10-11) 

∞
− bmxx  

1.0 5.60 (10-

13) 
1.90 

(10-15) 
5.07 

(10-11) 

0.1 1.41 
(10-11) 

1.25 
(10-15) 

1.13 
(10-12) 

∞
− Axb  

1.0 1.38 
(10-11) 

1.00 
(10-15) 

1.13 
(10-12) 

Table 2. Timings (sec) and accuracy for Bansol on 
the Cray X1 

 
 Th a p11run24 Event43 

BR  0.1 0.3 0.5 
WDB  79.7 348.2 379.8 

0.1 1,316.0 19,130.7 2,264.7 LUC 
1.0 1,313.0 19,145.3 2,256.4 
0.1 141.7 2,134.5 702.0 LUIO 
1.0 240.6 2,128.1 794.0 
0.1 49.5 216.5 139.2 BSC 
1.0 48.7 211.9 141.1 
0.1 220.6 1,443.1 680.0 BSIO 
1.0 221.8 1,761.8 716.7 
0.1 1,893.4 23,271.7 4,158.7 Total 
1.0 1,909.9 23,596.6 4,295.2 

0.1 5.55 
(10-13) 

1.88 
(10-15) 

5.07 
(10-11) 

∞
− bmxx  

1.0 5.58 
(10-13) 

1.90 
(10-15) 

5.07 
(10-11) 

0.1 1.80 
(10-11) 

1.52 
(10-15) 

1.20 
(10-12) 

∞
− Axb  

1.0 1.61 
(10-11) 

1.37 
(10-15) 

1.20 
(10-12) 

Table 3. Timings (sec) and accuracy for Bansol on 
the O3K 
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3. The full partial pivoting computation was only 
slightly more accurate than the Th = 0.1 results as il-
lustrated by the infinity norm of the residual. 

 
4. The size of the bandwidth can affect the solution time 

more than the number of equations. 

SSGETRF and SSGETRS test results 

 Table 4 gives the timing and accuracy results for the 
general unsymmetric sparse matrix solvers on the X1. The 
following key is used to conserve space in the table: 
 
SUD  - setting up data time 
FRR  - fill reduction reordering time 
SF   - symbolic factorization time 
ESMM - execution sequence and memory manage- 

ment time 
NF    - numerical factorization time 
BS   - back substitution time 
Total  - Total time for solution 
 

 Th a p11run24 event43 

SUD  30.6 41.7 303.6 
0.1 18.1 33.2 65.5 FRR 
1.0 18.3 33.5 64.8 
0.1 3.2 6.4 12.2 SF 
1.0 3.2 6.5 12.1 
0.1 0.06 0.11 0.21 ESMM 
1.0 0.06 0.11 0.21 
0.1 18.7 65.4 142.4 NF 
1.0 18.9 65.4 144.0 
0.1 2.9 5.8 10.9 BS 
1.0 2.9 5.9 10.9 
0.1 73.4 152.2 534.0 Total 
1.0 74.3 153.4 536.2 

0.1 11.1 (10-

13) 
1.92 

(10-15) 
5.07 

(10-11) 
∞

− bmxx  

1.0 6.06 (10-

13) 
1.92 

(10-15) 
5.07 

(10-11) 

0.1 10.9 (10-

11) 
43.7 

(10-16) 
12.6 

(10-11) 
∞

− Axb  
1.0 1.49 (10-

11) 
3.86 

(10-16) 
1.46 

(10-11) 

Table 4. Timings (sec) and accuracy for SSGETRF 
and SSGETRS on the Cray X1 

 
Conclusions that can be drawn from these results are 

as follows: 
 
1. The sparse solver is much faster than the banded out-

of-core solver. 
 
2. As before, the full partial pivoting computation did 

not take much more time than the Th = 0.1 run. 

 
3. As before, the full partial pivoting computation was 

only slightly more accurate than the Th = 0.1 run as il-
lustrated by the infinity norm. 

 
4. This solver is slightly less accurate than the banded 

solver. 

SSTSTRF and SSTSTRS test results 

 Table 5 gives the timing and accuracy results for the 
symmetric structure sparse matrix solvers on the X1. 
 

 A p11run24 event43 
SUD 30.1 41.5 305.0 
FRR 14.3 25.2 51.1 
SF 3.2 6.4 12.3 
ESMM 0.03 0.06 0.12 
NF 33.1 106.4 231.9 
BS 2.7 5.4 10.3 
Total 83.4 185.0 610.8 

∞
− bmxx  1.32 (10-

11) 
1.92 

(10-15) 
5.13 

(10-10) 

∞
− Axb  3.82 (10-

9) 
1.73 

(10-14) 
2.13 
(10-8) 

Table 5. Timings (sec) and accuracy for 
SSTSTRF and SSTSTRS on the Cray X1 

 
Conclusions that can be drawn from these results are 

as follows: 
 
1. Surprisingly, the timings for this solver were greater 

than for the general solver. 
 
2. The accuracy was slightly worse as a result of no 

pivoting, but the results are still acceptable. 

SuperLU test results 

 Table 6 gives the timing and accuracy results for the 
SuperLU solver on the X1, and Table 7 gives the results 
for the O3K. No optimization was done to the library. The 
following key is used to conserve space in the table: 
 
F    - factorization time 
BS   - back substitution time 
Total  - Total time for solution 

 
Conclusions that can be drawn from these results are 

as follows: 
 
1. The X1 results are worse than the banded solver for 

the data set event43 and significantly worse than the 
library solvers. This emphasizes the need to optimize 
the code. However, for the data set p11run24, the size 
of the bandwidth is such that Bansol is very slow. 
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2. A comparison of Tables 3 and 7 shows that the Su-
perLU sparse solver performs better on the O3K than 
Bandsol. 

 
3. As before, the full partial pivoting computation did 

not take much more time than the Th = 0.1 run. 
 
4. As before, the full partial pivoting computation was 

only slightly more accurate than the Th = 0.1 run as il-
lustrated by the infinity norm. 

 
 Th a p11run24 event43 

SUD  30.1 41.0 305.9 
0.1 199.4 633.2 1,322.4 F 
1.0 199.3 636.3 1,348.9 
0.1 13.2 36.3 65.4 BS 
1.0 13.2 36.6 67.0 
0.1 242.7 710.5 1,690.8 Total 
1.0 242.6 714.0 1,724.8 

0.1 11.1 
(10-13) 

1.91 
(10-15) 

5.06 
(10-11) 

∞
− bmxx  

1.0 5.97  
(10-13) 

1.91 
(10-15) 

5.07  
(10-11) 

0.1 2.66 
(10-10) 

45.3 
(10-16) 

51.0 
(10-11) 

∞
− Axb  

1.0 1.59 
(10-10) 

7.43 
(10-16) 

5.42 
(10-11) 

Table 6. Timings (sec) and accuracy for SuperLU  
on the Cray X1 

 
 Th a p11run24 event43 

SUD  1.8 2.9 19.1 
0.1 93.8 603.4 1,706.7 F 
1.0 95.5 628.2 1,791.0 
0.1 2.2 6.1 443.3 BS 
1.0 2.5 7.1 427.2 
0.1 97.8 612.6 2,171.5 Total 
1.0 99.9 637.9 2,236.1 

0.1 16.4 
(10-13) 

1.90 
(10-15) 

5.08 
(10-11) 

∞
− bmxx  

1.0 5.88 
(10-13) 

1.91 
(10-15) 

5.07 
(10-11) 

0.1 3.56 
(10-10) 

54.7 
(10-16) 

5.51 
(10-11) 

∞
− Axb  

1.0 1.50 
(10-10) 

7.09 
(10-16) 

4.61 
(10-11) 

Table 7. Timings (sec) and accuracy for SuperLU  
on the O3K 

UMFPACK test results 

 Table 8 gives the timing and accuracy results for 
UMFPACK on the X1, and Table 9 gives the results for 
the O3K. No optimization was done to the library. The 
following key is used to conserve space in the table: 

 
POSA  - preorder and symbolic analysis time 
NF    - numeric factorization time 
BS   - back substitution time 
Total  - Total time for solution 
 

 Th a p11run24 event43 

SUD  30.4 42.1 305.2 
0.1 47.7 143.9 294.6 POSA 
1.0 48.0 143.0 295.0 
0.1 71.0 240.5 496.5 NF 
1.0 70.6 232.2 668.2 
0.1 1.7 4.2 9.1 BS 
1.0 1.7 4.1 10.3 
0.1 151.0 431.2 1,105.9 Total 
1.0 150.6 421.0 1,277.9 

0.1 1.81 
(10-12) 

1.90 
(10-15) 

5.05 
(10-11) 

∞
− bmxx  

1.0 1.85 
(10-12) 

1.90 
(10-15) 

5.09 
(10-11) 

0.1 18.5 
(10-10) 

5.06 
(10-15) 

54.3 
(10-11) 

∞
− Axb  

1.0 7.38 
(10-10) 

3.37 
(10-15) 

3.40 
(10-11) 

Table 8. Timings (sec) and accuracy for  
UMFPACK on the Cray X1 

 
 Th a p11run24 event43 

SUD  0.7 1.2 4.7 
0.1 4.9 13.6 28.6 POSA 
1.0 5.0 13.6 28.6 
0.1 27.5 146.3 325.8 NF 
1.0 27.5 146.7 528.6 
0.1 0.7 1.9 4.0 BS 
1.0 0.7 1.9 4.4 
0.1 33.8 163.0 363.1 Total 
1.0 33.8 163.4 566.6 

0.1 10.3 
(10-12) 

1.93 
(10-15) 

5.04 
(10-11) 

∞
− bmxx  

1.0 4.46 
(10-12) 

1.93 
(10-15) 

27.6 
(10-11) 

0.1 3.20 
(10-9) 

1.91 
(10-14) 

1.47 
(10-9) 

∞
− Axb  

1.0 1.36 
(10-9) 

1.38 
(10-14) 

1.82 
(10-9) 

Table 9. Timings (sec) and accuracy for UMFPACK 
on the O3K 

 
Conclusions that can be drawn from these results are 

as follows: 
 
1. UMFPACK outperforms SuperLU. 
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2. The O3K outperforms the X1 at times because of the 
lack of optimization of the solver library on the X1. 

 
3. The full partial pivoting computation took considera-

bly more time than the Th = 0.1 run for the large 
event43 data set. 

 
4. As before, the full partial pivoting computation was 

only slightly more accurate than the Th = 0.1 run as il-
lustrated by the infinity norm of the residual. 

3.  Overall conclusions 

Figure 2 shows a plot of running times for all five of 
the linear solvers tested for the three example problems for 
Th = 1.0, and Figure 3 shows the O3K run times for the 
three nonproprietary solvers. Overall, the best solver for 
the X1 is the general unsymmetric system library solver 
SSGETRF/SSGETRS, and the best solver for the O3K is 
UMFPACK. 
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Figure 2. Comparison of the solvers on the Cray X1 
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Figure 3. Comparison of the solvers on the O3K 
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